

Task (error-driven) Learning

• Last time we discussed self organizing Hebbian learning

• Leverage correlations to grow detectors that correspond
to things in the world (cats, professors…)

• Today we will discuss task learning

• Task = producing a specific output pattern in response
to an input pattern

• e.g., reading; giving the correct answer to 3 + 3

Task Learning

• Task learning encompasses:

• Giving an appropriate response to a stimulus

• Arriving at an accurate interpretation of a situation

• Generating a correct expectation of what will happen next

• in all of the above cases, there is a correct answer...

Overview

• How well can Hebbian rules support task learning?

• Not well enough! There are some input-output mappings
that Hebb can not learn

• Error-correction learning and the delta rule

• Shortcomings of two-layer delta rule networks

• GeneRec: A biologically plausible error-driven learning
rule for multilayer networks

Hebbian Task Learning

• If you want to learn an input-output association:

• clamp the input pattern onto the input layer
• clamp the output pattern onto the output layer
• do Hebbian learning

“Easy” Mapping

• no overlap between inputs

Hebbian learning:
weight ~ P(receiver active | sender active)

1.0

Hebbian learning:
weight ~ P(receiver active | sender active)

1.0

Hebbian learning:
weight ~ P(receiver active | sender active)

0

Hebbian learning:
weight ~ P(receiver active | sender active)

0

Hebbian learning:
weight ~ P(receiver active | sender active)

0

Hebbian learning:
weight ~ P(receiver active | sender active)

0

Hebbian learning:
weight ~ P(receiver active | sender active)

1.0

Hebbian learning:
weight ~ P(receiver active | sender active)

1.0

Hebbian learning:
weight ~ P(receiver active | sender active)

Hebb can solve the task!

Another (Harder) Mapping

• overlap between inputs
• input units associated with multiple outputs

The mapping is solvable!

The mapping is solvable!

.6.4 .4 .4

The mapping is solvable!

.6.4 .4 .4

.8 .6

The mapping is solvable!

.6.4 .4 .4

.8 .6

The mapping is solvable!

.6.4 .4 .4

.4 .6

The mapping is solvable!

.6.4 .4 .4

.4 .6

Hebbian learning:
weight ~ P(receiver active | sender active)

1.0

0,5

Hebbian learning:
weight ~ P(receiver active | sender active)

0.67

Hebbian learning:
weight ~ P(receiver active | sender active)

.5

Hebbian learning:
weight ~ P(receiver active | sender active)

0

Hebbian learning:
weight ~ P(receiver active | sender active)

0.5

Hebbian learning:
weight ~ P(receiver active | sender active)

.33

Hebbian learning:
weight ~ P(receiver active | sender active)

0

Hebbian learning:
weight ~ P(receiver active | sender active)

Can these weights solve the task?

0.33.5 .33
.67

.5
0

.5

1.0

0

Can these weights solve the task?
Event 0 OK!

0.33.5 .33
.67

.5
0

.5

1.0

0

Can these weights solve the task?
Event 1 OK!

0.33.5 .33
.67

.5
0

.5

1.0

0

Can these weights solve the task?
Event 2 not OK....

0.33.5 .33
.67

.5
0

.5

1.0

0

Can these weights solve the task?
Event 3 not OK....

0.33.5 .33
.67

.5
0

.5

1.0

0

Weights learned by Hebb =>

<= (one set of)
Weights that solve the task

Solution: Error-Driven Learning

First, we will consider how to do this and later come
back to biology and more realistic implementation

• Instead of learning based on correlations, learn based
on error: The difference between what the network is
supposed to do, and what it actually does

• Error can be indexed using sum squared error (SSE)

• t = target output value (what activation is supposed to be)
over all output units k, summed across all input patterns p

• o = actual output values for each k unit and input pattern p

Adjusting Weights to Minimize Error

• Say that we want hidden activity = 1 for this input pattern.

• If you could pick one (of the two) weights to increment,
which would you change?

Adjusting Weights to Minimize Error

• Say that we want hidden activity = 1 for this input pattern.

• If you could pick one (of the two) weights to increment,
which would you change?

Adjusting Weights to Minimize Error

• Say that we want hidden activity = 0 for this input pattern.

• If you could pick one (of the two) weights to decrement,
which would you change?

Adjusting Weights to Minimize Error

• Say that we want hidden activity = 0 for this input pattern.

• If you could pick one (of the two) weights to decrement,
which would you change?

Credit/Blame Assignment

• Error-driven learning is all about figuring out who to
blame for mistakes

• If the network makes an error, you should change
weights from active input units

• Changing weights from inactive inputs has no effect

The Delta Rule

• The delta rule meets the criteria we have outlined for error-
driven learning:

∀ ∆wik = change in weight

• tk = target output value (what activation is supposed to be)
• ok = actual output value

• si = input unit activity

• Weight change is proportional to error, and it is also
proportional to sending unit activity

Error-driven learning

striped orange sharp
teeth

furry yellow chirps

 “hooray for tigers!” “birds are bad!”

Error-driven learning

striped orange sharp
teeth

furry yellow chirps

 “hooray for tigers!” “birds are bad!”

Error-driven learning

striped orange sharp
teeth

furry yellow chirps

 “hooray for tigers!” “birds are bad!”

Error-driven learning

striped orange sharp
teeth

furry yellow chirps

 “hooray for tigers!” “birds are bad!”

Error-driven learning

striped orange sharp
teeth

furry yellow chirps

 “hooray for tigers!” “birds are bad!”

Error-driven learning

striped orange sharp
teeth

furry yellow chirps

 “hooray for tigers!” “birds are bad!”

Error-driven learning

striped orange sharp
teeth

furry yellow chirps

 “hooray for tigers!” “birds are bad!”

The Delta Rule and the “Hard” Problem

• The delta rule can learn the “hard” mapping that thwarted
the Hebb rule

[pat_assoc.proj]

* reflects biological constraints on number of

receptors, etc. (weight can only go so high, low)

“Impossible” Mapping

• Each input unit is linked equally often to each output unit

• Two layer networks using the delta rule can not solve this!

Changing weights to learn
Event_0...

Changing weights to learn
Event_0...

... hurts performance for Event_2
and Event_3

[pat_assoc.proj]

Add a hidden layer that represents
feature conjunctions ...

1, 3 2, 4 1, 2 3, 4hidden layer =>

Add a hidden layer that represents
feature conjunctions ...

1, 3 2, 4 1, 2 3, 4hidden layer =>

Add a hidden layer that represents
feature conjunctions ...

1, 3 2, 4 1, 2 3, 4hidden layer =>

Add a hidden layer that represents
feature conjunctions ...

1, 3 2, 4 1, 2 3, 4hidden layer =>

Add a hidden layer that represents
feature conjunctions ...

1, 3 2, 4 1, 2 3, 4hidden layer =>

Add a hidden layer that represents
feature conjunctions ...

1, 3 2, 4 1, 2 3, 4hidden layer =>

Error-Driven Learning in Multilayer Networks

• We established that networks with hidden layers can
solve problems that two-layer networks can not solve, by
re-representing the input patterns

• How do we train multi-layer networks?

Learning in Multilayer Networks

target =>

Learning in Multilayer Networks

target =>

Learning in Multilayer Networks

target =>

Learning in Multilayer Networks

target =>

Learning in Multilayer Networks

target =>

Learning in Multilayer Networks

target =>

Learning in Multilayer Networks

How do we
adjust these
connections? =>

target =>

Learning in Multilayer Networks

target =>

How do we adjust
these
connections? =>

Intuitively, you want to boost
the activity of the middle guys
that are well connected to the
target unit

Learning in Multilayer Networks
Intuitively, you want to boost
the activity of the middle guys
that are well connected to the
target unit

How do we identify units that
are well connected to the
target unit?

target =>

How do we adjust
these
connections? =>

Learning in Multilayer Networks
Intuitively, you want to boost
the activity of the middle guys
that are well connected to the
target unit

How do we identify units that
are well connected to the
target unit?

Solution: Propagate activity backwards from the target

target =>

How do we adjust
these
connections? =>

Learning in Multilayer Networks
Intuitively, you want to boost
the activity of the middle guys
that are well connected to the
target unit

How do we identify units that
are well connected to the
target unit?

Solution: Propagate activity backwards from the target

target =>

How do we adjust
these
connections? =>

Learning in Multilayer Networks
Intuitively, you want to boost
the activity of the middle guys
that are well connected to the
target unit

How do we identify units that
are well connected to the
target unit?

Solution: Propagate activity backwards from the target

target =>

How do we adjust
these
connections? =>

Learning in Multilayer Networks
Intuitively, you want to boost
the activity of the middle guys
that are well connected to the
target unit

How do we identify units that
are well connected to the
target unit?

Solution: Propagate activity backwards from the target
Intuition: Backward-spreading activity from the target can help
us identify pathways to the target (if weights are symmetric)

target =>

How do we adjust
these
connections? =>

Learning in Multilayer Networks
Intuitively, you want to boost
the activity of the middle guys
that are well connected to the
target unit

How do we identify units that
are well connected to the
target unit?

Solution: Propagate activity backwards from the target
Intuition: Backward-spreading activity from the target can help
us identify pathways to the target (if weights are symmetric)
Then: change weights to strengthen these pathways

target =>

How do we adjust
these
connections? =>

Learning in Multilayer Networks
Intuitively, you want to boost
the activity of the middle guys
that are well connected to the
target unit

How do we identify units that
are well connected to the
target unit?

Solution: Propagate activity backwards from the target
Intuition: Backward-spreading activity from the target can help
us identify pathways to the target (if weights are symmetric)
Then: change weights to strengthen these pathways

target =>

How do we adjust
these
connections? =>

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

For each layer, use the difference between minus and plus
activations as an error signal and learn using the delta rule

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

For each layer, use the difference between minus and plus
activations as an error signal and learn using the delta rule

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

For each layer, use the difference between minus and plus
activations as an error signal and learn using the delta rule

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

For each layer, use the difference between minus and plus
activations as an error signal and learn using the delta rule

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

For each layer, use the difference between minus and plus
activations as an error signal and learn using the delta rule

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

For each layer, use the difference between minus and plus
activations as an error signal and learn using the delta rule

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

For each layer, use the difference between minus and plus
activations as an error signal and learn using the delta rule

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

For each layer, use the difference between minus and plus
activations as an error signal and learn using the delta rule

GeneRec Learning Rule
Compare two conditions:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

For each layer, use the difference between minus and plus
activations as an error signal and learn using the delta rule

GeneRec: Summary
The goal of error-driven learning is to construct a path from the
input to the target output

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

GeneRec: Summary
The goal of error-driven learning is to construct a path from the
input to the target output

Minus Phase: Plus Phase:

The Plus Phase helps identify bridging units that are well
connected to both the input and the target output, and GeneRec
adjusts weights to maximize the activity of these units

GeneRec: Equations

Basic GeneRec:

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

GeneRec: Equations

Basic GeneRec:

Two issues: Need weights to be symmetric, and why should
we use minus phase sending activity instead of plus phase?

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

GeneRec: Equations

Basic GeneRec:

Two issues: Need weights to be symmetric, and why should
we use minus phase sending activity instead of plus phase?

Solution: Average together plus and minus phase sending
activation, and average together feedforward and feedback
weight changes

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

GeneRec: Equations

Solution: Average together plus and minus phase sending
activation, and average together feedforward and feedback
weight changes
New and improved GeneRec: (CHL)

Minus Phase:
Clamp input

Plus Phase:
Clamp input and target output

Remember the “impossible” problem?

It can’t be solved by two-layer networks
using the delta rule...

But it can be solved
by three layer networks
where hidden units
represent feature
conjunctions....

But it can be solved
by three layer networks
where hidden units
represent feature
conjunctions....

Does error-driven
learning learn
the correct set of
weights?

Task Learning: Summary

• Hebbian learning alone is very limited in its ability to learn
input-output mappings

• If the input-output mapping happens not to coincide
with the correlational structure of the inputs, Hebbian
learning fails

• Error-driven learning rules (that leverage the difference
between what the network was supposed to do, and what
it actually did) do better at learning input-output mappings

Task Learning: Summary

• The delta rule can learn a wide variety of input-output
mappings (including some that Hebb can not learn) in
two-layer networks, but:

• There are some mappings it can not learn (e.g., the
“impossible” mapping)

• It does not apply to networks with more than two
layers

Task Learning: Summary

• The GeneRec rule remedies the deficiences of the
simple delta rule

• It applies to networks with hidden layers

• It can solve tasks that can not be solved by the simple
delta rule; this is accomplished by re-representing
input patterns...

• The rule is biologically plausible! Key prerequisites:
Bidirectional connectivity, (approximate) symmetry,
two “phases” (expectation and outcome)

• Next lecture: Synergies between Error and Hebb =>
Error + Hebb leads to better learning than Error alone!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

