Combined Model & Task Learning

2

Biology Says: Both

 \vdash

- 1. Pros and Cons: Use Both
- 2. Inhibition is also an Important Bias.

Mod Ca^{2+}

 $\to LTD$

High $Ca^{2+} \rightarrow LTP$ No $Ca^{2+} \rightarrow$ no learning Minus Phase $x_i^-, y_j^- \approx 0$ $x_i^-, y_j^- \approx 1$

0

0 +

Plus Phase

Only case disagreeing w/ Hebb is bottom left quadrant (LTD).

LTD

ightarrow Low Ca^{2+} (just minus phase) produces LTD ightarrow same mechanism as Hebb LTD for y_j =1, x_i =0.

\circ Other mechanisms for Error-driven Learning

- Neuromodulatory signals: Dopamine, Acetylcholine, etc.
- "Phasic" signals elicited by brain systems computing 'expected reward' and deviations from this expectation
- enhance contrast between two succeeding attractor states (what should have been expected) in subsequent state, can Resulting signals, when combined with target information
- Lots of evidence that LTP, LTD under neuromodulatory control
- (model learning, statistics) Hebbian learning always occurs locally, in every synapse
- changes during errors, leading to contrastive Hebbian learning (approximated by delta rule) Brain regions innervated by DA, ACh have enhanced weight

4 Error-driven = Left-wing, Hebbian = Right-wing (?!) (local) Error-driven (remote) Hebbian autonomous, reliable task-driven, cooperative Pro**Functional: Pros and Cons** myopic, greedy co-dependent, lazy

\mathfrak{Q}

Combining Error-driven + Hebbian

Get benefits of both:

$$\Delta w_{ij}pprox \Delta_{hebb} + \Delta_{err}$$

 \exists

$$\Delta_{hebb} = \epsilon a_j (a_i - w_{ij})$$

$$\Delta_{err} = \epsilon [(a_i^+ a_j^+) - (a_i^- a_j^-)]$$

$$\Delta w_{ij} = (k_{hebb}) \Delta_{hebb} + (1 - k_{hebb}) (\Delta_{err}) \tag{2}$$

Hebbian bias helps so that weights are constrained to smaller set of solutions (otherwise too interdependent in err-driven)

6

Inhibitory Competition as a Bias

Inhibition:

- Causes sparse, distributed representations (many alternatives, only a few relevant at any time).
- Competition and specialization: survival of fittest
- Self-organizing learning.

(Often more important than Hebbian bias)

Hebb Shows More Appropriate Generalization "hooray for tigers!" "birds are bad!" striped orange sharp furry yellow chirps

Hebb:

- Sometimes fails to learn the training set
- Represents meaningful "things" in the world (correlations)
- Shows good generalization

Error (GeneRec):

- Always learns the training set
- Representations are "mushy"
- Can show poor generalization

Error + Hebb:

- Learns the training set (more quickly than error alone)
- Represents meaningful features
- Shows good generalization!

Deep Networks en layers to achieve many stages of transforerresenting the problem).

Need many hidden layers to achieve many stages of transformations (dramatically re-representing the problem).

But then the error signals are very remote & weak.

Need to add constraints and self-organizing learning:

- Hebb gives each layer local guidance on representations
- Inhib competition restricts flexibility (only certain states are valid)
- $\bullet \;$ Combined model + task \rightarrow fewer degrees of freedom to adapt

20
[family_trees.proj]
s.proj]