Sequential & Temporally-Delayed Learning

1. The Problem.
2. Sequential Learning & Context.

3. Temporally-delayed Learning & Reinforcement.
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The Problem

Error-driven + Hebbian: Solve tasks, learn systematic representations,

generalize to new stimuli.
What's left?...

Time!

Currently: networks learn immediate consequence of a given input.

e What if current input only makes sense as part of a sequence of inputs
(e.g., language, social interactions)?

e What if the consequence of this input comes later (e.g., school/work,
life)?
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Sequence Learning

How do we do it?
For example:

My favorite color is purple.
Purple my color favorite is.
Is my purple color favorite.
Is purple my color favorite.

The girl picked up the pen.
The pig raced around the pen.

We represent the context, not just the current input.

in language, social interactions, driving (who goes at a 4-way stop?)
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Representing Context for Sequence Learning

How does the brain do it?

How would we get our models to do it?

Add layers to keep track of context (prefrontal cortex; hippocampus...).
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An Example Task

BTXSE, BPVPSE, BISXXTVVE, BPTVPSE, BIXXTTVVE
TSXSE, VVSXE, BSSXSE

We implicitly learn such grammars (e.g., pressing buttons faster to letters
that follow grammar).



Time & Sequences

Currently: networks learn immediate consequence of a given input.

What if current input only makes sense as part of a temporally- extended
sequence of inputs? (context)

What if the consequence of this input comes later in time? (next week)
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Simple Recurrent Network: Summary

« Carries forward information by means of a context layer that
contains the hidden representation from the previous time

step.

« This hidden representation serves to disambiguate the input
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Simple Recurrent Network: Summary

« Carries forward information by means of a context layer that
contains the hidden representation from the previous time
step.

 This hidden representation serves to disambiguate the input

iInput context iInput context



Why Copy the Hidden Representation?
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Why Copy the Hidden Representation?

e Copying input or output only lets the network hold on to one previous
item

e Copying the hidden layer lets the network hold on to an arbitrarily
large number of items — even though it is always just copying last

hidden state at time t-1.

e The network learns how strongly to hold on to past items
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Simple Recurrent Network (SRN):
An Architecture for Sequence Learning

task: Learn output
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Artificial Grammar Learning

Implicit Grammatical Structure

Task: Press buttons that implicitly follow the grammar

Note: Subjects do not know about the grammar!



Evidence For Implicit Learning

» Response times are lower
for grammatical sequences.

» Learners report no
knowledge of a sequential
pattern.

@
B
=
c
2
L
[+
o
[+
=
[
L]
=

» Learners are at chance
when asked to predict the
next light.




The Network

Hidden

hidden

input context



Some detalils:

 Input patterns: Generated (randomly) using the finite state
grammar

« Sometimes there are multiple “correct” answers for what
comes next. KWTA forces the network to guess one
answer



Hidden Activity Reflects State Information

Grammatical state information, along with information concerning the last
input, is available in the pattern of hidden layer activity.

ManblorEny Paltern: 0




Simple SRN story is not flawless

e How is hidden— “copy” function implemented biologically?

e During settling, context must be actively maintained (ongoing hidden
activity has no effect on context).

e Assumes all context is relevant: What if distracting information
presented in middle of sequence? Want to only hold on to relevant
context.

— Stay tuned for specialized biological /computational mechanisms for
updating / gating vs. robust maintenance of context.
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Motivating Motivation

Why does anyone go to university?
(or, why do we ever do anything besides eat, sleep, have sex, etc)?

e.g., Why am I here today, instead of lying on a beach in Mexico, drinking
mojitos and reading a good book?

Challenge: make a responsible neural network!
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The Motivational Bootstrap

e Some motivations must be built-in (else we would die)

e Where do art/science come from?

— Need to learn on top of built-in drives

Culture & social drives provide cumulative shaping of learning.

So, why does anyone go to university?
e Socially-mediated standards of success.
e Strong built-in desire to share w/others.

e Strong built-in desire to learn (dopamine?)
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What I'm Actually Talking About

Skinnerian learning
The basic stuff that every mammal has in common:

Neural mechanisms of Pavlovian conditioning
(from a computational perspective).

No supervised target signal available: only good /bad outcomes
Enables bootstrap of new stimuli (CS’s) onto built-in desires (US’s):

CS (money) — US (food, etc)

But what if consequence of given input comes later in time?



Temporally-Extended Tasks
with m_um_.mm mmémam
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Temporally-delayed Learning & Reinforcement

Reinforcement often delayed from the events that lead to it:
need to “span the gap”.

Key idea:
e We want to predict future rewards consistently over time.

e This allow us to learn what events are associated with rewards, earlier
and earlier back in time.

We use the Temporal Differences (ID) algorithm (Sutton & Barto).



Dopamine system

Frontal

Ventral tegmental area
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What is Dopamine Doing?
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What is Dopamine Doing?

Dopamine carries the brain’s _.mx_d signal
reward prediction error

reward

Wise & Romper, 89 Schultz et. al, 98




Reinforcement learning and dopamine: prediction errors
Positive PE: Negative PE:

dopamine:
o

¢

¢ ¢
QQ’<
®.
e ¢

(9 (¥

Schultz, Satoh, Roesch, Zaghoul, Glimcher, Hyland.. and many more

Dopamine

— Cluinine
Poo. — Sucrose




Basic Data: VTA dopamine firing in Conditioning

No prediction
Reward occurs

o C3) R

Reward predicted
Reward occurs

CS R
Reward predicted
No reward occurs

Cs (no R)

Schultz, Montague & Dayan, 2007



Dopamine and Reward Probability

5spikes

400 ms

p=0.0 .
TYTINTY Wy reward following
_.__ Ll # taih ) 0% predictive cue

e / Prediction error:
".. ._. ﬁ— - m/\*

7. A “» reward following

50% predictive
cue

no reward
following 100%
predictive cue

reward following
100% predictive
cue
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Dopamine and Reward Probability

reward following

reward following
50% predictive
cue

reward following
100% predictive
cue

stimubus on reward

.| 0% predictive cue

1l bl andu P "

1
(no R)

2s

These are prediction errors too!
[r, + EV,,,] - EV,

no reward
following 100%
predictive cue

Finrilln ot ~l 2NN



Burst/Pause correlations with Rew Prediction Errors

>

Burst size (spikes)
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Bayer et al, 2007 JNeurophys
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Temporal Difference Learning: Equations

Value function, sum of discounted future rewards:

V() = (°r@®) + v+ 1) + 2+ 2)...)

Recursive definition:

V()= ({r@t) +4V(t+ 1))

Error in predicted reward (from previous to next time-step):

5@t) = (r®) +1V(E+ 1)) - V()

Update value estimate:

V(t) « V(t) + ad(t)

o = learning rate

(1)

(2)

(3)

(4)



TD and Dopamine Relationship
Schultz, Dayan & Montague, 1997, Science
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Model: CS at t=2, US at t=16

a)
1-
0.8
0.6
0.4

TD Error

0.2

Ol

0 2 4 6 8 10 12 14 16 18 20

b) Time

»..».\,%»%,’.,%/

0 2 4 6 8 10 12 14 16 18 20
Time

0.8
0.6
0.4
0.2

TD Error

0.8
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0.4
0.2

TD Error

0 2 4 6 8 10 12 14 16 18 20
Time



Network Implementation

S0

E </\\/Q+C + r(t) 7

A

7 Stimuli 7




Phase-based Implementation

mﬁ_Bc_cm> R w R R w R r (ExtRew)
V() YV(t+1) —sV/(t) YV(t+1) —sV/(t) «

TDRewinteg | vy [ V) | | V) | V) | | V) | r3)

L )d L \J
w e w S
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Ll

TDRewlInteg = TDRewPred + ExtRew

Minus phase: TDRewlInteg clamped to prev plus phase value.



Phase-based Implementation

Stimulus 1 1
A\ A Y A A Y A
V() YV(i+1) —aV/(1) YV(I+1) —amV/(1)

r (ExtRew)

'

TDRewinteg | V(1) | Vo) | | Vo) | Y3y | | Vea)
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TDRewlInteg = TDRewPred + ExtRew

Minus phase: TDRewlInteg clamped to prev plus phase value.

Plus phase: TDRewlInteg settles via weights

= expected reward at t+1, plus any ExtRew at time t.



Phase-based Implementation

mﬁ_Bc_cm> R w R R w R r (ExtRew)
V() YV(t+1) —sV/(t) YV(t+1) —sV/(t) «

TDRewinteg | vy [ V) | | V) | V) | | V) | r3)

L )d L \J
w e w S
| 3 unt
st (1]

+ — + — +
1 2 2 3 3

Ll

TDRewlInteg = TDRewPred + ExtRew

Minus phase: TDRewlInteg clamped to prev plus phase value.

Plus phase: TDRewlInteg settles via weights
= expected reward at t+1, plus any ExtRew at time t.

Learning signal § (= “TD”) trains prediction for previous time step.
(eligibility traces needed)



Exploration: [r]l cond.proj]

TDRewPred...

S
Wl

time

‘Complete Serial Compound’ (CSC) input representation:
unique unit for each stimulus at each time point
(used in Sutton & Barto, Montague et al, etc)

Not realistic, but good for demonstration. This assumption can be relaxed
without changing core ideas (e.g. Ludvig et al, 2008).



Exploration: [r]l cond.proj]
Standard TD:  V(t) = > ; w;x;(t) [x; are inputs: tone, light]

Here: passed thru activation function — has to surpass threshold, subject to
inhibitory competition from other value reps



DA and Timing: Late and Early Rewards

' ..L-"._ .|“L.. s .-l_ 1l "_ .r _ o ; .." i iy |_ ..1.l. . 1_.. “ _. _.. y “| _ L.. ..-..
i L L | = 1 L | ¥ L F ¥ i ]
' .—. “m’ HEY w 1._ Titeg e rdd m e w wa " "y
1 h .. = ' ' [T |_“. _ 14 : LLIEELE .|-. : ._.. _. ._
H. ._n-.n “... i ! 'a o .“ ... ... ik, " “.1. - 1-.1-. ...l .._ i Y .“ JF
1 '. o el aaw a0 o w v - ! emaw e " F
.T._. .J.I. v Lt B o Th N P e ) - f 1-. .|. '] ." ']
] ..-l. Y P A T TR Y f am e Cl st
|_-. L] 1= kod i d. d i i) ] 1 T
- .r.J |.| - [ - ._. ...._.. .. .L..m- n.l.l..l i v X - w [ m : |._ _|l
““. -”.l: e i ¥ ¥ ". L. “.. _... ._. .-l..L“l. 4 ¥ ... ] ..-..mn ’ ¥ : 1 . 3
... n._ _. 'y r. ] “.. -.L. ! " .u .. .. ] ; e .....- L] |u. . - 3
B : .... 1.._ - ; ... L_.._ B ". ! ... 4, ... .... _.... L i
T LU L L E v " 3 i) Lo ol L
2 I R A T N R S S
1 ..._I T e v 7o Wl a v oa []
.-T ..m ..|“ ..L : “. ...- F L .|II..I. v ..nl-.” .l.-.... .-. —n.
SETAT RN PO C A I P
LJ. .|1lh_|_ -.nlﬂ. . " .l " .. “. -.l.-.... .....l.-. * 1 . .L"
_ - I.“ i Y l. .-.. |-...| L1 1 .. .1 ' = ] _. .|“-. _ L - .|.
L 1 i re & = ' [} B ] .
L) ' | L [

L A—
0
LA il A

Fictures on

Lever towch

|
1
A A A

Reward

Hollerman & Schultz 1998



DA and Learning: Auditory Cortex

Bao et al, 2001, Nature

a Naive

BF (kHz)
b Paired (4 kHz preceding, 9 kHz trailing)




Learning Theory: Blocking (Behavior)

Blocking

Phase 1 Phase |l




Learning Theory: Blocking (Dopamine)

Waelti et al, 2001, Nature

% .ﬁ b

ho reward

no reward

reward reward

Blocked stimulus Control (not blocked) stim




Learning Theory: (Un)Blocking

Blocking 2.0: DA is sufficient to induce learning

Optogenetic
stimulation

Phase 1 Phase |

\m:ﬂjc_o:o: of the VTA
dopamine neurons at the time
of the outcome mimicks a
prediction error, and leads to
unblocking of the blocked cue

by

Steinberg et al. Nat Neurosci, 2013




TD prediction error and human functional imaging
O’Doherty et al, 2004, Science

Ventral striatum = DA enriched, correlates with TD PE=Ceritic!



Optical phasic DA stimulation causally induces conditioning

Optical
Fiber —_

Et\t\:\_\mﬂ\ Cannula
Guide _

25mV

N

No Stimulation

=€

—VTA

&\

Tonic
Stimulation

Phasic
Stimulation

(Tsai et al, 2009, Science)

Tonic

Pre-Test Post-Test

150 s
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DA neuron spiking during reinforcement task in humans

Sp/s (z-scored)

= Unexpected gain
= Unexpected loss

0 200 400 600 800
Time (msec)

(Zaghoul et al, 2009, Science)



How are dopamine-based RPE signals used to select actions?

Dopamine system

Frontal

Striatum

Ventral tegmental area

Will consider biological implementation in basal ganglia later



Q learning: extending prediction error learning to actions

Error in predicted reward:

o = Ai + v 3amx Qt(st+1, @vv — Qi(s,a)

Update value estimate:

Qi(s,a) < Qu(s,a) + ad(t)
Select among Q values:

Q¢(s,a)
e s

@wﬁm,s.v

D ie1€ ?

wHAQ\v =

v = discount, o = learning rate, 3 = “temperature” / exploration parameter

Watkins & Dayan 1992



Google Deep Mind RL Network (“DQN") Plays Atari

LETTER

Human-level control through deep reinforcement
learning

Volodymyr Mnih'*, Koray Kavukcuoglu**, David Silver'*, Andrei A. Rusu?, Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller’, Andreas K. Fidjeland’, Georg Ostrovski', Stig Petersen’, Charles Beattie!, Amir Sadik', loannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra!, Shane Legg' & Demis Hassabis!

doi:10.1038/nature14236
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for video, DQN _spaceinvaders.mov



Google Deep Mind RL Network (“DQN”) Plays Atari
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Extra

The following slides describe a recently developed alternative to TD, called
PVLV, which we think is more biologically plausible and computationally
powerful. This material is optional for the course.



The Problem

Q: How do we learn to attach positive /negative valence to environmental
stimuli?



The Problem

Q: How do we learn to attach positive /negative valence to environmental
stimuli?

A: The same way we learn lots of other stuff: the Delta Rule!

mw@@ —— T — A\@@

~

Vi expected reward based on prior associations
r: reward
dpv: learning signal



The Problem

Q: But what happens when environmental stimulus occurs before reward?



Basic Data: VTA DA Neural Firing in Conditioning

Before: After:
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Basic Data: VTA DA Neural Firing in Conditioning

a) Acquisition

Dopamine spikes/dips are learning signals

Delta rule fails to account for predictive DA spike!



Standard Approach: TD

Predict all future rewards (discounted):
Vi = Mﬁwmvw_uu Qﬂl?l.b?.

T=
Recursively:

Vi1 =re+ 4V,

Error = Temporal Difference = TD:
DA =06t = [rt + V4] — Vi1



TD Illustrated
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Problems with TD

Great algorithm, developed in computer science / machine learning,
but is this actually what the brain does?

Even if so, doesn’t specify how these signals are computed by systems
upstream of DA... just predicts DA and § but says nothing about V/, etc.

Current reward value is always relative to what happened just before.
Too much temporal dependency?

Chaining not seen in neural recordings.

What determines “discount factor” +, biologically?



Pan et al, N_W%% wmeMN w%c:mbmocm (S and US DA spike

euroscience
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Inconsistent with standard TD!



The PVLV Alternative

PVLV = Primary Value, Learned Value
AO\WmE%\ Frank, Hazy & Watz, 2007, Behav Neurosci)

e No reward predictions, just associations!
e No temporal dependencies: DA depends only on current state.

e Uses same basic delta-rule learning as TD (Rescorla-Wagner).



PVLV: Two Separate Mechanisms (PV, LV)

ventral ——
\

VS patch N 14 VS patch
(LVY) g //%<_v

)

striatum

— excitatory uS/ PVe >/ - -

- —@ inhibitory

e PV (Primary Value): Primary rewards (US), canceled.

e LV (Learned Value): Learned associations (CS — DA).
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PV: Primary Value

e Trained at each point in time on actual reward value present:
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e This uses immediate prediction (V;) of current rew value (r;)

e Accounts for canceling of DA spike @ rew, and DA dips when no rew
received.



PV:

PVLV: Two Separate Mechanisms (PV, LV)

Primary Value

Trained at each point in time on actual reward value present:
ot =1t — Vi

This uses immediate prediction (V}) of current rew value (r¢)

Accounts for canceling of DA spike @ rew, and DA dips when no rew
received.

But this doesn’t account for predictive DA spikes... (actually results in
predictive DA dips!)



PVLV: Two Separate Mechanisms (PV, LV)

LV: Learned value

e Represents perceived values of stims even when there is no current
rew expectation



PVLV: Two Separate Mechanisms (PV, LV)

LV: Learned value

e Represents perceived values of stims even when there is no current
rew expectation

e Only gets training signal @ rew, or when PV expects some rew. (ie
learning is filtered by primary PV system.)



PVLV: Two Separate Mechanisms (PV, LV)

LV: Learned value

e Represents perceived values of stims even when there is no current
rew expectation

e Only gets training signal @ rew, or when PV expects some rew. (ie
learning is filtered by primary PV system.)

e — Learns at time of rew, but not at CS onset.
e — Generalizes rew values to CS...

e — Accounts for DA spikes for stimuli that have previously been
associated with reward!



PVLV: Computationally Powerful

Comparison with TD on Random Delays (breaks TD chaining):
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PVLV: Computationally Powerful

Comparison with TD on Random Delays (breaks TD chaining):

Rnd Delay, p=.2, TD Disc .95 Lrate .1 Rnd Delay, p=.2, PVLV Lrate .005
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0.2551___ Delay 6 E r N
S 0.20f  Delay 12 1 S5 5 j
© c ] © - i
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Enables working memory model to learn complex WM tasks.



Similar to Brown, Bullock & Grossberg,

Conditioned Stimuli (C5))
F Input from Cortesx

Striosomes
I — Adaptive
: \- Xij .:_j_ﬂ_..,_
Y ~ Spectrum
(r i
“_....".
Dopaminej | ~
Wg Signal
: Wop [ i = Cutput
_jl VP —e P —— H
S 1 Wep :
ﬁm:zmﬂ* Ventral PPTN i SNc Dopamine
Striatuml” pajjigum kP Signal
Wrge
i | Primary Reward Input
7 | Lateral Hypothalamus

Diffs: Anatomical (CNNA vs. VS; Dorsal vs. Ventral Patch)
Functional (intrinsic timing? LV system cannot train itself).

‘99



PVLV accounts for timing data better than TD!

e Data: during transient learning period, both rews and CS elicit
activation.

e This accounted for by PV, LV systems operating in parallel.

e TD: predicts chaining back in time from rew to CS.



PVLV accounts for timing data better than TD!

e Data: delayed rewards cause dips @ usual time, then spikes

e This accounted for by both TD and PV.



PVLV accounts for timing data better than TD!

Data: delayed rewards cause dips @ usual time, then spikes
This accounted for by both TD and PV.
Data: early rewards cause spikes, then dips @ usual time

This accounted for by PV (spike), PV (dip), but TD only accounts for
spike.



More Key Predictions from PVLV

[
ventral —= P
V'S patch z ( VSpatch v
(LV;) AN (PV)
A striatum
— excitatory
- —@ inhibitory
[
[
CNA \ LHA v
(LVy) \ (PVe)
~ — ..\ .

CNA = Pavlovian conditioning
(e.g., Killcross et al. '97).

NAc (patch/shell) = Extinction
(Ferry et al. '00; Annett et al.,,
89), Blocking (data?).

NAc (matrix/core) = Basic
actions (OR’s, approach, avoid).
CNA can't train itself: No 2nd
order conditioning!

BLA = 2nd order cond, uses
DA-independent mechanisms
(CNA/BLA double-dissoc).



Conclusions

PVLV provides computationally motivated architecture
that seems to fit with biology & behavioral data.

These learning mechanisms enable arbitrary stimuli/goals to be plugged
into our fixed set of built-in motivational drives.



Conclusions

PVLV provides computationally motivated architecture
that seems to fit with biology & behavioral data.

These learning mechanisms enable arbitrary stimuli/goals to be plugged
into our fixed set of built-in motivational drives.

Something motivates every generated mental-state, always!



PVLV, WM, and DA




PVLV: Two Separate Mechanisms (PV, LV)

PV learning:
%ﬁ@“ﬂ.l@@ — O — %ﬁ@“wa\mlws

Dgs — mmd&%mud



PVLV: Two Separate Mechanisms (PV, LV)
PV learning:
Spy =T — Vi —or— Spy = PVe — PV
Aw; = ex;0p
LV learning (filtered by PV):

Dg.l mA\Jw| ch&s wm Qﬁ@ V%@cOHﬁwVO
10 otherwise



PVLV: Two Separate Mechanisms (PV, LV)

PV learning:

Spy =T — Vi —or-— Spy = PVe — PV
Aw; = e€x;0py

LV learning (filtered by PV):

Dg.l mA\Jw| chHs wm Qﬁ@ V%EQOHQJVO
10 otherwise

Global DA (PV dominates):

% I %@C H%@CV%@@ OH.Q;%VO
™ 6;, otherwise

81y = LVe — LV,



LV Extras

e DA spikes only observed @ CS onset, don’t continue throughout delay
until reward. Problem for PV?



LV Extras

e DA spikes only observed @ CS onset, don’t continue throughout delay
until reward. Problem for PV?

e Solution: PV system has synaptic depression, accommodates to
constant sensory inputs; only perceives values of stims that were not

present in last time step.

e This is also important for PFC learning.. (stay tuned)



