Administrative Stuff

e Labs

e If you don't finish, download sims on your PC (website)
or go to Room 204 Metcalf when it is free

o Reading reactions:Better directly in email & put 1460 in subject
title!

e CC Brad on all reactions

Neurons

How do they do it?

- Detector Model

Each neuron detects some set of conditions (e.g., smoke detector).
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Detector Neuron

@ Detector Model

Each neuron detects some set of conditions (e.g., smoke detector).

Neurons feed on each other’s outputs — layers of ever more
complicated detectors.

(Things can get very complex in terms of content, but each neuron
is still carrying out basic detector function). sensory: detect bar of
light, edges, tigers

motor: detect appropriate condition to move hand

abstract internal actions: engaging attention
regulation/homeostasis: detect too much overall activity..




Building on simple detectors: Pandemonium
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Pandemonium Example

Each neuron has a simple job, but together...
Layers of more and more complicated detectors.

Simple example, but raises question of what kind of detectors
needed for language, face recognition, creativity, etc.?

@ How do we simulate this?
o Neural activity (and learning) can be characterized by
mathematical equations.

o We use these equations to specify the behavior of artificial

neurons.

o The artificial neurons can then be put together to explore
behaviors of networks of neurons.

A Real Neuron

E Basic Properties of a Neuron

It’s a cell: body, membrane, nucleus, DNA, RNA, proteins, etc.

lons (charged particles) are present both inside and outside the
neuron: Sodium (Nat), Chloride (C1™), Potassium (K1) and
Calcium (Cat7) — brain = mini-ocean

Cell membrane has channels that allow ions (e.g. Nat) to
pass through. Channels can be open or closed (selective
permeability ).

o When a neuron is at rest: greater concentration of negative ions
inside the neuron vs. outside; this difference in charge inside
vs. outside the neuron is called the membrane potential (V;,)

E The Neuron and its Ions
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E It’s Just a Leaky Bucket
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ge = rate of flow into bucket
g9i/1 = rate of “leak” out of bucket
Vin = balance between these forces
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H How Neurons Communicate

Neurons communicate by firing “spikes” of electricity (action
potentials ) down their axons

e When this current reaches the end of an axon, it triggers
release of neurotransmitter  into the synapse

Neurotransmitter binds to receptors in the receiving
(postsynaptic) neuron, which opens dendritic synaptic input
channels in the cell membrane

The flow of ions through these channels changes the
membrane potential of the postsynaptic neuron

E The Synapse
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EZ can biology (e.g., synapse) be reduced to numbers?

Synaptic efficacy = how much is the activity of presynaptic
(sending) neuron communicated to the postsynaptic (receiving)

neuron:

e Presynaptic: # of vesicles released, NT per vesicle, efficacy of

reuptake mechanism.

e Postsynaptic: # of receptors, alignment & proximity of release
site & receptors, efficacy of channels, geometry of
dendrite/spine.

Major Simplification:
Connection weight = synaptic efficacy.

E Excitatory vs Inhibitory Synapses

Some synapses are primarily excitatory .
o These synapses use glutamate as the primary neurotransmitter.

o Glutamate binds to receptors and allows NaT to enter the
neuron, which boosts the membrane potential.

Other synapses are primarily inhibitory .
o These synapses use GABA

o GABA binds to receptors and allows C1~ to enter the neuron,
which reduces the membrane potential




. Abstract Neural Nets

1. Compute weighted, summed net input:

nj =Y aw; (1)
7

3. Pass through sigmoidal function to compute output:
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Bio Neural Nets

1. Compute weighted, summed net input:

N R AW A ge (3)
i

2. Compute Vp,:

_ gegeEe + 9:9:E; + 9191
Vin = — — — (4)
gede + 9i9i + 9191

3. Compute output as: Spikes, or rate code equiv.
Or, rate code via sigmoidal function:
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. Summary

o Neuron as detector.
e Can be characterized mathematically.

e Serves as the basis of simulation explorations.

Remaining

e Physiology behind the equations.

e Simple detector network.

Neurophysiology

The neuron is a miniature electro-chemical system:
1. Balance of electric and diffusion forces.
2. Principal ions.

3. Putting it all together.

E Balance of Electric and Diffusion Forces

Ions flow into and out of the neuron under forces of electricity and
concentration gradients (diffusion).

Net result is electric potential difference between inside and
outside of cell — the membrane potential V.

This value represents an integration of the different forces, and an
integration of the inputs impinging on the neuron.




H Electricity

lons have net charge: Sodium (N at), Chloride (C17), Potassium
(K1), and Calcium (Ca™t 7).

Positive and negative charge (opposites attract, like repels).
Current flows to even out distribution of + and - ions.

Disparity in charges produces potential (the potential to generate
current).

N@ Resistance

Ions encounter resistance when they move.
Neurons have channels that limit flow of ions in/out of cell.
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The smaller the channel, the higher the resistance, the greater the
potential needed to generate given amount of current (Ohm'’s law):

I=- ©)

Conductance G=1/R,sol =GV

ﬁ Diffusion

Constant motion causes mixing — evens out distribution.

Unlike electricity, diffusion acts on each ion separately — can’t
compensate one + ion for another..

.
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(same deal with conductance, potentials, etc)
I=-DC @
(Fick’s First law)

D = diffusion coefficient, C = concentration potential difference

Nm Equilibrium

Balance between electricity and diffusion:

E = Equilibrium  potential = amount of electrical potential needed
to counteract diffusion:

I=G(V—-E) 8)
i.e., I flows in proportion to voltage difference from equilibrium.

Other terms for E:
Reversal potential (because current reverses on either side of £)

Driving potential (flow of ions drives potential toward this value)
“Eq potential for Na: If sodium had its way, the neuron would
settle to into this steady state without any other forces”

E The Na-K Pump: Winding the Spring

o Neurons have a negative resting potential because of the
sodium-potassium pump

o This mechanism pumps Na™T out of the neuron and pumps a
lesser amount of KT into the neuron. The result is a net loss in
charge.

e This creates a dynamic tension in the cell: When the neuron is
at rest, Nat wants to come back in (because of both electrical
and diffusion forces), but it can’t because the Na channels are
closed!

8 The Neuron and its Ions
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When the neuron is at rest (-70mV):
e Nat wants in
e ClI™ is in balance (diffusion pushes in, electrical pushes out)

o KT is in balance (diffusion pushes out, electrical pushes in)




H The Neuron and its Ions

When the neuron receives excitatory synaptic input
o Na™ rushes in, making membrane potential more positive

o Ifthe Nat stays open, this influx will continue until
membrane potential reaches +55mV

o This is the reversal potential for Nat

H The Neuron and its Ions
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Pump,

Because of the influx of positive charge:
e Cl~ wants to come in, but can’t (channels closed)

o KT starts to leak out of the neuron (through open channels)

a The Neuron and its Ions
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When the neuron receives inhibitory synaptic input

o If the membrane potential = - 70 mV?

E The Neuron and its Ions

Inhibitory
Synaptic
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When the neuron receives inhibitory synaptic input
o If the membrane potential = - 70 mV, nothing happens

o If the membrane potential > -70mV, CI- starts to come in;
this serves to counteract the influx of Na+

H Drugs and Ions

o Alcohol: closes Na
o General anesthesia: opens K
e Scorpion: opens Na and closes K

o Some kind of venom: closes all muscle firing (acetylcholine)

g Ions: Summary

o Excitatory synaptic input boosts the membrane potential by
allowing Na™ ions to enter the neuron

e Inhibitory synaptic input serves to counteract this increase in
membrane potential by allowing Cl~ ions to enter the neuron

o The leak current (KT flowing out of the neuron through open
channels) acts as a drag on the membrane potential.
Functionally speaking, it makes it harder for excitatory input
to increase the membrane potential.




ﬁ Putting it Together

Ie = ge(Vin — Ec) 9)
€ = excitation (Na™)
4 = inhibition (CI™)

E Putting it Together: With Time

Ie = gc(t)3e(Vin (t) — Ec) (13)

I =leak (KT). e = excitation (Na™)
Inet = ge(Vim — Ee) + i = inhibition (C17)
9i(Vm — E;) + I =leak (KT).
.52\3 B m.~v (10) Inet = ge(t)ge(Vin(t) — Ee) +
()3 (Vi (1) — E;) +
Vin(t + 1) = Vin(t) — dtomInet (1) g
e a(OF V() — B (14)
or
Vin(t + 1) = Vin(#) + dbom et (12) Vit + 1) = Vin(2) + dtom et (1)
E Differential equation version E In Action
(common in comp neurosci)
dVim _
Qﬁﬂ = ge(t)ge(Ee — Vi) +

9i(0)gi(B; — Vm) +
.SQV.QINAN.N —Vm) +

e (), = membrane capacitance
o determined by size of membrane

o influences speed at which potential voltage can change (dtvm)

cycles

(Two excitatory inputs at time 10, of conductances .4 and .2)

E Overall Equilibrium Potential

If you run V;,, update equations with steady inputs, neuron settles
to new equilibrium potential.
To find, set I,e¢ = 0, solve for Vi,:

_ 9egeBe + 9iGi i + 9191
gege + 9i9i + 9191

Vin (16)

%N Overall Equilibrium Potential

If you run Vj,, update equations with steady inputs, neuron settles
to new equilibrium potential.

To find, set I,e¢ = 0, solve for Vi,:
_ gegeEe + 9:9:E; + 9191

Vim = — = = 17)
" gege + 9i9i + 9191

Can now solve for the equilibrium potential as a function of inputs.

Simplify: ignore leak for moment, set £, = 1 and E; = O:
gege

gede + 9:9i

Membrane potential computes a balance (weighted average) of

excitatory and WSTWU?OJ\ inputs. This is equivalent to a Bayesian hypothesis

Vim = G.mv

tester! See 2.7




. It’s Just a Leaky Bucket
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How Does Neuron “Decide” When to Spike?

When membrane potential exceeds a threshold value,
voltage-gated Nat channels open up

e This leads to an influx of Nat and (consequently) a very large
and rapid increase in membrane potential

Shortly afterward, voltage gated KT channels open up

This leads to a rapid flow of K out of the neuron and thus a
very large and rapid decrease in membrane potential

The result is a discrete “spike” in membrane potential

Spike = Action Potential
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ﬁ Bio Neural Nets

1. Compute weighted, summed net input:

N R Y ajwi R ge (19)
i

2. Compute Vp,:

jeEe + 9:3:Ei + a1 B
V., = 9edeBe + 9igiEi + 919.F) 20)
9ede + 9i9i + 9191

3. Compute output as: Spikes, or rate code equiv.
Or, rate code via sigmoidal function:

L Ve —ely
J

= V() — O3 + 1 (21)

Computational Neurons (Units)

1. The point neuron function.
2. Two kinds of outputs: discrete spiking, rate coded.

3. Really abstract: The standard sigmoidal function.




. Computational Neurons (Units) Overview
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1. Weights = synaptic efficacy; weighted input = z;w;;.

2. Net conductances (average across all inputs)
excitatory (net = ge(t)), inhibitory g;(¢).

3. Integrate conductances using Vi, update equation.

4. Compute output y; as spikes or rate code.

Thresholded Spike Outputs

Voltage gated Nat channels open if Vi, > ©, sharp rise in V.

Voltage Gated K + channels open to reset spike.
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In model: y; = 1if Vi, > ©, then reset (also keep track of rate).

. Rate Coded Output

Output is average firing rate value.
One unit = % spikes in population of neurons?

Rate approximated by X-over-X-plus-1 (- 1)

x

V[V (t) — ©]
5 el +1 e
which is like a sigmoidal function:
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compare to sigmoid: y; = Tre

Yj (23)

7 is the gain: makes things sharper or duller.

Convolution with Noise

X-over-X-plus-1 has a very sharp threshold

Smooth by convolve with noise (just like “blurring” or
“smoothing” in an image manip program):
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E Fit of Rate Code to Spikes
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Dynamics: Hysteresis and Accommodation

e So far considered 3 channels, but in reality there are several
more.

e Some channels are voltage-gated, which means they open and
close as a function of current activity. Rapid influx of Ca2t can
allow cell to stay active even after input fades away:
Hysteresis.

o Other channels are calcium-gated: where Ca2™ reflects
averaged prior activity. Inhibitory channels based on prev
activity lead to accommodation (fatigue).




. Dynamics: Hysteresis and Accommodation

Io = ga(Vim — Ea)

Iy, = 91,(Vin — Ep)

ga and gy, are time-varying functions that depend on previous
activity, integrated over different time periods. E, is excitatory; Eq

inhibitory.

[detector.proj]

Extra

Equilibrium Potential Illustrated
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E Computing Excitatory Input Conductances

Projections

One projection per group (layer) of sending units.

Average weighted inputs (z;w;;) = WMUN. Tiwij-

Bias weight 3: constant input.

Factor out expected activation level a.

Other scaling factors a, s (assume set to 1).

E Computing Vi

Use Vin(t + 1) = Vin(t) + dtymInet— with
biological or normalized (0-1) parameters:

Parameter | mV  (0-1)
Vyest 70 0.15
E (K1) | 70 015
E;(Cl™) | 70 0.5
e 55 0.25
Ee(Nat) | 455 1.00

Normalized used by default.
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Detector vs. Computer

Computer Detector

Memory & Separate, Integrated,

Processing ~ general-purpose specialized

Operations  Logic, arithmetic Detection
(weighing & accumulating
evidence, evaluating,
communicating)

Complex  Arbitrary sequences  Highly tuned sequences

Processing  of operations chained of detectors stacked

together in a program

upon each other in layers




