Left over from units..

e Hodgkin-Huxley model

Inet = gnam>h(Vin — Eng) + 950 (Vin — E3) + (Vi — E))

m, h, n: voltage gating variables with their own dynamics that
determine when channels open and close

e Bias weight



Left over from units..

e Hodgkin-Huxley model

Inet = gnam>h(Vin — Eng) + 950 (Vin — E3) + (Vi — E))

m, h, n: voltage gating variables with their own dynamics that
determine when channels open and close

e Bias weight

General cell excitability is plastic, regardless of particular synaptic
inputs (weights). See review by Mozzachido & Byrne, 2010 TINS on
non-synaptic plasticity.
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Sensitivity to perturbations in vivo implies high noise
and suggests rate coding in cortex
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see also Shadlen & Newsome 98



Networks

Layers and layers of detectors...
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Networks

1. Biology of networks: the cortex

2. Excitation:
e Unidirectional (transformations)

e Bidirectional (pattern completion, amplification)
3. Inhibition: Controlling bidirectional excitation.

4. Constraint Satisfaction: Putting it all together.



Cortex: Neurons
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e Excitatory (glutamate): Pyramidal, Spiny stellate.

e Inhibitory (GABA): Chandelier, Basket.



More recent images..

Animation: file:///Users/frankmj/teach/cogsim/ctxhippo.mpg



Excitatory vs Inhibitory Neurons

Excitatory neurons both project locally and make long-range
projections between different cortical areas

Inhibitory neurons primarily project within small, localized regions of
cortex

Excitatory neurons carry the information flow (long range projections)

Inhibitory neurons are responsible for (locally) regulating the
activation of excitatory neurons
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Layers

Layer = a bunch of neurons with similar connectivity
Localized to a particular region (physically contiguous)

All cells within a layer receive input from approximately the same
places (i.e,. from a common collection of layers)

All cells within a layer send their outputs to approximately the same
places (i.e., to a common collection of layers)



Laminar Structure of Cortex
Three Functional Layers
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Laminar Structure of Cortex
Three Functional Layers
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Sensation
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Hidden layer transforms input-output mappings



Laminar Structure of Cortex
Three Functional Layers
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Sensation
(Thalamus)

Hidden layer transforms input-output mappings
More hidden layers — richer transformations



Laminar Structure of Cortex
Three Functional Layers

nnnnnnnnnnnn

Sensation
(Thalamus)

Hidden layer transforms input-output mappings
More hidden layers — richer transformations

— less reflex-like... smarter? more “free”?



Area Structure of Cortex
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Area Structure of Cortex
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Networks

1. Biology: Cortical layers and neurons

2. Excitation:
e Unidirectional (transformations)

e Bidirectional (pattern completion, amplification)
3. Inhibition: Controlling bidirectional excitation.

4. Constraint Satisfaction: Putting it all together.



Excitation (Unidirectional): Transformations
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Excitation (Unidirectional): Transformations
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e Detectors work in parallel to transform input activity pattern to hidden
activity pattern.



Excitation (Unidirectional): Transformations

e Emphasizes some distinctions, collapses across others.



Excitation (Unidirectional): Transformations

e Emphasizes some distinctions, collapses across others.

e Function of what detectors detect (and what they ignore).



Emphasizing /Collapsing Distinctions

Hidden




Emphasizing /Collapsing Distinctions

Hidden

Other (more interesting) examples?...



[transform.proj]

digit detectors:
e tested with noisy digits

o tested with letters



Cluster plots provide a means of visualizing similarity relationships

Cluster Plots

between patterns of activity in a network

Cluster plots are constructed based on the distances between patterns

of activity

Euclidean distance
1IN activation

Example...

= sum (across all units) of the squared difference

d= /\Mu?,@ —y;)?

(1)



Making Friends With Cluster Plots
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Making Friends With Cluster Plots




Making Friends With Cluster Plots




[transform.proj]

cluster plots (digits, noisy digits, hidden).



Emphasizing /Collapsing Distinctions: Categorization
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sing Distinctions: Categorization

Emphasizing/Collap
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Emphasize distinctions: digits separated, even though they have perceptual overlap.



Emphasizing /Collapsing Distinctions: Categorization
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Emphasize distinctions: digits separated, even though they have perceptual overlap.

Collapse distinctions: Noisy digits categorized as same, even though they have perceptual

differences.



Detectors are Dedicated, Content-Specific
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What are these??
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Networks: Bidirectional Connectivity

A macaque visual cortex C cat cortex

cortical area (source)

cortical area (source)

cortical area (target)

connectivity matrices

Sporns & Zwi 04



Networks: Bidirectional Excitation




Networks: Bidirectional Excitation

1. Top-down expectations about low-level features.



Networks: Bidirectional Excitation

1. Top-down expectations about low-level features.

2. Pattern completion.



Top-Down Processing (Imagery)

tiger

striped  orange sharp furry
teeth



Top-Down Processing (Imagery)
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Top-Down Processing (Imagery)
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Pattern Completion
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Pattern Completion
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Pattern Completion
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Pattern Completion

AN

striped  orange sharp furry
teeth




[face categ.proj]



Word Superiority Effect: Top-Down Amplification



Word Superiority Effect: Top-Down Amplification

Identify second letter in:
NEST (faster)

DEST (slower)



Word Superiority Effect: Top-Down Amplification

Identify second letter in:
NEST (faster)

DEST (slower)

Weird! You have to recognize the letter before you can recognize the word,
so how can the word help letter recognition?



[amp_topdown.proj]



Amplification
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Application to Word Superiority Effect

_umnimem:ﬁmaﬂ_:m}n_ﬁ_:mzu:Zmﬂiu}z_nai
{after McClelland and Rumaelhart, 1981).



Bigger network model (details later)

Naming
output

Retina/LGN
filtered input



Bidirectional Dynamics

Occlusion = 50%




Networks: Bidirectional Excitation

1. Top-down processing (“imagery”).
2. Pattern completion.

3. Amplification/bootstrapping.



Networks: Bidirectional Excitation

1. Top-down processing (“imagery”).
2. Pattern completion.
3. Amplification/bootstrapping.

4. Need inhibition!



Localist vs. Distributed Representations



Localist vs. Distributed Representations

e Localist =1 unit responds to 1 thing (e.g., digits, grandmother cell).



Localist vs. Distributed Representations

e Localist =1 unit responds to 1 thing (e.g., digits, grandmother cell).

e Distributed = Many units respond to 1 thing, one unit responds to
many things.



Localist vs. Distributed Representations

e Localist =1 unit responds to 1 thing (e.g., digits, grandmother cell).

e Distributed = Many units respond to 1 thing, one unit responds to
many things.

e With distributed representations, units correspond to stimulus features
as opposed to complete stimuli
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Advantages of Distributed Representations

Efficiency : Fewer Units Required



Advantages of Distributed Representations

Efficiency : Fewer Units Required
The digits network can represent 10 digits using 5 “feature” units
Each digit is a unique combination of the 5 features, e.g.,

“0” = feature 3

“1” = features 1, 4
“2"” = features 1, 2
“3"” = features 1, 2, 5
“4" = features 3, 4
“5"” = features 1, 2, 3

There are 32 unique ways to combine 5 features
There are > 1 million unique ways to combine 20 features



Advantages of Distributed Representations

Similarity and Generalization :



Advantages of Distributed Representations

Similarity and Generalization :

If you represent stimuli in terms of their constituent features, stimuli with
similar features get assigned similar representations

This allows you to generalize to novel stimuli based on their similarity to
previously encountered stimuli
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wings feathers orange

fieia by Chan Rabbins
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Advantages of Distributed Representations

Robustness (Graceful Degradation):



Advantages of Distributed Representations

Robustness (Graceful Degradation):

Damage has less of an effect on networks with distributed (vs. localist)
representations



Advantages of Distributed Representations

Robustness (Graceful Degradation):

Damage has less of an effect on networks with distributed (vs. localist)
representations
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Accuracy:

Advantages of Distributed Representations

A
5 ©O O ©
.Tnm \..-.. ll._f ..__.__._1-_.—14
...w _,_rmﬂ.._.l._ ._..4..,
= - o :. == ol .
Continuous Dimension
(Frequency of Light)

By coarse-coding. (e.g, color, position)



Advantages of Distributed Representations
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Advantages of Distributed Representations



Advantages of Distributed Representations

Efficiency: Fewer total units required.

Similarity: As a function of overlap.

Generalization: Can use novel combinations.
Robustness: Redundancy: damage has less of an effect

Accuracy: By coarse-coding.



Networks

1. Biology: The cortex

2. Excitation:
e Unidirectional (transformations)

e Bidirectional (top-down processing, pattern completion,
amplification)

3. Inhibition: Controlling bidirectional excitation.

4. Constraint Satisfaction: Putting it all together.



