
So far...



So far...

• Units: ions, conductance, membrane potential, firing.



So far...

• Units: ions, conductance, membrane potential, firing.

• Networks: transformations, amplifications, attractors, basic building

blocks of cognition.



So far...

• Units: ions, conductance, membrane potential, firing.

• Networks: transformations, amplifications, attractors, basic building

blocks of cognition.

How do networks ever come to do interesting things?

• Learning



Learning



Learning

• Tuning detectors to achieve global results.

• Learning rules:

How to adjust weights based only on local information (presynaptic

and postsynaptic activity) to produce appropriate network behavior.



Learning

• Tuning detectors to achieve global results.

• Learning rules:

How to adjust weights based only on local information (presynaptic

and postsynaptic activity) to produce appropriate network behavior.

• Two main types:

– “Self organizing”: learning internal model (statistics) of

environment



Learning

• Tuning detectors to achieve global results.

• Learning rules:

How to adjust weights based only on local information (presynaptic

and postsynaptic activity) to produce appropriate network behavior.

• Two main types:

– “Self organizing”: learning internal model (statistics) of

environment

– “Error-driven”: Learning to solve a task (produce output from

input)



Learning

• Tuning detectors to achieve global results.

• Learning rules:

How to adjust weights based only on local information (presynaptic

and postsynaptic activity) to produce appropriate network behavior.

• Two main types:

– “Self organizing”: learning internal model (statistics) of

environment

– “Error-driven”: Learning to solve a task (produce output from

input)

– Doing both at the same time



Learning

• Tuning detectors to achieve global results.

• Learning rules:

How to adjust weights based only on local information (presynaptic

and postsynaptic activity) to produce appropriate network behavior.

• Two main types:

– “Self organizing”: learning internal model (statistics) of

environment

– “Error-driven”: Learning to solve a task (produce output from

input)

– Doing both at the same time



What is self-organizing / statistical Learning?

• “Things” in the world have relatively stable sets of features.

• How do detectors in our brains come to detect these things?

• The features of a particular thing tend to appear together and

disappear together

• A thing is nothing more than a correlated cluster of features

• Learning mechanisms sensitive to correlation will lead to

representation of useful things



statistical learning

Pick up on correlations in the world.



statistical learning

Pick up on correlations in the world.



statistical learning

Pick up on correlations in the world.

(whether for pixels in visual images, emotions and people, behaviors, etc.)



Biology: Associative/Hebbian LTP/D

Biology suggests associative or “Hebbian” learning:

proposed by Donald Hebb.



Biology: Associative/Hebbian LTP/D

Biology suggests associative or “Hebbian” learning:

proposed by Donald Hebb.

“Units that fire together wire together!”;

“Units that fire out of sync, lose their link”



Biology: Associative/Hebbian LTP/D

Biology suggests associative or “Hebbian” learning:

proposed by Donald Hebb.

“Units that fire together wire together!”;

“Units that fire out of sync, lose their link”

Synaptic efficacy (weights) change when neurons are excited:

• Going up: Long Term Potentiation (LTP)

(strengthens connections between co-active units)

• Going down: Long Term Depression (LTD)

(weakens connections between units that are not co-active)



LTP is dependent on NMDA receptor activation

APV = NMDA antagonist



And so is LTD

APV = NMDA antagonist



What changes in the synapse to support this learning?



NMDA = Associativity: Both Pre & Post Active



NMDA = Associativity: Both Pre & Post Active

“Gettin AMPA’d”: chem processes → new AMPA receptors (or trafficking of existing ones to membrane)
AMPAR’s open Na channels → increase excitability
NMDAR’s: learning via Ca.



Biology: NMDA-mediated LTP/D

Strong activity (Ca++) = LTP, weak = LTD



For details of mechanisms of LTP/LTD:

THE NEUROBIOLOGY OF LEARNING AND MEMORY

Jerry W Rudy Second Edition (2014)

Very clear and well-written!











Hebb = PCA demo

Ľinear Activation:

yj =
∑

i

xiwij (1)

Simple Hebb rule:

∆twij = ǫxiyj (2)



Hebb = PCA demo

Ľinear Activation:

yj =
∑

i

xiwij (1)

Simple Hebb rule:

∆twij = ǫxiyj (2)

Wts get stronger for two units that are correlated, but not for uncorrelated unit!



Hebb = PCA demo

Ľinear Activation:

yj =
∑

i

xiwij (1)

Simple Hebb rule:

∆twij = ǫxiyj (2)

Wts get stronger for two units that are correlated, but not for uncorrelated unit!

Technically: wts evolve toward principal eigenvector of correlation matrix among inputs



Simple Hebb Rule

wij(t+1) = wij(t) +∆wij

∆wij = ǫxiyj
ǫ = learning rate

xi = act of sending unit i

yj = act of receiving unit j



Simple Hebb Rule

wij(t+1) = wij(t) +∆wij

∆wij = ǫxiyj
ǫ = learning rate

xi = act of sending unit i

yj = act of receiving unit j

Problem: Weights will grow infinitely large.



Simple Hebb Rule

wij(t+1) = wij(t) +∆wij

∆wij = ǫxiyj
ǫ = learning rate

xi = act of sending unit i

yj = act of receiving unit j

Problem: Weights will grow infinitely large.

→ Unrealistic and computationally bad!



Simple Hebb Rule

wij(t+1) = wij(t) +∆wij

∆wij = ǫxiyj
ǫ = learning rate

xi = act of sending unit i

yj = act of receiving unit j

Problem: Weights will grow infinitely large.

→ Unrealistic and computationally bad!

→ Need homeostatic mechanism to balance weight updates and allow for

LTD...



Adapted Hebb learning rule: “XCAL”

∆w = ǫfxcal(xy, θp) = ǫ

{

(xy − θp) ifxy > θpθd
−xy(1− θd)/θd otherwise

θd : fixed threshold determining when weight change reverses direction
θp : adaptive threshold determining when weight change reverses sign



Adapted Hebb learning rule: “XCAL”

∆w = ǫfxcal(xy, θp) = ǫ

{

(xy − θp) ifxy > θpθd
−xy(1− θd)/θd otherwise

θd : fixed threshold determining when weight change reverses direction
θp : adaptive threshold determining when weight change reverses sign

θp ∝ prior activity: homeostatic mechanism – “BCM rule”



Some evidence for a ’floating threshold’



Self Organizing Learning:
Set adaptive threshold θp = long term average activity yl



Self Organizing Learning:
Set adaptive threshold θp = long term average activity yl

long term activity is kept track in simulator:

yl =

{

yl + τ+(y − yl) ify > yl
yl + τ−(y − yl) otherwise

τ+ > τ− so that excessive activity levels are quickly penalized.



XCAL is just another Hebb learning variant

∆wij ≈ ǫxs(ys − yl)

• In this variant, learning occurs in proportion to Hebbian co-product as usual, but
activation of postsynaptic cell is relative to its long-term value yl. This allows for LTP
to reverse to LTD for low xy (low Ca2+).

• xs and ys are the activations of x and y integrated over short time scales (i.e., not just
some instantaneous rate, which is implausible to drive learning).

• We’ll see later that these values can be compared against more medium term time
scales to produce other learning dynamics



Model learning

Pick up on correlations in the world.

(whether for pixels in visual images, emotions and people, behaviors, etc.)

Based on Hebbian (LTP/LTD) mechanisms.



[hebb correl.proj]



What does Hebbian Learning Do?

• Hebbian learning tunes units to represent correlated sets of input

features

• If a unit has 1000 inputs, turning on and off a single input feature won’t

have a big effect on the unit’s activity

• In contrast, turning on and off a large cluster of 900 input features will

have a big effect on that unit’s activity

• Learning increases with activity, so unit will be tuned to respond to

correlated features



















[newgang.proj]



What does Hebbian Learning Do?

• Hebbian learning find the thing in the world that most reliably

activates the unit, and tunes the unit to like that thing even more!





















What does Hebbian Learning Do?

• Hebbian learning find the thing in the world that most reliably

activates the unit, and tunes the unit to like that thing even more!

• “thing in the world that most reliably activates the unit” = principal

component

• function of how well an input activates the unit



Integrating over Experiences

• What a unit learns to represent is a function of how excitable the unit is

• Units that are activated (initially) by a wide range of stimuli end up

representing an average of all of these stimuli

– Imagine a unit that is activated by every stimulus; in this case, it

learns a little about every one of these stimuli

– If all of the input patterns have something in common, then the unit

will learn what they have in common

– There are very few meaningful things that are present in all inputs,

if you try to average over too large a set of stimuli then you get

mush



Integrating over Experiences

• Units that are activated (initially) by a wide range of stimuli end up

representing an average of all of these stimuli

• Units that are activated (initially) by a narrow range of stimuli end up

representing very specific features

– If a unit is only activated by a single stimulus, it will only represent

that stimulus

• Thus the learning rule allows you to represent concepts at varying

levels of abstraction, depending on how excitable the unit is



Multiple Units

• One detector can only represent one “thing” (pattern of correlated

features)

• Goal: We want to have different units in the network learn to

“specialize” for different things, such that each thing is represented by

at least one unit

• Random initial weights and inhibitory competition are important for

achieving this goal



Multiple Units

• One detector can only represent one “thing” (pattern of correlated

features)

• Goal: We want to have different units in the network learn to

“specialize” for different things, such that each thing is represented by

at least one unit

• Random initial weights and inhibitory competition are important for

achieving this goal

• What happens when different units have the same initial weights and

no competition...















Solution: Self-Organized Learning

1. Random initial weights

2. FFFB inhibition = only strongest units active.



Solution: Self-Organized Learning

1. Random initial weights

2. FFFB inhibition = only strongest units active.

3. Hebbian learning = winners get stronger (rich get richer)

(losers don’t do anything; can win on something else).



Solution: Self-Organized Learning

1. Random initial weights

2. FFFB inhibition = only strongest units active.

3. Hebbian learning = winners get stronger (rich get richer)

(losers don’t do anything; can win on something else).

4. Homeostasis: keeping things more evenly distributed (higher taxes for

the rich!)

5. Goto 1



Solution: Self-Organized Learning

1. Random initial weights

2. FFFB inhibition = only strongest units active.

3. Hebbian learning = winners get stronger (rich get richer)

(losers don’t do anything; can win on something else).

4. Homeostasis: keeping things more evenly distributed (higher taxes for

the rich!)

5. Goto 1

Result: different units tuned for different input features.

→ “Self-Organized Learning”















[self org.proj]



[self org inhib.proj]

What if don’t enforce competition ’artificially’ with FFFB?



Summary: statistical Learning



Summary: statistical Learning

Get a lot of poor quality information.



Summary: statistical Learning

Get a lot of poor quality information.

Need biases to augment, structure this info (e.g., parsimony).



Summary: statistical Learning

Get a lot of poor quality information.

Need biases to augment, structure this info (e.g., parsimony).

One good bias is focus on correlations



Summary: statistical Learning

Get a lot of poor quality information.

Need biases to augment, structure this info (e.g., parsimony).

One good bias is focus on correlations



Built in biases? Biological/genetic: associative LTP, different cortical layers,

connectivity...

but not necessarily specific representations or knowledge!



Built in biases? Biological/genetic: associative LTP, different cortical layers,

connectivity...

but not necessarily specific representations or knowledge!

→ Bias to learn! (but no bias to know language, etc)



EXTRA: Fine-Tuning Hebbian Learning

The remaining stuff in chapter 4 describes various methods of fine-tuning

the Hebbian learning rule to do better under different conditions. This is

not critical for understanding the main principles, which remain essentially

unaltered.



Corrections

• weights don’t have much dynamic range or selectivity.

• Solution: contrast enhancement.

• Quantitative adjustments – retain qualitative features motivated by

biology.



Cleaning up Messy Receptive Fields

• The “gang” project ends up with a big weight to the first two

(correlated) features, and a moderate weight to the third feature

• SO, there is a sense in which the unit is selective for the first two input

features, but it is only weakly selective

• How can we enhance selectivity?



Contrast Enhancement

Between strongest and weaker correlations, via sigmoidal function:

0.0 0.2 0.4 0.6 0.8 1.0
Linear Weight Value

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

c
ti

v
e

 W
e

ig
h

t 
Va

lu
e

Contrast Enhancement



Contrast Enhancement

Between strongest and weaker correlations, via sigmoidal function:

0.0 0.2 0.4 0.6 0.8 1.0
Linear Weight Value

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

c
ti

v
e

 W
e

ig
h

t 
Va

lu
e

Contrast Enhancement

Slope (sharpness of contrast) via gain γ (wt_sig.gain)



Contrast Enhancement

Between strongest and weaker correlations, via sigmoidal function:

0.0 0.2 0.4 0.6 0.8 1.0
Linear Weight Value

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

c
ti

v
e

 W
e

ig
h

t 
Va

lu
e

Contrast Enhancement

Slope (sharpness of contrast) via gain γ (wt_sig.gain)

Offset (where midpoint is) via θ (wt_sig.off)



[newgang.proj]

effects of wt contrast enhancement



[self org.proj]

effects of wt contrast enhancement



Sequential (Standard) PCA (SPCA)

First compute correlations across all inputs for first unit



Sequential (Standard) PCA (SPCA)

First compute correlations across all inputs for first unit

Then do same for second unit, but keep it orthogonal to 1st, etc.



Sequential (Standard) PCA (SPCA)

First compute correlations across all inputs for first unit

Then do same for second unit, but keep it orthogonal to 1st, etc.

As applied to natural visual scenes:

1st is blob, 2nd is 1/2 blob, etc: Average over all inputs = blob! Problem:

assumes world is hierarchy, but it isn’t!



Variations of Hebb: CPCA learning Rule

wij(t+1) = wij(t) +∆wij

∆wij = ǫyj(xi − wij)



Variations of Hebb: CPCA learning Rule

wij(t+1) = wij(t) +∆wij

∆wij = ǫyj(xi − wij)

→ Weight converges on the probability that the sending unit is active,

given that the receiving unit is active



Variations of Hebb: CPCA learning Rule

wij(t+1) = wij(t) +∆wij

∆wij = ǫyj(xi − wij)

→ Weight converges on the probability that the sending unit is active,

given that the receiving unit is active

→ If yj is active, learned weight reflects the likelihood that xi caused that

activation



Variations of Hebb: CPCA learning Rule

wij(t+1) = wij(t) +∆wij

∆wij = ǫyj(xi − wij)

→ Weight converges on the probability that the sending unit is active,

given that the receiving unit is active

→ If yj is active, learned weight reflects the likelihood that xi caused that

activation

→ Allows units to learn about correlations among input patterns that

activate it, but not among those that don’t activate it.



Conditional PCA (CPCA)

Compute correlations conditional on only subset of inputs (i.e., where

particular features are present).



Conditional PCA (CPCA)

Compute correlations conditional on only subset of inputs (i.e., where

particular features are present).

CPCA of natural visual scenes:
0 1 2 3 4 5 6 7 8 9 1 0 11 12 13

World is a heterarchy – no uber-components, just lots of features!



Comparison

SPCA operates over all inputs, ensures different units encode different

things by making them orthogonal.



Comparison

SPCA operates over all inputs, ensures different units encode different

things by making them orthogonal.

CPCA operates over subsets of inputs, ensures different units encode

different things by giving them different subsets of inputs.



Comparison

SPCA operates over all inputs, ensures different units encode different

things by making them orthogonal.

CPCA operates over subsets of inputs, ensures different units encode

different things by giving them different subsets of inputs.

kWTA competition ensures that different units are active for different

inputs, leads to more meaningful correlations



CPCA Equations

∆wij = ǫyj(xi − wij) (3)

Weight moves towards xi, conditional on yj .



CPCA Equations

∆wij = ǫyj(xi − wij) (3)

Weight moves towards xi, conditional on yj .

→ learns principal components conditional on whether unit yj is active...

principal component that activates that unit.

Achieves conditional probability goal:

wij = P(xi = 1|yj = 1)

= P(xi|yj) (4)

Weight = prob. that the sender xi is active given that receiver yj is.


