
  

Task (error-driven) Learning

• Last time we discussed self organizing Hebbian learning

• Leverage correlations to grow detectors that correspond 
to things in the world (cats, professors…)

• Today we will discuss task learning

• Task = producing a specific output pattern in response 
to an input pattern

• e.g., reading; giving the correct answer to 3 + 3



  

Task Learning

• Task learning encompasses:

• Giving an appropriate response to a stimulus

• Arriving at an accurate interpretation of a situation

• Generating a correct expectation of what will happen next

• in all of the above cases, there is a correct answer... 



  

Overview

• How well can Hebbian rules support task learning?

• Not well enough!  There are some input-output mappings 
that Hebb can not learn

• Error-correction learning and the delta rule

• Shortcomings of two-layer delta rule networks

• GeneRec:  A biologically plausible error-driven learning 
rule for multilayer networks



  

Hebbian Task Learning

• If you want to learn an input-output association:

• clamp the input pattern onto the input layer
• clamp the output pattern onto the output layer
• do Hebbian learning



  

“Easy” Mapping

• no overlap between inputs



  

Hebbian learning:
weight ~ P(receiver active | sender active)
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1.0

Hebbian learning:
weight ~ P(receiver active | sender active)



  

Hebb can solve the task!



  

Another (Harder) Mapping

• overlap between inputs
• input units associated with multiple outputs



  

The mapping is solvable!
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Hebbian learning:
weight ~ P(receiver active | sender active)

1.0



  

0,5

Hebbian learning:
weight ~ P(receiver active | sender active)



  

0.67

Hebbian learning:
weight ~ P(receiver active | sender active)



  

.5

Hebbian learning:
weight ~ P(receiver active | sender active)



  

0

Hebbian learning:
weight ~ P(receiver active | sender active)



  

0.5

Hebbian learning:
weight ~ P(receiver active | sender active)



  

.33

Hebbian learning:
weight ~ P(receiver active | sender active)



  

0

Hebbian learning:
weight ~ P(receiver active | sender active)



  

Can these weights solve the task?
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Can these weights solve the task?
Event 2 not OK....
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Can these weights solve the task?
Event 3 not OK....
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Weights learned by Hebb =>

<=         (one set of) 
Weights that solve the task



  

Solution: Error-Driven Learning

First, we will consider how to do this and later come 
back to biology and more realistic implementation 

• Instead of learning based on correlations, learn based 
on error:  The difference between what the network is 
supposed to do, and what it actually does

• Error can be indexed using sum squared error (SSE)

• t = target output value (what activation is supposed to be) 
over all output units k,  summed across all input patterns p

• o = actual output values for each k unit and input pattern p



  

Adjusting Weights to Minimize Error

• Say that we want hidden activity = 1 for this input pattern.

• If you could pick one (of the two) weights to increment, 
which would you change?
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Adjusting Weights to Minimize Error

• Say that we want hidden activity = 0 for this input pattern.

• If you could pick one (of the two) weights to decrement, 
which would you change?



  

Credit/Blame Assignment

• Error-driven learning is all about figuring out who to 
blame for mistakes

• If the network makes an error, you should change 
weights from active input units

• Changing weights from inactive inputs has no effect



  

The Delta Rule

• The delta rule meets the criteria we have outlined for error-
driven learning:

∀ ∆wik = change in weight

• tk = target output value (what activation is supposed to be)
• ok = actual output value

• si = input unit activity

• Weight change is proportional to error, and it is also 
proportional to sending unit activity
 



  

Error-driven learning
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 “hooray for tigers!”  “birds are bad!”
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Error-driven learning
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The Delta Rule and the “Hard” Problem

• The delta rule can learn the “hard” mapping that thwarted 
the Hebb rule



  



  

[pat_assoc.proj]



  



  

* reflects biological constraints on number of 

receptors, etc. (weight can only go so high, low)



  

“Impossible” Mapping

• Each input unit is linked equally often to each output unit

• Two layer networks using the delta rule can not solve this!



  

Changing weights to learn 
Event_0...



  

Changing weights to learn 
Event_0...

... hurts performance for Event_2 
and Event_3



  

[pat_assoc.proj]



  



  

Add a hidden layer that represents 
feature conjunctions ...

1, 3 2, 4 1, 2 3, 4hidden layer =>
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Error-Driven Learning in Multilayer Networks

• We established that networks with hidden layers can 
solve problems that two-layer networks can not solve, by 
re-representing the input patterns

• How do we train multi-layer networks?



  

Learning in Multilayer Networks
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GeneRec Learning Rule
Compare two conditions:

Minus Phase: 
Clamp input
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GeneRec Learning Rule
Compare two conditions:

Minus Phase: 
Clamp input

Plus Phase: 
Clamp input and target output

For each layer, use the difference between minus and plus 
activations as an error signal and learn using the delta rule



  

GeneRec: Summary
The goal of error-driven learning is to construct a path from the 
input to the target output

Minus Phase: 
Clamp input

Plus Phase: 
Clamp input and target output



  

GeneRec: Summary
The goal of error-driven learning is to construct a path from the 
input to the target output

Minus Phase: Plus Phase: 

The Plus Phase helps identify bridging units that are well 
connected to both the input and the target output, and GeneRec 
adjusts weights to maximize the activity of these units 



  

GeneRec: Equations

Basic GeneRec:
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GeneRec: Equations

Basic GeneRec:

Two issues:   Need weights to be symmetric, and why should 
we use minus phase sending activity instead of plus phase?

Solution:  Average together plus and minus phase sending 
activation, and average together feedforward and feedback 
weight changes
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GeneRec: Equations

Solution:  Average together plus and minus phase sending 
activation, and average together feedforward and feedback 
weight changes
New and improved GeneRec: (CHL)

Minus Phase: 
Clamp input

Plus Phase: 
Clamp input and target output



  

Remember the “impossible” problem?

It can’t be solved by two-layer networks
using the delta rule...



  

But it can be solved
by three layer networks
where hidden units 
represent feature 
conjunctions....



  

But it can be solved
by three layer networks
where hidden units 
represent feature 
conjunctions....

Does error-driven
learning learn
the correct set of 
weights?



  

Task Learning: Summary

• Hebbian learning alone is very limited in its ability to learn 
input-output mappings

• If the input-output mapping happens not to coincide 
with the correlational structure of the inputs, Hebbian 
learning fails

• Error-driven learning rules (that leverage the difference 
between what the network was supposed to do, and what 
it actually did) do better at learning input-output mappings



  

Task Learning: Summary

• The delta rule can learn a wide variety of input-output 
mappings (including some that Hebb can not learn) in 
two-layer networks, but:

• There are some mappings it can not learn (e.g., the 
“impossible” mapping)

• It does not apply to networks with more than two 
layers



  

Task Learning: Summary

• The GeneRec rule remedies the deficiences of the 
simple delta rule

• It applies to networks with hidden layers

• It can solve tasks that can not be solved by the simple 
delta rule; this is accomplished by re-representing 
input patterns...

• The rule is biologically plausible!  Key prerequisites: 
Bidirectional connectivity, (approximate) symmetry, 
two “phases” (expectation and outcome)

• Next lecture:  Synergies between Error and Hebb => 
Error + Hebb leads to better learning than Error alone!
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