Combined Model & Task Learning @ Biology Says: Both

Plus Phase
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1. Pros and Cons: Use Both. Minus Phase | Err Imcw Combo | Err Emcw Combo
0 0 0 + + +
2. Inhibition is also an Important Bias. - 0 - 0 + +

No Ca?t — no learning
Mod Ca?t — LTD
High Ca?t — LTP

Only case disagreeing w/ Hebb is bottom left quadrant (LTD).

— Low Ca2T (just minus phase) produces LTD
— same mechanism as Hebb LTD for @uﬂf z;=0.

Other mechanisms for Error-driven Learning Functional: Pros and Cons

Neuromodulatory signals: Dopamine, Acetylcholine, etc.

“Phasic” signals elicited by brain systems computing ‘expected

reward’ and deviations from this expectation ® .”'“ ‘ O
o Resulting signals, when combined with target information
(what should have been expected) in subsequent state, can Img_m: ”‘“ ‘“. err—driven

enhance contrast between two succeeding attractor states is local is based on

o Lots of evidence that LTP, LTD under neuromodulatory control
Pro Con
e Hebbian _mww.:mbm m_s.\mv.\m occurs locally, in every synapse Hebbian autonomous, _myopic,
(model learning, statistics) (local) reliable greedy
e Brain regions innervated by DA, ACh have enhanced weight Error-driven Smw.aiﬂmp Mo.n_mﬁmﬁn_ma\
changes during errors, leading to contrastive Hebbian learning (remote) cooperative _lazy
(approximated by delta rule) Error-driven = Left-wing, Hebbian = Right-wing (?!)
n Combining Error-driven + Hebbian @ Inhibitory Competition as a Bias
Get benefits of both: Inhibition:
Awij = Dpepy + Derr 1)

o Causes sparse, distributed representations

(many alternatives, only a few relevant at any time).
Apepy = €aj(a; — wij)

Derr = €[(a] @.J — (a; a; ) o Competition and specialization: survival of fittest.

o Self-organizing learning.

Aw;; = (k A +(1-k ANe 2
i3 = ket et + ( hetp) (Dserr) @) (Often more important than Hebbian bias)

Hebbian bias helps so that weights are constrained to smaller set of
solutions (otherwise too interdependent in err-driven)




. The Whole Enchilada
1. Biological realism
2. Distributed -
Representations <3 Inhibitory
Competition

4. Bidirectional

E Generalization

How well do we deal with things we’ve never seen before?

nust

Activation
Propagation
5. Error—driven . . . o )
Learning 6. qm_u_u_.m: each time you walk into class, each social interaction, each sentence
earnin
9 you hear, etc.
ajaj We’re constantly faced with new situations, and generalize
_ O AW ‘O _ reasonably well to them.
How do we do it?
@ Generalization

Distributed reps: novel items are novel combinations of existing
features (combinatorial representations): “nust”

output °

internal
reps
input e
a) Elemental reps b) Conjunctive reps
(good combinatorial (bad combinatorial

generalization) generalization)

Hebbian & inhibition: produce elemental, combinatorial reps.
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Hebb Shows More Appropriate Hebb Shows More Appropriate
Generalization Generalization

“hooray for tigers!” “birds are bad!” “hooray for tigers!” { irds are bad!”

striped  orange sharp furry yellow  chirps striped  orange sharp furry yellow chirps
teeth teeth

Hebb Shows More Appropriate Hebb Shows More Appropriate
Generalization Generalization
@

. I .
“hooray for tigers!” ﬂ ) birds are bad!” “hooray for tigers!” ) “birds are bad!”

® )

white striped  orange sharp furry yellow  chirps striped  orange sharp furry yellow chirps
teeth teeth

17 Sims: [model_and_task.proj] 18 7 Deep Networks

Need many hidden layers to achieve many stages of transformations
Hebb: (dramatically re-representing the problem).

o Sometimes fails to learn the training set But then the error signals are very remote & weak.

Need to add constraints and self-organizing learning:

® Represents meaningful “things” in the world (correlations) 2 b

e Shows good generalization
Error (GeneRec):
o Always learns the training set
® Representations are “mushy”
o Can show poor generalization
Error + Hebb:
o Learns the training set (more quickly than error alone) o Hebb gives each layer local guidance on representations
¢ Represents meaningful features o Inhib competition restricts flexibility (only certain states are valid)

e Shows good generalization! e Combined model + task — fewer degrees of freedom to adapt




H@ Example: Family Trees (Hinton, 1986)

Hidden
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Alf Sophia

24 people, 12 relationships (brother, mother, granddaughter, etc)

Who is Alf’s grandmother?
Who is Lucia’s daughter?

[family_trees.proj]




