Administrative Stuff

e Labs: Metcalf 107 Tues 5-7pm; Wed 3-5pm

e If you don't finish, download sims (website)

o All assignments (simulation exercises and RR) are due *before* class
(1pm) on the date in syllabus. So you will only have this week’s lab to
work on HW2.

e Reading reactions: Better directly in email & put 1492 in subject title!

e CC Nick on all reactions
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Detector Model

Each neuron detects some set of conditions (e.g., smoke detector).



Neurons are detectors
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Understanding Neural Components in Detector Model
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Detector Model

Each neuron detects some set of conditions (e.g., smoke detector).

Neurons feed on each other’s outputs — layers of ever more complicated
detectors.

(Things can get very complex in terms of content, but each neuron is still
carrying out basic detector function).



Detector Model

Each neuron detects some set of conditions (e.g., smoke detector).

Neurons feed on each other’s outputs — layers of ever more complicated
detectors.

(Things can get very complex in terms of content, but each neuron is still
carrying out basic detector function).

sensory: detect bar of light, edges, tigers

motor: detect appropriate condition to move hand
abstract internal actions: engaging attention
regulation/homeostasis: detect too much overall activity..



Building on simple detectors: Pandemonium
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Pandemonium Example

Each neuron has a simple job, but together...



Pandemonium Example

Each neuron has a simple job, but together...

Layers of more and more complicated detectors.



Pandemonium Example

Each neuron has a simple job, but together...
Layers of more and more complicated detectors.

Simple example, but raises question of what kind of detectors needed for
language, face recognition, creativity, etc.?



How do we simulate this?
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e Neural activity (and learning) can be characterized by mathematical
equations.



How do we simulate this?

e Neural activity (and learning) can be characterized by mathematical
equations.

e We use these equations to specify the behavior of artificial neurons.



How do we simulate this?

e Neural activity (and learning) can be characterized by mathematical
equations.

e We use these equations to specify the behavior of artificial neurons.

e The artificial neurons can then be put together to explore behaviors of
networks of neurons.



A Real Neuron
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Basic Properties of a Neuron

e It’s a cell: body, membrane, nucleus, DNA, RNA, proteins, etc.

e lons (charged particles) are present both inside and outside the
neuron: Sodium (Nat), Chloride (C17), Potassium (K1) and Calcium
(Ca®T) — brain = mini-ocean



Basic Properties of a Neuron

It’s a cell: body, membrane, nucleus, DNA, RNA, proteins, etc.

lons (charged particles) are present both inside and outside the
neuron: Sodium (Nat), Chloride (C17), Potassium (K1) and Calcium
(Ca®T) — brain = mini-ocean

Cell membrane has channels that allow ions (e.g. Na™) to pass
through. Channels can be open or closed (selective permeability ).

When a neuron is at rest: greater concentration of negative ions inside
the neuron vs. outside; this difference in charge inside vs. outside the
neuron is called the membrane potential (Vi)



The Neuron and its Ions

Inhibitory
Synaptic

e Some ions more or less concentrated inside vs. outside the cell



e Positive and negative ions compete to set the overall ‘charge’



It’s Just a Leaky Bucket

excitation

inhibition/
leak

ge = rate of flow into bucket
9;/1 = rate of “leak” out of bucket
Vim = balance between these forces



Or a Tug-of-War




How Neurons Communicate

Neurons communicate by firing “spikes” of electricity (action
potentials ) down their axons

When this current reaches the end of an axon, it triggers release of
neurotransmitter into the synapse

Neurotransmitter binds to receptors in the receiving (postsynaptic)
neuron, which opens dendritic synaptic input channels  in the cell
membrane

The flow of ions through these channels changes the membrane
potential of the postsynaptic neuron



The Synapse

Dendrite




How can biology (e.g., synapse) be reduced to numbers?

Synaptic efficacy =how much is the activity of presynaptic (sending)
neuron communicated to the postsynaptic (receiving) neuron:
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Synaptic efficacy =how much is the activity of presynaptic (sending)
neuron communicated to the postsynaptic (receiving) neuron:

e Presynaptic: # of vesicles released, NT per vesicle, efficacy of reuptake
mechanism.

e Postsynaptic: # of receptors, alignment & proximity of release site &
receptors, efficacy of channels, geometry of dendrite/spine.



How can biology (e.g., synapse) be reduced to numbers?

Synaptic efficacy =how much is the activity of presynaptic (sending)
neuron communicated to the postsynaptic (receiving) neuron:

e Presynaptic: # of vesicles released, NT per vesicle, efficacy of reuptake
mechanism.

e Postsynaptic: # of receptors, alignment & proximity of release site &
receptors, efficacy of channels, geometry of dendrite/spine.

Major Simplification:
Connection weight = synaptic efficacy.



Excitatory vs Inhibitory Synapses

Some synapses are primarily excitatory .
e These synapses use glutamate as the primary neurotransmitter.

e Glutamate binds to receptors and allows Na™T to enter the neuron,
which boosts the membrane potential.

Other synapses are primarily inhibitory .
e These synapses use GABA

e GABA binds to receptors and allows Cl™ to enter the neuron, which
reduces the membrane potential



Bio Neural Nets
(just some static equations for now...)

1. Compute weighted, summed net input:

nj ~ > a;Wi5 ~ Je
0

2. Compute Vi, (equilibrium):

_ 9egeFe + 9i9iFi + 9191

Vim — — -
geJe + 9i9; + 919

3. Compute dynamics of Vi, (how it changes in real time)

dVim

QS% — mmﬁmm — S:v =+ SAMN — Sﬁp + S.Am& — Ssp

(1)

(2)

(3)



Summary

e Neuron as detector.
e Can be characterized mathematically.

e Serves as the basis of simulation explorations.



Remaining
e Physiology behind the equations.

e Simple detector network.



Neurophysiology

The neuron is a miniature electro-chemical system:
1. Balance of electric and diffusion forces.
2. Principal ions.

3. Putting it all together.



Balance of Electric and Diffusion Forces

Ions flow into and out of the neuron under forces of electricity and
concentration gradients (diffusion).

Net result is electric potential difference between inside and outside of cell
— the membrane potential V.

This value represents an integration of the different forces, and an
integration of the inputs impinging on the neuron.



Electricity



Electricity

lons have net charge: Sodium (Na™), Chloride (C1™), Potassium (K ),
and Calcium (Ca™TT).

Positive and negative charge (opposites attract, like repels).
Current flows to even out distribution of + and - ions.

Disparity in charges produces potential (the potential to generate current).



Resistance

Ions encounter resistance when they move.
Neurons have channels that limit flow of ions in/out of cell.



Resistance

Ions encounter resistance when they move.
Neurons have channels that limit flow of ions in/out of cell.

The smaller the channel, the higher the resistance, the greater the potential
needed to generate given amount of current (Ohm’s law):

f=_ (4)



Resistance

Ions encounter resistance when they move.
Neurons have channels that limit flow of ions in/out of cell.

The smaller the channel, the higher the resistance, the greater the potential
needed to generate given amount of current (Ohm’s law):

f=_ (4)

Conductance G=1/R,sol = GV



Diffusion

Constant motion causes mixing — evens out distribution.

Unlike electricity, diffusion acts on each ion separately — can’t compensate
one + ion for another..

(same deal with conductance, potentials, etc)
I =-DC (5)
(Fick’s First law)

D = diffusion coefficient ("diffusivity” oc viscosity, temp etc),
C = concentration potential difference



Equilibrium: Balance between electricity and diffusion

E = Equilibrium potential = amount of electrical potential needed to
counteract diffusion:

I1=G(V - E) (6)

E is the electric potential at which the diffusion force would pull current in
the opposite direction with equal force.

I flows in proportion to voltage difference from equilibrium.



Equilibrium: Balance between electricity and diffusion

E = Equilibrium potential = amount of electrical potential needed to
counteract diffusion:

I=G(V - E) (6)

E is the electric potential at which the diffusion force would pull current in
the opposite direction with equal force.

I flows in proportion to voltage difference from equilibrium.

Other terms for E:
Reversal potential (because current reverses on either side of E)

Driving potential (flow of ions drives potential toward this value)



Each ion has it’s own equilibrium

“Eq potential for Na E,: If sodium had its way, the neuron would settle to
into this steady state without any other forces”

For each ion, E is proportional to concentration outside/inside of cell:

E > 0 when concentration higher outside, and 2 < O when higher inside
(Nernst equation).

(7)



The Na-K Pump: Winding the Spring

e Neurons have a negative resting potential because of the
sodium-potassium pump

e This mechanism pumps NaT out of the neuron and pumps a lesser
amount of KT into the neuron. The result is a net loss in charge.

e This creates a dynamic tension in the cell: When the neuron is at rest,
NaT wants to come back in (because of both electrical and diffusion
forces), but it can’t because the Na channels are closed!



The Neuron and its Ions
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The Neuron and its Ions
Inhibitory
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When the neuron is at rest (-70mV):
e NaT wants in
e Cl™ isin balance (diffusion pushes in, electrical pushes out)

e KT is in balance (diffusion pushes out, electrical pushes in)



The Neuron and its Ions
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When the neuron receives excitatory synaptic input
e Na rushes in, making membrane potential more positive

e If the Na™ stays open, this influx will continue until membrane
potential reaches +55mV

e This is the reversal potential for Na™



The Neuron and its Ions
Inhibitory
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Because of the influx of positive charge:
e Cl™ wants to come in, but can’t (channels closed)

e KT starts to leak out of the neuron (through open channels)



The Neuron and its Ions
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When the neuron receives inhibitory synaptic input

o If the membrane potential =-70 mV?



The Neuron and its Ions
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When the neuron receives inhibitory synaptic input

e If the membrane potential = - 70 mV, nothing happens



The Neuron and its Ions
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When the neuron receives inhibitory synaptic input
e If the membrane potential = - 70 mV, nothing happens

e If the membrane potential > -70mV, Cl- starts to come in;
this serves to counteract the influx of Na+



Ions: Summary

e Excitatory synaptic input boosts the membrane potential by allowing
Na™ ions to enter the neuron

e Inhibitory synaptic input serves to counteract this increase in
membrane potential by allowing C1™ ions to enter the neuron

e The leak current (KT flowing out of the neuron through open
channels) acts as a drag on the membrane potential. Functionally
speaking, it makes it harder for excitatory input to increase the
membrane potential.



Putting it Together
Ie = gc(Ec — Vi) (8)



Putting it Together
Ie = gc(Ec — Vi) (8)
e = excitation (Na™)

¢ = inhibition (C7)
[ =leak (KT).



e = excitation (Na™T)
¢ = inhibition (C17)
[ =leak (KT).

Putting it Together
Ie = ge(Ec — Vi)

Inet = bmAmm — <§v +
9;(E; — Vi) +
EA@N — Sﬁv

(8)

)



Putting it Together
Ie = gc(Ec — Vi) (8)

e = excitation (Na™T)
¢ = inhibition (C17)
[ =leak (KT).

Inet = QmAmm — <§v +
9i(E; — Vim) +
91(E; — Vin) 9)

a\SQ + Hv — a\SQv + &w@SNsmw A”_.Ov



Putting it Together: With Time

Ie = ge(t)ge(Ec — Vin(t))
e = excitation (Na™)
¢ = inhibition (C17)
[ =leak (K T).
Inet = bm@vblmﬁmm — a\S@vv +
9i(t)gi(E; — V(1)) +
91(t)gi(Ey — Vin(t))

a\S@ + Hv — a\S@v + dtvmInet

(11)

(12)

(13)



Differential equation version
(common in computation neurosci)
dVim

C
At

— bm@vmlmﬁmm — S:v +
9i(t)gi(E; — Vi) +
91(t)g1(E; — Vi) +

e U = membrane capacitance, determined by surface area of membrane

e holds charge; reduces speed at which voltage can change (dtym)



Differential equation version
(common in computation neurosci)
dVim

Q|
At

= ge(t)ge(Ee — Vi) +

9i(t)gi(E; — Vi) +
91(£)g1(Ep — Vin) +

e (U, = membrane capacitance, determined by surface area of membrane

e holds charge; reduces speed at which voltage can change (dtym)
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In Action: Neuron.proj
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(Two excitatory inputs at time 10, of conductances .4 and .2)



Overall Equilibrium Potential

If you run Vi, update equations with steady inputs, neuron settles to new
equilibrium potential.

To find, set I,,.+ = O, solve for Vj:

_ 9egeFe + 9i9iFi + 9191
gege + 9:9; + 919

Vim (14)



Overall Equilibrium Potential

If you run Vi, update equations with steady inputs, neuron settles to new
equilibrium potential.

To find, set I,,.t+ = O, solve for Vj:

_ 9egeFe + 9i9iFi + 9191

v gege + 9igi t+ G191 )
Can now solve for the equilibrium potential as a function of inputs.
Simplify: ignore leak for moment, set £ = 1 and E; = O:
v, — _ 9ede (16)
geJe Tt 9i9;

Membrane potential computes a balance (weighted average) of excitatory
and inhibitory inputs.



It’s Just a Leaky Bucket

excitation

inhibition/
leak

ge = rate of flow into bucket
9;/1 = rate of “leak” out of bucket
Vim = balance between these forces



Or a Tug-of-War




How Does Neuron “Decide” When to Spike?

When membrane potential exceeds a threshold value, voltage-gated
Na™ channels open up

This leads to an influx of Na™ and (consequently) a very large and
rapid increase in membrane potential

Shortly afterward, voltage gated K+ channels open up

This leads to a rapid flow of KT out of the neuron and thus a very large
and rapid decrease in membrane potential

The result is a discrete “spike” in membrane potential



Spike = Action Potential
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This travels down the axon in a wave of
activity...



Bio Neural Nets



Bio Neural Nets

1. Compute weighted, summed net input:

nj ~ M A;Wqj ~ (e A“_.Nv

1



Bio Neural Nets

1. Compute weighted, summed net input:

nj ~ M A;Wqj ~ (e A“_.Nv

1

2. Compute Viy:
_ 9eGeFee + 9i9i B + 9191

Vim — — N
geJe + 9i9; + 919

(18)



Bio Neural Nets

1. Compute weighted, summed net input:

nj ~ M Q&SQ ~ (e AH_.NV

7

2. Compute Viy:

Vim — — N
geJe + 9i9; t+ 919

3. Compute output as: Spikes, or rate code equivalent via sigmoidal

function:

 lge®) — 9214
7 lge(®) — 9914 + 1 o

Qm@ = & @Amslm%MTmM (E;=9) — ge value that puts V;,, at threshold © given all forces




Computational Neurons (Units) Overview

I ylvp-el, +1

y
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1. Weights = synaptic efficacy; weighted input = z;w;;.

2. Net conductances (average across all inputs)
excitatory (net = ge(t)), inhibitory g;(t).

3. Integrate conductances using Vi, update equation.

4. Compute output y; as spikes or rate code.



Thresholded Spike Outputs

Voltage gated Na™T channels open if Vi, > ©, sharp rise in Vpp,.

Voltage Gated K T channels open to reset spike.

Copy AT Rate Code
) e N [ A b
—401 0.5- /y_: [ ___
ol ___. | | | |
O+ |mﬁ|||\||r‘...r.|.l...l...\ — ._.........................V...u_t._..........
| -~ S
V. m / 4 _ / 4 | / | /
-70+ IO.mIIII\ \ / | / | /
\/ \/ \/
|mo-l |H_.I < < <
0 S 10 15 20 25 30 35 40

In model: y; = 1 if Vi, > ©, then reset (also keep track of rate).



Optional: Adaptive Exponential (AdEx) spiking model

Vv, V-6
Om = = ge(Be = Vin) + i(Bi — Vin) + gifie’ 7 ) —w
dw (Vin — E)
- — - — W
"t arm

w—w+ b t=1gpike

B = slope, sharpness of spike of
6 = threshold -
w = adaptation variable

Tw = time constant of adaptation
a = gain on adaptation as Vj;, rises

Brette & Gerstner, 2005



Rate Coded Output

Output is average firing rate value.
One unit = % spikes in population of neurons?

Rate approximated by X-over-X-plus-1 (- .ﬁuvu

vlge(®) — 9214

Yyj = (20)
T lge(®) - 9214 +1
which is like a sigmoidal function:
1
Y; = = — (21)
14+ (vlge(®) — 9214)
compare to sigmoid: y; = }
(&

v is the gain: makes things sharper or duller.



Convolution with Noise

X-over-X-plus-1 has a very sharp threshold

Smooth by convolve with noise (like “blurring” or “smoothing”):

Noisy XX1 Activation Function
1.0 v v
m 0.8
w ©
S > 06
-U n
3 g
© g 0.4
F=)
..AL 0.2 —— Noise =.005
' — — Noise =0
0.0 =1 .
-0.02 0.00 0.02 0.04




Restoring iterative dynamics

e Rate code approximation uses ge(t) (relative to g© ) to determine
firing rate

e But as we saw earlier, Vi, takes time to adapt to changes in
conductance, and spiking is based on Vj,

e — restore Vj;, sluggishness into rate code:
a;(t) =a;j(t—1)+ &S:A@w —aj(t—1))



rate

Fit of Rate Code to Spikes

—rate
— spike

_ 1
09
08
07
06
05
04
03~
02T
01

0 | “ ' | “ —
01 0I5 02 025 03 035 04 045
g bar e



Dynamics: Hysteresis and Accommodation

e So far considered 3 channels, but in reality there are several more.

e Some channels are voltage-gated, which means they open and close as
a function of current activity. Rapid influx of Ca®T can allow cell to
stay active even after input fades away: Hysteresis.

e Other channels are calcium-gated: where Ca®™ reflects averaged prior
activity. Inhibitory channels based on prev activity lead to
accommodation (fatigue).



Dynamics: Hysteresis and Accommodation

Io = ga(Eq — Vin) (22)

Iy, = gp(Ep — Vi) (23)

ga and gy, are time-varying functions that depend on previous activity,
integrated over different time periods. E}, is excitatory; E, inhibitory.



Dynamics: Hysteresis and Accommodation

Io = ga(Ea — Vin) (22)

Iy, = gn(Ep — Vi) (23)

ga and gy, are time-varying functions that depend on previous activity,
integrated over different time periods. E}, is excitatory; Eq inhibitory.

_ ) ga(t —=1) +dtg,(1 —ga(t —1)); if(ba(t) > Oq)
9a(t) =9 galt = 1) + dtg (0 — galt — 1)): if(ba(t) < ©p) @D

basis variable b, is time average of activation state:



ba(t) = ba(t — 1) + dty, (y;(t) — ba(t — 1)) (25)

with dt,  fast for hysteresis, slow for accommodation



|[detector.proj]



Extra



Computing Excitatory Input Conductances

Projections

One projection per group (layer) of sending units.
Average weighted inputs (z;w;;) = = MUN LW
Bias weight [3: constant input.

Factor out expected activation level a.

Other scaling factors a, s (assume set to 1).



Computing Vi,

biological or normalized (0-1) parameters:

Normalized Neuron Parameters

Norm

Parameter Bio Val val Parameter Bio Val
i 0.001 0.1 Vor
Time 1ms Voltage
sec 100mV
Current 1x108A | 10nA Conductance 1x109S
. 1x10712 .
Capacitance F 1 pF C (memb capacitance) 281 pF
g_bar_| (leak) 10 nS 0.1 g_bar_i (inhibition) 100 nS
g_bar_e (excitation) 100 nS 1 e_rev_| (leak) and Vm_r -70mV
e_rev_i (inhibition) -75mV 0.25 e_rev_e (excitation) omV
. spike.spk_thr (exp cutoff in
0 (act.thr, V1 in AdEX) -50mV 0.5 20mV
AdEXx)
spike.exp_slope (AT in ! .
2mVv 0.02 adapt.dt_time (1, in AdEXx) 144ms
AdEXx)
adapt.vm_gain (a in AdEx) 4nS 0.04 adapt.spk_gain (b in AdEx) 0.0805nA

Normalized used by default.

Norm Val

-100..100 mV =0..2
av

1nS

1/C = .355 = dt.vm

0.3

1.2

dt = 0.007

0.00805




Detector vs. Computer

Computer Detector
Memory & Separate, Integrated,
Processing general-purpose specialized
Operations Logic, arithmetic Detection

(weighing & accumulating
evidence, evaluating,

communicating)
Complex  Arbitrary sequences  Highly tuned sequences
Processing  of operations chained of detectors stacked

together in a program

upon each other in layers



