

- Labs
- If you don't finish, download sims on your PC (website) or go to Room 204 Metcalf when it is free
- Reading reactions:Better directly in email & put 1460 in subject title!
- CC Brad on all reactions

6 Detector Model

Each neuron detects some set of conditions (e.g., smoke detector).

Neurons feed on each other's outputs — layers of ever more complicated detectors.

(Things can get very complex in terms of *content*, but each neuron is still carrying out basic detector *function*). *sensory*: detect bar of light, edges, tigers

motor: detect appropriate condition to move hand abstract internal actions: engaging attention regulation/homeostasis: detect too much overall activity...

Building on simple detectors: Pandemonium cognitive demons feature demons f

Pandemonium Example

 ∞

Each neuron has a simple job, but together...

Layers of more and more complicated detectors.

Simple example, but raises question of what kind of detectors needed for language, face recognition, creativity, etc.?

How do we simulate this?

9

- Neural activity (and learning) can be characterized by mathematical equations.
- We use these equations to specify the behavior of artificial
- The artificial neurons can then be put together to explore behaviors of networks of neurons.

Basic Properties of a Neuron

- It's a cell: body, membrane, nucleus, DNA, RNA, proteins, etc.
- **Ions** (charged particles) are present both inside and outside the neuron: Sodium (Na $^+$), Chloride (CI $^-$), Potassium (K $^+$) and Calcium (Ca $^{++}$) \rightarrow brain = mini-ocean
- Cell membrane has channels that allow ions (e.g. Na⁺) to pass through. Channels can be open or closed (selective permeability).
- ullet When a neuron is at rest: greater concentration of negative ions inside the neuron vs. outside; this difference in charge inside vs. outside the neuron is called the **membrane potential** (V_m)

15 How Neurons Communicate

- Neurons communicate by firing "spikes" of electricity (action potentials) down their axons
- When this current reaches the end of an axon, it triggers release of neurotransmitter into the synapse
- Neurotransmitter binds to receptors in the receiving (postsynaptic) neuron, which opens dendritic synaptic input channels in the cell membrane
- The flow of ions through these channels changes the membrane potential of the postsynaptic neuron

1How can biology (e.g., synapse) be reduced to numbers?

Synaptic efficacy = how much is the activity of presynaptic (sending) neuron communicated to the postsynaptic (receiving) neuron:

- Presynaptic: # of vesicles released, NT per vesicle, efficacy of reuptake mechanism.
- Postsynaptic: # of receptors, alignment & proximity of release site & receptors, efficacy of channels, geometry of dendrite/spine.

Major Simplification:

Connection weight = synaptic efficacy.

Excitatory vs Inhibitory Synapses

18

Some synapses are primarily excitatory

- These synapses use glutamate as the primary neurotransmitter.
- Glutamate binds to receptors and allows Na⁺ to enter the neuron, which boosts the membrane potential.

Other synapses are primarily inhibitory

- These synapses use GABA
- $\bullet\,$ GABA binds to receptors and allows Cl $^-$ to enter the neuron, which reduces the membrane potential

Abstract Neural Nets

1. Compute weighted, summed net input:

$$\eta_j = \sum_i a_i w_{ij} \tag{1}$$

3. Pass through sigmoidal function to compute output:

$$a_{II}$$
 unction to compute output $a_{j}=rac{1}{1+e^{-\eta_{j}}}$ signoidal Activation Function

2

Net Input

20

Bio Neural Nets

1. Compute weighted, summed net input:

$$\eta_jpprox\sum_i a_iw_{ij}pprox g_e$$

3

2. Compute V_m :

$$V_m = \frac{g_c \bar{g}_e E_e + g_i \bar{g}_i E_i + g_l \bar{g}_l E_l}{g_c \bar{g}_e + g_i \bar{g}_i + g_l \bar{g}_l}$$

4

3. Compute output as: Spikes, or rate code equiv. Or, rate code via *sigmoidal* function:

$$a_j = \frac{\gamma [V_m(t) - \Theta]_+}{\gamma [V_m(t) - \Theta]_+ + 1}$$

5

21 Summary

- Neuron as detector.
- Can be characterized mathematically.
- Serves as the basis of simulation explorations.

22

Remaining

- Physiology behind the equations.
- Simple detector network.

23

Neurophysiology

The neuron is a miniature electro-chemical system:

- 1. Balance of electric and diffusion forces.
- Principal ions.
- 3. Putting it all together.

24

Balance of Electric and Diffusion Forces

Ions flow into and out of the neuron under forces of electricity and concentration gradients (diffusion).

outside of cell — the membrane potential V_m Net result is electric potential difference between inside and

This value represents an integration of the different forces, and an integration of the inputs impinging on the neuron.

Electricity

 ${\bf lons}$ have net charge: Sodium (Na+), Chloride (Cl^-), Potassium (K+), and Calcium (Ca++).

Positive and negative **charge** (opposites attract, like repels).

Current flows to even out distribution of + and - ions.

Disparity in charges produces **potential** (the potential to generate current).

26

Resistance

Ions encounter resistance when they move.

Neurons have channels that limit flow of ions in/out of cell.

The smaller the channel, the higher the resistance, the greater the potential needed to generate given amount of current (Ohm's law):

$$I = \frac{V}{R}$$

6

Conductance G = 1/R, so I = GV

Diffusion

Constant motion causes mixing – evens out distribution.

Unlike electricity, diffusion acts on each ion *separately* — can't compensate one + ion for another..

(same deal with conductance, potentials, etc)

$$I = -DC$$

 Ξ

(Fick's First law)

D = diffusion coefficient, C = concentration potential difference

28

Equilibrium

Balance between electricity and diffusion:

E =**Equilibrium** potential = amount of electrical potential needed to counteract diffusion:

$$I = G(V - E)$$

i.e., ${\cal I}$ flows in proportion to voltage ${\it difference}$ from equilibrium.

Other terms for I

Reversal potential (because current reverses on either side of E)

Driving potential (flow of ions drives potential toward this value) "Eq potential for Na: If sodium had its way, the neuron would settle to into this steady state without any other forces"

29

The Na-K Pump: Winding the Spring

- Neurons have a negative resting potential because of the sodium-potassium pump
- \bullet This mechanism pumps Na+ out of the neuron and pumps a lesser amount of K+ into the neuron. The result is a net loss in charge.
- This creates a dynamic tension in the cell: When the neuron is at rest, Na+ wants to come back in (because of both electrical and diffusion forces), but it can't because the Na channels are closed!

The Neuron and its Ions

When the neuron is at rest (-70mV):

- Na⁺ wants in
- Cl⁻ is in balance (diffusion pushes in, electrical pushes out)
- K⁺ is in balance (diffusion pushes out, electrical pushes in)

When the neuron receives excitatory synaptic input:

- Na⁺ rushes in, making membrane potential more positive
- If the Na $^+$ stays open, this influx will continue until membrane potential reaches $+55 \mathrm{mV}$
- $\bullet~$ This is the reversal potential for Na $^+$

When the neuron receives inhibitory synaptic input:

• If the membrane potential = - 70 mV?

- Alcohol: closes Na
- ullet General anesthesia: opens K
- ullet Scorpion: opens Na and closes K
- Some kind of venom: closes all muscle firing (acetylcholine)

32 The Neuron and its Ions

Because of the influx of positive charge:

- Cl⁻ wants to come in, but can't (channels closed)
- $\bullet~K^+$ starts to leak out of the neuron (through open channels)

34 The Neuron and its Ions

When the neuron receives inhibitory synaptic input:

- If the membrane potential = 70 mV, nothing happens
- If the membrane potential > -70mV, Cl- starts to come in;
- this serves to counteract the influx of Na+

36

Ions: Summary

- Excitatory synaptic input boosts the membrane potential by allowing Na⁺ ions to enter the neuron
- Inhibitory synaptic input serves to counteract this increase in membrane potential by allowing Cl⁻ ions to enter the neuron
- channels) acts as a drag on the membrane potential.

 Functionally speaking, it makes it harder for excitatory input The leak current (K+ flowing out of the neuron through open to increase the membrane potential.

Putting it Together

$$I_c = g_c(V_m - E_c)$$

$$\text{on } (N_a + 1)$$

$$e = \operatorname{excitation}(Na^+)$$

 $i = \operatorname{inhibition}(Cl^-)$
 $l = \operatorname{leak}(K^+)$.

$$i = \text{inhibition} (Cl^-)$$

 $l = \text{leak} (K^+).$

$$I_{net} = g_e(V_m - E_e) + g_i(V_m - E_i) + g_l(V_m - E_i) + g_l(V_m - E_l)$$

$$V_m(t+1) = V_m(t) - dt_{vm}I_{net}$$
 (11)

(10)

$$V_m(t+1) = V_m(t) + dt_{vm}I_{net-}$$
 (12)

39

(common in comp neurosci) Differential equation version

$$C_m \frac{dV_m}{dt} = g_e(t)\bar{g_e}(E_c - V_m) + g_i(t)\bar{g_i}(E_i - V_m) + g_l(t)\bar{g_l}(E_l - V_m) + \dots$$
...

- C_m = membrane capacitance
- determined by size of membrane
- influences speed at which potential voltage can change (dt_{vm})

41

Overall Equilibrium Potential

If you run V_m update equations with steady inputs, neuron settles to new equilibrium potential.

To find, set $I_{net} = 0$, solve for V_m :

$$V_{m} = \frac{g_{e}\bar{g}_{e}E_{e} + g_{i}\bar{g}_{i}E_{i} + g_{l}\bar{g}_{l}E_{l}}{g_{e}\bar{g}_{e} + g_{i}\bar{g}_{i} + g_{l}\bar{g}_{l}}$$
(16)

38

Putting it Together: With Time

$$I_c = g_c(t)\bar{g}_c(V_m(t) - E_c)$$
(13)

$$e = \text{excitation } (Na^+)$$

 $i = \text{inhibition } (Cl^-)$

$$i = \text{inhibition}(Cl^-)$$

$$t = \text{leak}(K^+).$$

$$I_{net} = g_e(t)\bar{g}_e(V_m(t) - E_e) + g_i(t)\bar{g}_i(V_m(t) - E_i) + g_l(t)\bar{g}_l(V_m(t) - E_l)$$

$$V_m(t+1) = V_m(t) + dt_{vm}I_{net-}$$

(15)(14)

40

10 In Action 5 20 cycles 25 g_e = .2 30 35 40

(Two excitatory inputs at time 10, of conductances .4 and .2)

42

Overall Equilibrium Potential

If you run V_m update equations with steady inputs, neuron settles to new equilibrium potential.

To find, set $I_{net} = 0$, solve for V_m :

$$V_m = \frac{g_e \bar{g_e} E_e + g_i \bar{g_i} E_i + g_l \bar{g_l} E_l}{g_e \bar{g_e} + g_i \bar{g_i} + g_l \bar{g_l}}$$

$$\tag{17}$$

Can now solve for the equilibrium potential as a function of inputs.

Simplify: ignore leak for moment, set $E_e = 1$ and $E_i = 0$:

$$V_m = \frac{g_e \bar{g}_e}{g_e g_e + g_i g_i} \tag{18}$$

Membrane potential computes a *balance* (weighted average) of excitatory and inhibitory inputs. This is equivalent to a Bayesian hypothesis tester! See 2.7

inhibition

44

Or a Tug-of-War

- When membrane potential exceeds a threshold value, voltage-gated Na⁺ channels open up
- $\bullet\,$ This leads to an influx of Na $^+$ and (consequently) a very large and rapid increase in membrane potential
- $\bullet\,$ Shortly afterward, voltage gated K^+ channels open up
- $\bullet\,$ This leads to a rapid flow of K^+ out of the neuron and thus a very large and rapid decrease in membrane potential
- The result is a discrete "spike" in membrane potential

46 Spike = Action Potential Time (ms) "Real" Action Potential

47 **Bio Neural Nets**

1. Compute weighted, summed net input:

$$\eta_j \approx \sum_i a_i w_{ij} \approx g_e$$
(19)

2. Compute V_m :

$$V_m = \frac{g_c \bar{g_c} E_c + g_i \bar{g_i} E_i + g_l \bar{g_l} E_l}{g_c \bar{g_c} + g_i \bar{g_i} + g_l \bar{g_l}}$$
(20)

3. Compute output as: Spikes, or rate code equiv. Or, rate code via *sigmoidal* function:

$$a_{j} = \frac{\gamma [V_{m}(t) - \Theta]_{+}}{\gamma [V_{m}(t) - \Theta]_{+} + 1}$$
 (21)

48

Computational Neurons (Units)

- The point neuron function.
- Two kinds of outputs: discrete spiking, rate coded.
- 3. Really abstract: The standard sigmoidal function.

49 Computational Neurons (Units) Overview

50

Thresholded Spike Outputs

Voltage Gated K^+ channels open to reset spike.

Voltage gated Na^+ channels open if $V_m > \Theta$, sharp rise in V_m .

- 1. Weights = synaptic efficacy; weighted input = $x_i w_{ij}$.
- 2. Net conductances (average across all inputs) excitatory ($net = g_e(t)$), inhibitory $g_i(t)$.
- 3. Integrate conductances using V_m update equation.
- 4. Compute output y_j as spikes or rate code.

In model: $y_j = 1$ if $V_m > \Theta$, then reset (also keep track of rate).

One unit = % spikes in population of neurons? Output is average firing rate value.

Rate approximated by X-over-X-plus-1 $(\frac{x}{x+1})$:

$$y_{j} = \frac{\gamma [V_{m}(t) - \Theta]_{+}}{\gamma [V_{m}(t) - \Theta]_{+} + 1}$$
 (22)

which is like a sigmoidal function:

$$y_j = \frac{1}{1 + (\gamma [V_m(t) - \Theta]_+)^{-1}}$$
 (23)

compare to sigmoid: $y_j = \frac{1}{1 + e^{-\eta_j}}$

 γ is the gain: makes things sharper or duller.

Rate Coded Output

51

52

Convolution with Noise

X-over-X-plus-1 has a very sharp threshold

Smooth by convolve with noise (just like "blurring" or

53 40-0.8 -0.6 Fit of Rate Code to Spikes spike rate -0.005 0 V_m − Θ noisy x/x+1 0.0 21 0.015

54

Dynamics: Hysteresis and Accommodation

- So far considered 3 channels, but in reality there are several
- Some channels are voltage-gated, which means they open and close as a function of current activity. Rapid influx of Ca^{2+} can Hysteresis. allow cell to stay active even after input fades away:
- Other channels are *calcium-gated*: where Ca^{2+} reflects averaged prior activity. Inhibitory channels based on prevactivity lead to *accommodation* (fatigue).

Dynamics: Hysteresis and Accommodation

$$I_a = g_a(V_m - E_a) \tag{24}$$

$$I_h = g_h(V_m - E_h) \tag{25}$$

 g_a and g_h are time-varying functions that depend on previous activity, integrated over different time periods. E_h is excitatory; E_a inhibitory.

56

[detector.proj]

57

Extra

58

Equilibrium Potential Illustrated

Equilibrium V_m by g_e ($g_l = .1$)

V_m 0.4 0.6

0.2 0.4 0.6 0.8 g_e (excitatory net input)

0.8 1.0

59 Computing Excitatory Input Conductances

One projection per group (layer) of sending units. Average weighted inputs $\langle x_i w_{ij} \rangle = \frac{1}{n} \sum_i x_i w_{ij}$.

Bias weight β : constant input.

Factor out expected activation level α .

Other scaling factors a, s (assume set to 1).

60

Computing V_m

Use $V_m(t+1) = V_m(t) + dt_{vm}I_{net-}$ with biological or normalized (0-1) parameters:

Normalized used by default.