Memory

Memory = any persistent effect of experience (not just memorization of
facts, events, names, etc.)

Weights vs activations
Gradual, integrative cortical learning and priming effects
Rapid memorization: The hippocampus

Active memory: prefrontal cortex
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Memory: Weights vs Activations

Despite appearances, memory is not unitary.
(shoes; breakfast; sentence)

Weights:
e Long-lasting.
e Requires re-activation.

e Wts in diff’t brain systems store different types of memories!

Activations:

e Short-term.

e Already active, can influence processing.



Weight-based Memories

e Cortex does gradual, integrative learning

e Cortex can learn arbitrary input-output mappings given:
— multiple passes through the training set

— arelatively small learning rate



Weight-based Memories

Rapid weight changes causes interference:
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Two systems needed:
e Slow learning cortex.

e Rapid learning hippocampus (pattern sep avoids interference).



b. Slow vs Fast [Reinforcement] Learning
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[Reinforcement] Learning must be slow to capture best actions that work on average.

But you also have to be able to sensitive to rapid changes in value (e.g., stock market).

Tradeoff solved by 2 systems:
BG learns slowly, PFC relies on (flexible updating of) activation-based memory, and can

override habitual choices.
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[Reinforcement] Learning must be slow to capture best actions that work on average.
But you also have to be able to sensitive to rapid changes in value (e.g., stock market).

Tradeoff solved by 2 systems:
BG learns slowly, PEC relies on (flexible updating of) activation-based memory, and can

override habitual choices.



— lots of evidence for differential BG and PFC contributions to habitual and rapid
action-outcome learning, across species, methods.



Memory: Rapid Learning, Interference, & The Hippocampus

1. AB-AC List Learning

2. The Hippocampus.
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AB-AC List Learning

Humans can rapidly learn overlapping associations without too much
interference.

Example: learn one set of paired associates (the A-B list):
window-reason

bicycle-garbage

... Then, learn overlapping set (the A-C list):
window-locomotive

bicycle-dishtowel
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AB-AC List Learning

Then test on AB list:
window- ?
bicycle- ?



Then test on AB list:

window- ?
bicycle- ?

and on AC list:
window- ?

AB-AC List Learning



Then test on AB list:

window- ?
bicycle- ?

and on AC list:
window- ?
bicycle- ?

AB-AC List Learning



100 }

75 }

orre

25 |

AB-AC List Learning

S earnn n ans

50 |

B
/ 0—o0 AB List
|

o— =i AC List

earnn rason S

01 5 10 20

orre

100 }

75 }

50 |

25 |

S earnn n ode

O0—0 AB List
\ g— =i AC List

0 5 10 15 20 25 30 35 40 45 50

earnn rason S

Standard network shows catastrophic interference
(McCloskey & Cohen, 1989).




AB-AC Exploration
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Input Context

Input = A, Output = B,C

Context differentiates the lists: Each list is associated with a different
context pattern



[ab_ac interference.proj]



AB-AC Simulations: Summary

e There is overlap between the hidden units activated by an input

24

pattern (“window”) in the AB context and units activated by that same

pattern in the AC context.

e This causes interference (changing weights for one changes weights for
the other)

e Can this be fixed?
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How to reduce Interference?

e How can we reduce overlap between hidden units activated by
patterns in the AB and AC contexts?

e — Lower the number of units that are activated — increase inhibition

(increase g;)...
But still need different units to be active for AB and AC inputs...

e — Increase relative weight scale of the context layer so that hidden
units “pay more attention” to it

e — Also increase initial weight variance: Lowers the odds that a unit
will “like” both the AB and AC version of a pattern
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This speeds up learning, but makes interference worse!

Also, by changing all these parameters, cortex can no longer generalize
(requires overlapping distributed representations)



AB-AC Exploration: Summary

e Note that even with all these changes, interference gets only slightly
better...

e Also network learns much slower than people do...

— Increase learning rate?
e This speeds up learning, but makes interference worse!

e Also, by changing all these parameters, cortex can no longer generalize
(requires overlapping distributed representations)

— Trade-off: Must need another brain system!



Memory
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Memory

Memory is not unitary.

1. Weights (long-lasting, requires re-activation) versus activations
(short-term, already active, can influence processing).

2. Specialized neural systems: computational tradeoffs. Cortex shows
priming, but suffers catastrophic interference.

Abandon neural network models?



Hippo To the Rescue

Two specialized, complementary systems resolve fundamental tradeoff:

The hippocampus can learn rapidly without interference by using sparse,
pattern-separated representations!

Meanwhile, cortex slowly learns overlapping representations of similarity
structure & regularities, semantic knowledge.



Hippo To the Rescue

Two specialized, complementary systems resolve fundamental tradeoff:

The hippocampus can learn rapidly without interference by using sparse,
pattern-separated representations!

Meanwhile, cortex slowly learns overlapping representations of similarity
structure & regularities, semantic knowledge.

e.g. “one small step for man” 9/11, etc



Complementary Learning Systems

Goals: Remember Specifics | Extract Generalities

Example: | Where is car parked? | Best parking strategy?

Need to: | Avoid interference Accumulate experience
Solution:

1. | Separate reps Overlapping reps
(keep days separate) | (integrate over days)
86, 605,
@ SICICH

2. | Fast learning Slow learning
(encode immediately) | (integrate over days)

3. | Learn automatically | Task-driven learning
(encode everything) (extract relevant stuff)

These are incompatible, need two different systems:
System: | Hippocampus Neocortex




Systematic Overlap Develops by
Slowly Integrating over Experience
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Effects of hippocampal damage in Amnesia

Amnesics show:

e spared implicit memory, skill learning (without recall)
small adaptive adjustments in synaptic weights

e intact repetition priming for existing associations (table-chair) but not
for arbitrary novel pairs of words (locomotive-spoon)

small cortical adjustments can prime existing reps but not novel
conjunction

e remote memories spared but recent ones completely forgotten

“Consolidation”: reactivation of memories across multiple contexts,
sleep, etc



Prefrontal
cortex

Visual
cortex

from Squire & Kandel (1999)



from DeArmond,
Fusco, & Dewey
(1989)

(Greek: hippo=horse, kampos=sea monster).



Hippo = King-of-the-Cortex

Parahippocampal
Gyrus (TF/TH)

Entorhinal Cortex

Cingulate Cortex
Olfactory Bulb

S

Cortex Insula

Hippo binds together multiple cortical representations into one coherent
memory



Hippocampal Anatomy
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Hippocampal Anatomy

Rodent hippocampus
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Explaining Pattern Separation

How does the hippocampus assign distinct representations to similar
inputs?



Explaining Pattern Separation

How does the hippocampus assign distinct representations to similar
inputs?

e Partial connectivity: units are specialized for responding to a particular
set of input features

e Sparse activity: fierce inhibitory competition

e Units only survive this competition if they receive a very large amount
of excitatory input

e Units only fire if all features they detect are present in the input

— Units represent conjunctions of features



Pattern Separation & Conjunctions: Space and episodes



Pattern mm@mwmmos & ﬂosu.ssmmosm” Space and episodes

Input

e Here each HC unit connected to 5 inputs; k=1

e Changing one input unit causes a different HC unit to win!



Sparse Activity

Rat Model
Area | Neurons Pct Act | Units Pct Act
EC 200,000 7.0 144 25.0
DG 1,000,00 0.5 625 1.0
CA3 160,000 2.5 240 5.0
CAl 250,000 2.5 384 94







The Flip Side of Separation: Pattern Completion

College friend example: “This one time, at this one party...”
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Pattern completion in CA3 activates corresponding CA1 rep,
which reinstates original EC pattern...
— “You told me this already!”.
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The Flip Side of Separation: Pattern Completion

College friend example: “This one time, at this one party...”

Pattern completion in CA3 activates corresponding CA1 rep,
which reinstates original EC pattern...
— “You told me this already!”.

Dentate i
1= Entorhinal |«
Gyrus * Cortex. >

L= cA3 CAL ﬁ i

Subiculum —=

How does your hippo "know” whether to store new memory and keep it
separate, or instead complete to an existing memory?

— hippo designed to minimize this tradeoff (LT in CA3 supports pat
complet while LTD supports pat sep; O'Reilly & McLelland "94).
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Pattern Separation

STUDY

CA3

EC (input)  EC (output)
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Possible Solution: Two Modes

distributed,
low overlap

CA3

« Encoding mode:
DG strong,
facilitates
pattern
separation

“localist”,

_ .
nooveriap » Retrieval mode:
DG weak,
distributed, facilitates recall

high overlap EC (input) EC (output)



Hippocampus: Summary

e CAZ3 stores sparse, pattern-separated representations of cortical input
patterns

e Recurrent self projections in CA3 facilitate recall (pattern completion)
e Dentate Gyrus (DG) acts as a removable pattern separation

turbocharger

— DG uses super-sparse representations, helps increase pat separation
at encoding

— DG “steps aside” at retrieval

— EHvidence for two modes: theta cycle (eg. Hasselmo et al, 2002);
neuromodulatory control over rel DG effect on CA3
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An example of how Modeling informs Science

Model makes clear predictions about how different regions contribute to
memory (not directly evident in experiments before)

Many of these have been subsequently confirmed!

(note that model itself is incremental synthesis of many ideas in a coherent
framework, ranging from Hebb to Marr to Nadel, McNaughton, O’Reilly...)

It has been applied to explain many different learning and memory
phenomena in rats and humans.
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An example of how Modeling informs Science
Pattern separation in Rat DG (Leutgeb et al, 2007, Science)

(change environment ever so slightly see new populations of correlated act)

Pattern separation in Human DG (Bakker et al, 2008, Science)

(encode new stims, some are similar to old but slightly diff).

Mouse genetic knockout of DG NMDA receptors impairs pat separation
behaviorally; also CA3 becomes more biased toward completion than
separation (McHugh et al, 2007, Science)

Monosynaptic route (EC—CA1—EC) sufficient on its own for incremental
spatial learning, but

Trisynaptic route (EC—+DG—CA3—CA1—EC) required for rapid, one-trial
conjunctive learning, and for pat completion.

(Transgenic mouse Nakashiba et al, 2008, Science)

Neurogenesis in DG supports behavioral pat sep Clellan et al ‘09, Science; Nahay
et al ‘11 Nature (discriminate between items with overlapping contexts)
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Role of CA1

distributed,
low overlap

CAS

Non-overlapping CA3
patterns need to be
“*— Jinked back to highly

overlapping EC patterns

This mapping is
highly prone to
interference!
distributed,
high overlap

EC (input) EC (output)
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EC (input)

Role of CA1

With CA1:
2/4 connections
weakened = 50%

EC (output)



Role of CA1

Without CA1:
4/5 cons

weakened =
80%

EC (input) EC (output)
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Hippocampus: Summary

CAZ3 stores sparse, pattern-separated representations of cortical input
patterns

Recurrent self projections in CA3 facilitate recall (pattern completion)

Dentate Gyrus (DG) acts as a removable pattern separation
turbocharger

CA1 helps “translate” sparse, non-overlapping CA3 representations
back into overlapping EC reps, by providing an intermediately sparse
representation



AB-AC Learning in the Hippo Model

[hip.proj]



AB-AC Learning in the Hippo Model

[hip.proj]

e Unlike cortical model, Hippocampus can rapidly and sequentially
learn arbitrary information (AB-AC lists) without huge amounts of
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e Cortex still critical for slow learning of overlapping, distributed
representations, supporting generalized knowledge, semantic
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AB-AC Learning in the Hippo Model
[hip.proj]

e Unlike cortical model, Hippocampus can rapidly and sequentially
learn arbitrary information (AB-AC lists) without huge amounts of
interference.

e Cortex still critical for slow learning of overlapping, distributed
representations, supporting generalized knowledge, semantic
information, and similarity.

e Later: How learning/memory capacity can be enhanced with theta
waves (Ken Norman)
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Memory is not unitary.

1. Weights (long-lasting, requires re-activation) versus activations
(short-term, already active, can influence processing).

2. Specialized neural systems: computational tradeoffs. Cortex shows
priming, but suffers catastrophic interference. Abandon neural
network models? No, hippocampus can learn rapidly without
interference using sparse, pattern-separated representations.

3. Next time: Activation-based memory and activation-weight-based
interactions.
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Hippo and spatial topography: what about “grid cells”?

e Grid cells are in medial entorhinal cortex (Hafting et al, 2005), not hippo proper

e Hippo might integrate location with speed and direction (“head direction cells”) to
perform path integration

e This can be recast as just another example of conjunctive, pattern-separate
representations



Grid cells Place cells
doesal MEC dorsal HPC

vankral MEC venlral HPC

Solstad et al, 2006



Memory

Memory is not unitary.

1. Weights (long-lasting, requires re-activation) versus activations
(short-term, already active, can influence processing).

2. Weight-based: Cortex shows priming, but suffers catastrophic
interference. Hippocampus can learn rapidly without interference
using sparse, pattern-separated representations.

3. Activation-based: Cortex shows priming, but can’t do working
memory.

4. Activation- and weight-based interactions.
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Cortical Priming

Even slow cortical weight changes can yield one-trial learning effects..

win____

handle
winter
shower...
win____

Spell /red/.
Name a musical instrument that uses a reed.

Spell /red/.
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Cortical Priming

e There are many, many types of priming effects:
— Stem-completion & phonetic priming
— Perceptual identification — faster, more accurate detection after
recent exposure to words (even hours later)
— Category generation priming: “peach, kiwi”;

<many hrs later> — “name some fruits” (in absence of recall)

e Cortex is the key substrate for these priming effects

e Patients with hippocampus damage (sparing cortex) show impaired
recall but intact priming
e These priming effects are long-lasting

— This indicates that a weight change is involved

(unlikely for activations to persist for long periods)



Simulations of Cortical Priming

e Train a network to learn input-output mappings
e Each input is associated with two valid outputs

e Analogous to:

win____ — window
win____ — winter
/red/ — “read”
/red/ — “reed”
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Priming Simulations

After training, the network is equally likely to produce the “a” or “b”
output in response to a cue...

Does not “blend” the two, but instead settles into one of the two valid
attractors

How does one additional study trial with the “a” input affect
performance?

Small weight changes (resulting from a single study trial) can “tip the
balance” in favor of the recently studied response...



Priminge Data

hatch pooch frizl trial pame . dist clospet pame hame erlboth e
0 50) 0 |0 a 0 |0 a 0 0
0 50 T |1a 4588 |1 b 1 0
0 50 2 12 & 0 122 0 0
0 50 3 |2 a ¢ |20 1 0
0 50 4 |4e 0 |4b 1 0
0 50 5 |5.a 12628 |5 a 0 0
0 50 & |6 a ¢ |66 1 0
0 50 7 |7z 0605 |7 b 1 0
0 50 8 |5.a 0 |&.a ) 0
0 50 g 9= T X 0 0
0 50 10 |10 a 0 |10.a 0 0
0 50 11 |11 a o |1lb 1 0
0 50 12 |12 a o |1zb 1 0
0 50 0 |o0a 0 |oa 0 0
0 50 T |1 a 0 [la 0 0
0 50 2 |2a 0 |za 0 0
0 50 3 3 a 0 3a 0 1]
0 50 1 |42 0 |%a 0 0
0 50 5 |5a o |5 0 0
0 50) 5 |6 a o |6 a 0 0
0 50 7 |7ea opiess |7 b 1 0
0 50 8 |&a o |&a 0 0
0 50 9 |9 a 0 |9a 0 0
0 50 10 |10 a 0 |10= 0 0
0 50 (N K 0 | 1= 0 0
0 50 2 112 a ¢ 120 1 0
0 50 S 0 |0 a 1 0
0 50 T |1b 0 |18 1 0
0 50 2 |zb 0 |2a 1 0
0 50 3 |2b 0 |2a 1 0




Cortical Priming

Residual activation can also result in priming.
(Activation-based priming: later)

Three factors:
e Duration (short-term activations vs long-term weights).
e Content (visual, semantic, etc.)

e Similarity (repetition, semantic relation, etc).



Remember Weight-Based Priming?

ra en S Se ds e n S h 0O err
0 0_a 5.22935 0 0 b 1 0
1 1 a 6.48608 0 1b 1 0
2 2 a 7.77501  0.273233 2. b 1 0
3 3 a 7.64788 0 3 b 1 0
4 4 a 541569  0.551383 4 b 1 0
5 5 a 0 0 5 a 0 0
6 6_a 10.2454 0 6_b 1 0
7 7 a 8.33851 O 7 b 1 0
8 8 a 5.64973  2.61438 8 b 1 0
9 9 a 10.2408 0 9 b 1 0
10 10 a  3.21385  1.06278 10b 1 0
11 11 a  2.82117  2.42077 11 b 1 0
12 12.a  4.69916 0253711 12b 1 0
13 0D 6.68981 0 0_a 1 0
14  1b 540769  0.330821 1 a 1 0
15  2b 751547 0 2 a 1 0
16 3b 7.73557 0O 3 a 1 0
17 4.b 1.94789  1.94789 4 b 0 0
18 5b 0.414954 0.414954 5 b 0 0
19 6D 105514 0 6_a 1 0
20 7.b 8.79166 0 7 a 1 0
21 8D 9.64561 0 8 a 1 0
22 9b 10.2245 0 9 a 1 0
23 10 b 353423 0.766472 10 a 1 0
24 11 b  7.46935 0 11.a 1 0
25 12 b 572054 O 12a 1 0




Activation-Based Priming

Residual activation can also result in priming: act_priming.proj

No learning (wt changes), to see effects of activation alone.



Activation-based Priming: Residual Activation

ra en S Se ds e n S h o err
0 0a O 0 0_a 0 0
1  0b 17529  1.7529 0b 0 0
2 1a O 0 1a 0 0
3  1b 218947 2.06997 1 a 1 0
4 2a O 0 2 a 0 0
5 2b 543822 0467382 2a 1 0
6 3a 0 0 3 a 0 0
7 3Db 105335 1.05335 3 b 0 0
8 4a O 0 4 a 0 0
9 4b 626163 0.663053 4 a 1 0
10 5a 0 0 5 a 0 0
11 50b  4.02698 2.36882 5 a 1 0
12 6a 0 0 6_a 0 0
13  6_b 574102 2.00435 6_a 1 0
14 7a 0 0 7 a 0 0
15 7 b 885609 O 7 a 1 0
16 8a 0 0 8 a 0 0
17 8 b 94205 0444151 8 a 1 0
18 9a 0 0 9 a 0 0
19 9b  7.888 1.64196 9 a 1 0
20 10a O 0 10a O 0
21 10 b 520613 0.337607 10.a 1 0
22 1l1a O 0 11a 0 0
23 11 b 6.4702  1.40431 11.a 1 0
24 12a O 0 12a 0 0
25 12 b 5.32969  0.33391 12.a 1 0




Activation-based Priming: Residual Activation

ra en S Se ds e n s h 0o err
0 0a O 0 0_a 0 0
1  0b 17529  1.7529 0b 0 0
2 1a O 0 1a 0 0
3  1b 218947 2.06997 1 a 1 0
4 2a O 0 2 a 0 0
5 2b 543822 0467382 2a 1 0
6 3a 0 0 3 a 0 0
7 3Db 105335 1.05335 3b 0 0
8 4a O 0 4 a 0 0
9 4b 626163 0.663053 4 a 1 0
10 5a 0 0 5 a 0 0
11 50b  4.02698 2.36882 5 a 1 0
12 6a 0 0 6_a 0 0
13  6_b 574102 2.00435 6_a 1 0
14 7a 0 0 7 a 0 0
15 7 b 885609 O 7 a 1 0
16 8a 0 0 8 a 0 0
17 8 b 94205 0444151 8 a 1 0
18 9a 0 0 9 a 0 0
19 9b  7.888 1.64196 9 a 1 0
20 10a O 0 10a O 0
21 10 b 520613 0.337607 10.a 1 0
22 1l1a O 0 11a 0 0
23 11 b 6.4702  1.40431 11.a 1 0
24 12a O 0 12a 0 0
25 12 b 5.32969  0.33391 12.a 1 0

But what about when need to maintain over longer delays (working
memory)??



Prefrontal Cortex: Delay-related activity
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Active Maintenance

Maintaining information in active form over longer time periods.
Can be used for working memory (e.g., in mental arithmetic).

Attractor = stable activation state:

(don’t want activity to spread)



Prefrontal vs. Posterior Cortex

Posterior cortex: interactive reps w/spreading activation

Cooriey 2003

Advantages Disadvantages
Semantic associations Memory confusion
Inference (diapers — baby)

Schema (parenting)

Prefrontal: isolated reps, maintenance w/out activation spread



Attractors: Summary

To get robustness from noise, you need isolated representations with
strong recurrent connections

This prevents activity from spreading

Tradeoff #1: Preventing spreading activation (active maintenance) vs.
allowing spreading activation (inference)

Solution: Posterior cortex uses interconnected representations —
spreading activation; prefrontal cortex (PFC) uses isolated reps —

prevents spreading activation

Evidence for isolated stripes in PFC (Levitt et al, 93; Pucak et al, 96)



Attractors: Summary

Tradeoff #2: Within PFC, need for robust maintenance vs. need to
update PFC activation when appropriate

Strong recurrents (weak inputs) = robust maintenance
Weak recurrents (strong inputs) = rapid updating
We need a mechanism for switching PFC between the two modes

Also, how to learn when to update?



Remember the SRN? (chap 6)
iImple Recurrent Network (SRN):

An Architecture for Sequence Learning

hidden

COPY




Remember the SRN? (chap 6)
iImple Recurrent Network (SRN):

An Architecture for Sequence Learning

hidden

COPY

this is a gating network: context only updated at discrete timepoints



Simple SRN story is not flawless

How is hidden— “copy” function implemented biologically?

During settling, context must be actively maintained (ongoing hidden
activity has no effect on context).

Assumes all context is relevant: What if distracting information
presented in middle of sequence? Want to only hold on to relevant
context.

What if want to hold on to more than one piece of information in WM
at a time?? Or to selectively update one part of WM while continuing
to robustly maintain others?

And what if the decision of whether or not to update information
depends on currently internal WM state?



Working Memory Demands: Updating & Maintenance

a) Update

Working
Memory

Gating

e Working memory: robust maintenance of information, but must also
have ability to be rapidly updated — requires gating.

e You've got to know when to hold ‘'em, know when to fold "em.



Working Memory Demands: Updating & Maintenance

a) Update b) Maintain

Working
Memory

Gating

Sensory | phone # is
371-9624

Should |
Go..?

e Working memory: robust maintenance of information, but must also
have ability to be rapidly updated — requires gating.

e You've got to know when to hold ‘'em, know when to fold "em.



Working Memory Demands: Updating & Maintenance

a) Update b) Maintain c) Update:

Working S
e- Q CN)
/ .. 0/

—=e | —open

Gating = | —oOpen —e-4— closed

Stay or

Should |

e Working memory: robust maintenance of information, but must also
have ability to be rapidly updated — requires gating.

e You've got to know when to hold ‘'em, know when to fold "em.



But who controls the controller??
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But who controls the controller??

a) Update

Working
Memory

Gating —e | F—o0pen

Sensory | phone # is
371-9624




But who controls the controller??



But who controls the controller??

Before: After:
TTPRRIRTRTIY [WET TP el _F:_____._. e il
4
_ ! i
light light reward
A A b
-400ms reward 700ms -1s light no reward 2s

[First pass story (Braver & Cohen, ‘00 and text):]
Dopamine provides dynamic gating mechanism:

e Positive TD 9 (reward) = DA burst = update PFC.
e No TD 0 = constant DA = maintain PFC.

e Negative TD ¢ (error) = DA dip = clear PFC.

The same DA signal that learns to predict reward can be used to drive updating of PFC states!



DA solves part of the problem
Learning signal for gating.

But DA is very global signal projecting to all of PFC — sufficent for
updating and maintaining one item at a time.

How to selectively update some aspects of WM but not others?

Also prev DA-PFC model had awkward catch-22 problem: the
stimulus is only predictive of reward if it is maintained (ie in PFC). But
then stim needs to be gated into PFC in the first place to generate DA!



DA solves part of the problem
Learning signal for gating.

But DA is very global signal projecting to all of PFC — sufficent for
updating and maintaining one item at a time.

How to selectively update some aspects of WM but not others?

Also prev DA-PFC model had awkward catch-22 problem: the
stimulus is only predictive of reward if it is maintained (ie in PFC). But
then stim needs to be gated into PFC in the first place to generate DA!

Solution: separate learning from gating... and link to now well
established role of basal ganglia-thalamus in gating.



Dynamic Gating: Current Story

DA signals are important for learning /knowing when to gate

But actual gating signals are implemented via more complex circuit
interactions with the Basal Ganglia Go/NoGo system

DA used to train Go/NoGo system exactly like in the motor and
simple decision making domains...

BG-gating solves multiple computational and biological plausibility
issues that are problematic with pure-DA based gating

Goto BG_PFC_WM1.pdf slides for more info and evidence



A Simple WM Task

Trial | Input Maint Output
1 STORE-A A A
2 IGNORE-B A B
3 IGNORE-C A C
4 IGNORE-D A D
5 RECALL A A

enoreen
earnn
onros
nas
e



PFC/BG Model: sir.proj



PFC maintenance enables RL to train BG

b)
CS —iam_::: PFC)
PFC (causes updating) (spans the delay)
BG-Go |+]
usr |
(reinforces Go)
AN
-




Reinforcement learning and WM gating

e Network learns to associate stimuli with rewards via PVLV / DA
system (like TD)

e PVLV gets information not only from outside world, but also PFC state

e Desired outcome: Network learns that having the STORE pattern in
PFC leads to rewards, but having the IGNORE pattern does not



Reinforcement learning and WM gating

Bursts and dips of DA train the basal ganglia Go/NoGo gating system

If BG system gates an input into PFC and that PFC pattern had been
associated with reward — DA burst (DA system recognizes this new
PFC pattern as rewarding)

This DA burst reinforces Go activity in the BG units that caused the
gating in the first place, making it even more likely that the BG will
gate this pattern into PFC on future trials. (phasic DA does not directly
drive updating itself, but is a learning signal)

Desired outcome: Networks learns “Go” to gate STORE into PFC, but
learns “NoGo” to IGNORE



Sketch of how the network learns

Begins with trial-and-error learning (both at response output and in BG
gating system)

Explore different gating “policies” and reinforce ones that work. (some
amount noise helpful!)

If correct response happens to occur when STORE is active in PFC
(initially due to guessing) = Reward

Resulting DA burst trains PVLV (or TD) system to learn that having
“STORE” in PFC is a good thing



Sketch of how the network learns

Next time STORE is represented in PFC, PVLV system triggers a DA
burst, based on its learned PFC-reward association (without needing
external reward)

This DA burst drives BG Go learning so that good stimuli are more
likely to be gated

In turn, stored information is more likely to be present in PFC during
RECALL trial.

At this point, Hidden layer simply has to learn to map PFC
representation of stored stimulus to the Output response.

This leads to increased rewards, further training gating system, and
leading to stable state.



Four “Stripe” PFC/BG Model, Learns with DA
(O’Reilly & Frank, 2006)
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Weight- and Activation-Based Memory Interactions
A-not-B task
e Perseverative searching at A — also seen in patients with PFC damage
e Better peformance in gaze/expectation
e Inhibition problem?
e Model demonstrates maintenance problem.
e Same model accounts for various effects in different versions of

A-not-B task not explained by any other unified theory (Munakata,
1998).



A-not-B Model

Location Cover Toy



Knowledge-action dissociations in card-sort task

e Kids can tell you where trucks go in the shape game, even after sorting
according to color!

e But if you ask “where do red trucks go in the shape game” they still
fail! (Morton & Munakata, 2002)

e Explained by different levels of conflict experienced when faced with
multiple stimuli-response associations..



