Prefrontal Cortex: Delay-related activity
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Remember the SRN? (chap 6
iImple Recurrent Network (SRN):

An Architecture for Sequence Learning
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Remember the SRN? (chap 6
iImple Recurrent Network (SRN):

An Architecture for Sequence Learning

hidden

COPY

this is a gating network: context only updated at discrete timepoints



Simple SRN story is not flawless

How is hidden— “copy” function implemented biologically?

During settling, context must be actively maintained (ongoing hidden
activity has no effect on context).

Assumes all context is relevant: What if distracting information
presented in middle of sequence? Want to only hold on to relevant
context.

What if want to hold on to more than one piece of information in WM
at a time?? Or to selectively update one part of WM while continuing
to robustly maintain others?

And what if the decision of whether or not to update information
depends on currently internal WM state?
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patients with PFC damage.
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Schizophrenia: Impaired PFC/BG Function

SZ Patients have deficits in the same cognitive tasks as those seen in
patients with PFC damage.

But PFC patients don’t have delusions, hallucinations, psychosis. Also
some imaging studies show increase in PFC activity in SZ (e.g., Manoach,
2003; Calicott et al, 2003)

Psychosis thought to stem from increased DA in BG (Weinberger,
O’Donnell, Grace, etc)

Other disorders with BG/DA dysfunction are associated with
frontal-like cognitive deficits (PD, addiction, ADHD, etc); these deficits
correlate w/ DA in BG (Muller et al, 2000; Remy et al, 2000)
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Widely Accepted Role of Prefrontal Cortex (PFC)

PFC helps keep us on task, promotes cognitive flexibility via ability to
rapidly switch state (e.g., task switching):

e Robust maintenance of neural activity (working memory)

e Flexibility from adaptive gating (via Basal Ganglia, BG) that switches
between maintenance and rapid updating

e Extensive interconnectivity, allowing top-down biasing of task-relevant
info in other cortical / subcortical areas.

In short, PFC is the “central executive!”



Working Memory Demands: Updating & Maintenance

Hochreiter & Schmidhuber, 1997; Braver & Cohen, 1999; Frank et al, 2001
a) Update

Working
Memory

Gating —e | —o0Open

Sensory | phone # is
371-9624

e Working memory: robust maintenance of information, but must also
have ability to be rapidly updated — requires gating.

e You've got to know when to hold ‘'em, know when to fold "em.



Working Memory Demands: Updating & Maintenance

Hochreiter & Schmidhuber, 1997; Braver & Cohen, 1999; Frank et al, 2001

a) Update b) Maintain

Working
Memory

Gating

e Working memory: robust maintenance of information, but must also
have ability to be rapidly updated — requires gating.

e You've got to know when to hold ‘'em, know when to fold "em.



Working Memory Demands: Updating & Maintenance

Hochreiter & Schmidhuber, 1997; Braver & Cohen, 1999; Frank et al, 2001

a) Update b) Maintain c) Update: OOPS!

Working
Memory

Gating

Sensory | phone # i
Input 371-9624

Should |
Go..?

e Working memory: robust maintenance of information, but must also
have ability to be rapidly updated — requires gating.

e You've got to know when to hold ‘'em, know when to fold "em.
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Basal Ganglia Architecture: Cortically based loops

Functional territories
~Bimbic | [ Associative |  Sensory Motor
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Alexander, G.E. etal (1986). "Parallel arganization of functionally segregated circuits linking basal ganglia
and cortex." Ann. Eev. Meurosci. 9: 357-381.

BG damage = deficits in motor, learning, motivation, working memory, cognitive control
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BG Model Extension to Working Memory and Attention

In the motor domain, the BG selectively facilitates one command while
suppressing others (Mink, 1996)

In parallel circuits, the BG may reinforce the updating of PFC working
memory Hm_uwmmmbﬁmEOSm (Alexander et al, 1986; Frank, Loughry & O’Reilly,
2001).

Dopamine in PFC supports robust maintenance over time (Lewis &
O’Donnell, 2000; Durstewitz & Seemans, 2002)

Phasic DA bursts thought to occur for task-relevant (“positive”)
information, reinforcing BG updating signals (O'Reilly & Frank, 2006; Frank
& O'Reilly, 2006).

Time course of DA activity: maintenance in PFC, updating thru BG.
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BG Disinhibition of PFC
= Gating of Working Memory / Attention

prefrontal
cortex

— eXCitatory
— @ inhibitory
-...q modulatory

@ U:moﬁ// . Indirect

e \6
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e Base state: Thalamus inhibited = Gate is closed

PFC robustly maintains prior states.



BG Disinhibition of PFC
= Gating of Working Memory / Attention

prefrontal
cortex

— eXCitatory
— @ inhibitory
--..q modulatory

® >

striatum

\
\
@ U:moﬁ// Indirect

e Base state: Thalamus inhibited = Gate is closed
PFC robustly maintains prior states.

e Striatum fires: Thalamus disinhibited = Gate opened
PFC rapidly updated to maintain new information.



Parallel Stripes = Selective Gating

Posterior
Cortex

— excitatory
== |nhibitory

__PFC
thalamus .
: dis—
GP (tonic act) e
Striatum
(matrix)

PFC/BG loops form independent stripes = selective gating.



BG gates flow: superficial — Deep PFC
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Maintenance via Thalamocortical loops, BG disinhibits
Superficial reflects inputs and maintenance
Separate Maintenance vs. Output PFC / BG stripes



Multiple stripes, competition
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Example Task: Specific Working Memory Demands

Target (R):
1=A-X
2=B-Y

Must maintain outer loop (1,2) while updating inner loop (A, X..).
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Example Task: Specific Working Memory Demands

Target (R):
1=A-X
2=B-Y

Must maintain outer loop (1,2) while updating inner loop (A, X..).
e Robust maintenance (over intervening stimuli; outer loop).
e Rapid and selective updating (keep 1,2 while updating A X..).

Many real-world examples: language, planning...



PFC/BG Model of 1-2-AX

(Frank, Loughry & O’Reilly, 2001)




FC/BG Model of 1-2-AX

(Frank, Loughry & O’Reilly, 2001)
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But How do BG “Know” What to Update/Ignore?
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DA effects on BG Updating Of PFC

DA Burst: Increased Go DA Dip: Increased NoGo

Posterior Cortex Frontal Cortex

Posterior Cortex Frontal Cortex

dorsal
striatum

dorsal
striatum

thalamus
VA,VL,MD

e DA bursts/dips modulate Go vs. NoGo firing and learning.

thalamus
VA,VL,MD

— excitatory
— @ inhibitory

— excitatory
— @ inhibitory

e Burst = Excitatory D1 on Go
Dip = Release of D2 inhibition on NoGo
Same mechanism as in basic motor circuitry! (Frank, 05; Gerfen, 00)



PFC/BG Model, Learns 12-AX and other WM tasks

(O’Reilly & Frank, 2006)
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Phonological Loop Task

Phonological Loop Task

Store
pfc | a a b gl b
\_, out \_,
bg go // go
input | s 1 a S 2 b S 3
Recall a b C a b C a b
~ ™
a __o

r 1 r 2 r 3




Phonological Loop Task
(O’Reilly & Frank, 2006)

Phono Loop Training Time Phono Loop Generalization
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PBWM LSTM RBP SRN PBWM LSTM RBP SRN
Algorithm Algorithm

PBWM = Prefrontal Basal-ganglia Working Memory; LSTM = Long Short Term Memory
(Schmidhuber et al.); RBP = Recurrent BackPropagation; SRN = Simple Recurrent
Network.



% Networks Solving Task
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Effects on 12AX Working Memory Performance
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Evidence for BG gating of PFC

Distraction task No distraction task
Jords

Task
instruction

Memory
stimuli

Instruction cue signals whether subsequent yellow information is
distracting (and should not be stored in working memory).

McNab & Klingberg (2008), Nature Neuroscience



Evidence for BG gating of PFC: Lesion patients
A
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Baier et al (2010), Journal of Neuroscience



Evidence for BG gating of PFC: Neuroimaging

Left basal ganglia

Distractor versus no-distractor contrast: NoGo!

McNab & Klingberg (2008), Nature Neuroscience



Both BG and PFC act correlate with WM capacity

1.2, Middle frontal gyrus 1.5, Left basal ganglia Putamen ; Global pallidus
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Better WM function correlates with PFC (middle frontal gyrus) and BG activity in Dist vs
NoDist contrast.

Globus pallidus = output of BG; stronger — more NoGo

McNab & Klingberg (2008), Nature Neuroscience



Evidence for BG gating of PFC: Neuroimaging

4
3
2

Parietal unnecessary storage
activity (relative signal change)
o

-0.4 0 0.4 0.8
Globus pallidus filtering set activity
(relative signal change)

-

More GP activity = Less “unnecessary storage” of distracting info in parietal cortex

(spatial storage; this parietal region is sensitive to memory load).



Evidence for BG gating of PFC: Neuroimaging
b

{15 T o7 S < Y

Parietal unnecessary storage
activity (relative signal change)
o

0.4 0 0.4 0.8
Globus pallidus filtering set activity
(relative signal change)

More GP activity = Less “unnecessary storage” of distracting info in parietal cortex

(spatial storage; this parietal region is sensitive to memory load).

No such correlation in PFC, suggesting that BG = filter (gate).

McNab & Klingberg (2008), Nature Neuroscience



Testing the Model: AX-CPT Task

Cohen et al (1997); Barch et al (2001); Frank & O’Reilly, 2006

RE

e target sequence is A - X; press R button.
e non-target sequences A - Y, B - X, B -Y; press L button.

e ignore all distractors (5,7)



Testing the Model: AX-CPT Task

Cohen et al (1997); Barch et al (2001); Frank & O’Reilly, 2006

RE

e target sequence is A - X; press R button.

e non-target sequences A - Y, B - X, B -Y; press L button.

ignore all distractors (5,7)

e Tests gating and maintenance components of working memory / attention.

















































































Working Memory Demands: AX-CPT Task

o A-X target sequence on 70% of trials.
e B-Y is control condition, not dependent on working memory.

e Key conditions: B-X, A-Y



B-X: 1 Working memory, 1 performance

a) Update B
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B-X: 1 Working memory, 1 performance
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B-X: 1 Working memory, 1 performance

a) Update B b) Maintain B c) Prepare NonTarg Resp.

Working
Memory

Gating = [ —oOpen —e-}—}— closed "_mmm_oo:mm.
Sensory
Input




B-X: | Working memory, | performance
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a) Update B b) Update 1
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B-X: | Working memory, | performance
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B-X: | Working memory, | performance

a) Update B b) Update 1 c) No Relevant Context.
Working
Memory
: ¢ Motor ,,.__
Gating —e [ —open —e [ I— 0Open \ Response !
P .
OOPS
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A-Y: T Working memory, | performance

a) Update A
Working
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A-Y: T Working memory, | performance

a) Update A b) Maintain A
Working
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A-Y: T Working memory, | performance
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A-Y: T Working memory, | performance

a) Update A b) Maintain A c) Prepare Targ Resp
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A-Y: | Working memory, 1 performance
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A-Y: | Working memory, 1 performance
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A-Y: | Working memory, 1 performance
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Working Memory Demands: AX-CPT Task

e More active maintenance of task-relevant info
— more A-Y false alarms, less B-X false alarms



SZ: Impaired Working Memory

Barch et al (2001)
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Psychopharmacological Studies
Frank & O’Reilly, 2006
e Double blind, within-subjects design (IN=28).
e Cabergoline and Haloperidol: D2 agonist and D2 antagonist

e D2 agents: preferential action in BG
(Camps et al, 1987; Moghaddam & Bunney, 1990;
Arnsten et al., 1994; Seemans & Yang, 2004)



Working memory gating task

Attentiona
Shift L




BG Gating of PFC Working Memory

Frank et al 2001, O’Reilly & Frank 2006, Hazy et al 2007...



DA drug effects on working memory gating

AX-CPT Set-Shifting

Drug/Span/Attention Interactions
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see Moustafa et al 08 and Frank et al 07 for similar drug effects in Parkinson’s and ADHD
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How do multiple BG-FC circuits interact in motivated behavior?



BG
Motor



BG
in-Gate



PFC-Out
(Atten)

Motor
Cortex

BG
in-Gate

Motor

e Only some maintained PFC reps relevant for processing during intermediate stages of processing



PFC-Out
(Atten)

Motor
Cortex

BG
in-Gate

Motor

e Reduces number of S-R mappings needed to be learned by motor circuit



> Anterior

PFC-Out
(Atten)

? aPFC

Context

out-Gate

BG BG
in-Gate ctxt-Gate

Motor

e Contextual dependencies for output gating (e.g., arithmetic); see also LSTM (Hochreiter &
Schmidhuber 97)



> Anterior

PFC-Out
(Atten)

n\’ aPFC

Context




Hierarchical interactions among BG-FC circuits

> Anterior
PFC-Out
(Atten)

? aPFC

Context

Motor
Cortex

P(Rew | Ctxt)

P(Rew | S)
P(Rew | Resp, S)

77 77

e BG gates frontal “actions” (motor, working memory, context)
e Anterior PFC influence posterior circuits via BG output gating

e BG-FC circuits learn reward probabilities via DA prediction error signals



Hierarchical interactions in BG-FC circuits:
PFC influences on BG learning

Collins & Frank 2013, Psych Rev; Frank & Badre 2012



Broader speculations:
Why does motor control develop so slowly in humans??

e Standard story: infants born early due to large head, small birth canal

e 'Fourth trimester’
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Broader speculations:
Why does motor control develop so slowly in humans??

Standard story: infants born early due to large head, small birth canal

"Fourth trimester’

But 3 month old infants still pretty incompetent (from babycenter.com):

“You no longer need to support his head. When he’s on his stoma ch, he can lift
his head and chest. He can open and close his hands..”

Hypothesis: human brain is wired to discover generalizable structure....
which is initially inefficient.



Task-sets (TS)
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Abstracting Task-set rules

Latent task-set space

- TS, Si1 l Ay

LI T ) A,
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U

(o)]

TS as abstract rule objects
Reverberi et al 2011
Woolgar et al 2011



Abstracting Task-sets rules
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Abstracting Task-sets rules




Abstracting Task-sets rules

Latent task-set space:
Unknown size
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TS, | S, ) A,

N
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C-TS model

Task-sets are clustered
across contexts and can be
revisited in new contexts

E E _“nH_._..\____

* Prior prob on TS space given a new C:

s = .MUAH...m:- - H..,mq:m,_t_n:.—.mv = Q\m
_oq,wl._n;tvl ﬁ ﬂ%:m?wqm,nﬂ,ﬂ_natuHMH_._EH@__&.VE

* o> 0: Clustering parameter
- Chinese restaurant process Jordan, Blei Teh 2005

see also Gershman et al 2010



Model mimicry: C-TS and hierarchical BG-PFC network

T

- r=0.76
. p = 0.0002

a (clustering)

N w
_w s 1oo

0 005 01 015
C—PFC one-to one prior

e Sparseness of context-PFC connectivity matrix is linked to « clustering
e Both models are approximations of the same process: building TS structure

e fMRI evidence for hierarchical PFC-BG mechanisms Badre et al 2010; Badre & Frank 2012

Collins & Frank 2013 Psych Rev



Neural Network - Results

1

o,
m - new TS e —u—._ 2
@ ,_F s 1 OE.._Mm d creation 0.6 A3€
o = transfer o 0. .
5 [1s1] [1s2 TS3 L smson_mﬁmxa.
oy M_ 0.4
2 \AO \Aﬂv %ﬂv . it New TS
= :
= AA A A
Phase 1 Phase 2 % W 2R

trials per input pattern

The network learns efficiently unsupervised,
Predicts positive, negative transfer

Collins & Frank, Psych Review, 2013



Hierarchical learning and clustering: First, in adults

Experiment:

Instrumental learning
E.g. colored shapes

Trial t
Context = red
Stim = triangle _|_LII

_
Choice A;=3 g%

Feedback
/_._“ R, = 1

Trial t+1
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Clustering affords faster learning within existing rule sets..

Phase

I Model
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Trial# per input pattern
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Trial# per input pattern



But initial (phase 1) clustering is inefficient and slow!

, 1
11" Model Subjects (N=34)
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Phase O3 06 8 0.6
1 5 S
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Trial# per input pattern Trial# per input pattern




Switch vs. Stay

Switch vs. Stay
activation in PMIC

activation in PFC
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Neural model predictions and EEG
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Collins, Cavanagh

100

High dim:
Color
TS1 TS2
Low dim:
Shape

200 300 400 500 &00 TOO

ms from stimulus onset

g

t-value

Switch High - Switch Low
vs. positive transfer h)

Switch - Stay High
vs. positive transfer

3
2
1
o

Ww”w |

2014
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Switch vs. Stay

Switch vs. Stay
activation in PMC
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Neural model predictions and EEG
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Now, in Infants!

8-Month-Old Infants Spontaneously Learn
and Generalize Hierarchical Rules|

A. i .
Hierarchical Rule Structure
Learning Task Generalization Task Inference Test
m D D Consistent Inconsistent
c.n.;um 1 Voice 2 Voice 3 m D
Mm_ 1A Voice 1 Voice 2

Rul ﬁd mﬁ_ﬁ 2 Rule
nwv

ANANISUSS 1UBWBINSESIN

Werchan et al, 2015; in prep



Badre Hierarchical Learning Task
Badre, Kayser & D’Esposito, 2010

feedback
delay

ITI (variable

. response
stimulus

n=1.9s

0-2s 4

2s 4
1s correct tone
press button or
1,2, 0or 3 incorrect beep

S . T T

m n ' ! (shape)  (orientation)
_ L1
1 S 2 3 1 3

1 2 3 1 2 3

Flat (conjunctive) Hierarchical
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Rostro-caudal axis and hierarchical control

06 PMd

04 T
0.2 m
0.0

06 prePMd

iPSC

0.4
0.2

oo Ml
B Flat

_H_ Hierarchical

0.8 0.8

prePMd
0.6

PMd -
0.4 0.4 * *
0.2 -} -j 0.2 -4 _ j
0.0 0.0 1
Begin Middle End Begin Middle End
Temporal Epoch

prePMD:
e 2nd level of hierarchical control (from Badre, Koechlin)
e activity predicts learning in 2nd level hier condition, declines in flat condition



Striatum implicated in hierarchical rule learning

a b
putamen

0.4 | caudate /
0.3 *
0.2 =
01 } _\J

QO 00 I

w

o

™ a4 | putamen _
0.3 | / .
0.2 \ i,
0.1 ﬁﬁ } e prePMd
00T I

Begin Middle End %%\ Kkk K*k/kk

Temporal Epoch

. Flat

_H_ Hierarchical

caudate

How do BG-PFEC circuits interact to discover hierarchical structure?



Hierarchical interactions among BG-FC circuits

> Anterior
PFC-Out
(Atten)
P
Motor ﬁl aPFC
Cortex Context

P(Rew | Ctxt)

P(Rew | S)

P(Rew | Resp, S)



Application to Badre task

> Anterior
<

P(Rew|S,Ctxt)

P(Rew | Ctxt)

P(Rew | S)

P(Rew | Resp, S)

e Anterior PFC affects posterior circuits via BG output gating

e Reduces # of stimulus-response mappings needed to be learned in motor circuit.



Application to Badre task

neural net architecture
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Modeling BG-PFC hierarchical learning

Hierarchical Task

~—a hier_BGout
+— hier_noDAmod

hier BGmnt
=—a nohier

Epoch

Model prePMD activity by condition

0.8¢
c
L20.7
@
2 ’
Mﬁvm :
b
, .. ' ' __ 1
mo.m I ,“ :__fw _"“__q" T __.:_ o
1 | i \ ._ ML | nh i :L:_
W 0.4 I T .._Jm ; _"_ :ﬂ_m.___.“m _E.“ v_h:___.":__v‘______"__._“__“ _a__
MOw-l I_m_\qu_u_/\_D ' :_ ! o
w | -- Flat prePMD
> 100 200 300
Trial

e DA-based RL in gating networks needed for rapid learning in Hier cond

e Asin fMRI data, model prePMD activity decreases in Flat relative to Hier

e This is due to reward prediction error signals punishing gating of prePMD when no

hierarchical structure exists (stay tuned)



Modeling individual learners: abstract account

e Neural model makes plausible links to biology, but unsuitable for
quantitative fits to individual subject behavior

e We developed abstract version of hierarchical rule learning using
Bayesian mixture of experts (MoE), motivated by neural model



Modeling individual learners: abstract account

e Separate experts learn P(Rew|Resp, Shape), P(Rew|Resp, Orient), etc..



Modeling individual learners: abstract account

e Separate experts learn P(Rew|Resp, Shape), P(Rew|Resp, Orient), etc..

e Hierarchical experts separately learn statistics about each dimension
contingent on a candidate higher order feature
(cf. prePMD context for output gating).



Modeling individual learners: abstract account

mmmumﬁm_nm mx_mumﬁ_”m learn P(Rew|Resp, Shape), P(Rew|Resp, Orient), €tC..

Hierarchical experts separately learn statistics about each dimension
contingent on a candidate higher order feature
(cf. prePMD context for output gating).

Credit assignment mechanism learns probability that each expert
contributes to observed rewards

Attentional mechanism selects among experts based on learned
probability of success P(Rewle) Ve.
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e Goal: infer latent hypotheses (attentional wts) by observing sequence of responses &
rewards, maximizing likelihood of choices with few free params for each subject
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Softmax / Logistic
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e Params: priors to attend to each dimension, to attend to conjunctions, to consider
hierarchy. 3 softmax slopes (motor, within experts, between flat/hier).
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Attentional Wits

Example attentional weights: MoE fit to human
Subject118 Hierarchical

Subject118 Flat

lllll

Attentional Wits

—@— Hier(O,S|C)
—l— Hier(O,C|S)

—— Hier(C,S|0)

= = = Hjer vs Flat
_______ _OC_\<®




> Anterior

PFC-Out
(Atten)

(> aPFC

Context

Motor
Cortex

P(Rew | Ctxt)

P(Rew | S)

P(Rew | Resp, S)



Attentional Wits

MoE fit to BG-PFC model

MoE fit to BG-PFC Net All Nets: Attention to Hierarchy

0.91
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Individual differences in attention to Hierarchy

All subjects: Attention to Hierarchy

Trial



Individual differences in attention to Hierarchy

All subjects: Attention to Hierarchy
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Model-based fMRI: reward prediction errors

e Reward prediction errors tracked by entire striatum (cf. O’Doherty et al, 2004)



Prediction errors and attention to EHH vs Flat experts
(a) y
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PE’s predict PPMD decline in Flat condition

Model prePMD activity by condition
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= Decline in prePMD should be predicted by sensitivity of BG to PE’s associated with hiearchical rule



PE’s predict PPMD decline in Flat condition
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Computational /Biological Details

Activations can be maintained in two different ways:
e Recurrent excitation: CD

e Intrinsic bistability: selectively activated ion channels.

Problem with recurrent: strongest activations at any point determine what

is maintained — not necc. true:
— pest stimulus
...... worst stimulus

spikes per second




Computational /Biological Details
Our proposal:
e Thalamic disinhibition activates layer 4 FC.

e Convergence of layer 4 and cortico-cortical 2/3 projections on either
2/3 or 5/6 neurons triggers maintenance ion channels.

Other proposals:

e Thalmocortical loops themselves drive maintenance
(enough thalamic neurons to specify what is maintained?)

e Just recurrent excitation within FC
(unstable, but useful complement to ion channels).



