In Transition

e from Part I: Basic Mechanisms.

e to Part II: Perception, Attention, Memory, Language, Higher Level
Cognition
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Micro and Macro-Neurocomputomics

Micro = basic mechanisms common across brain areas.
Macro = organization, differentiation, interactions of brain areas.

Need to consider general principles for macro organization
before we can think about larger cognitive functions.



Macro Structural Principles

i

Pathway 1 Pathway 2

e Hierarchical sequence of transformations.
— Emphasize some distinctions, ignore others

— For object recognition you want to ignore differences in location,
lighting, size, rotation

— When reaching for objects, you want to emphasize location, size,
and ignore object identity



Macro Structural Principles

i

Pathway 1 Pathway 2

e Specialized pathways.

— Location-invariant object recognition vs. recognizing orientation &
location for actions (seeing for identifying and seeing for action)

— patients with ventral stream damage have blindsight (e.g Milner &
Goodale 1995): they can reach and grasp objects at different
locations/orientations but cannot perceive them!



Macro Structural Principles

i

Pathway 1 Pathway 2

e Inter-pathway interactions.

— Visual attention is an emergent property of interactions between
object identification & spatial pathways



Macro Structural Principles

i

Pathway 1 Pathway 2

e Higher-level association areas
— Integration of e.g., visual and auditory information

— At extreme, thought to underlie synesthesia



Macro Structural Principles

i

Pathway 1 Pathway 2

e Large-scale Distributed Representations
— Knowledge is distributed across multiple brain areas
— Multiple areas participate in representing a given thing (e.g., apple)
— Each area represents multiple things

— Same idea as distributed representation among units for individual
items, but just now across multiple areas/modalities, etc



Macro Dynamic Principles

Processing as multiple constraint satisfaction
Attractors, settling dynamics, amplification: active memory
Inhibitory competition: attention.

Where do constraints come from?
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e Where do constraints come from?
— perceptual inputs (“bottom-up” constraints)

— Also, we have the ability to maintain firing of neurons even in the
absence of bottom-up stimulation

— Make use of bidirectional excitatory connections
— Active memory — constitutes an inner mental context
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Macro Dynamic Principles

e Where do constraints come from?
— perceptual inputs (“bottom-up” constraints)

— Also, we have the ability to maintain firing of neurons even in the
absence of bottom-up stimulation

— Make use of bidirectional excitatory connections
— Active memory — constitutes an inner mental context

She swam from the overturned canoe to the bank.
She walked from the post office to the bank.

Active memory can pertain to concrete stimulus representations as well as
more abstract things..



General Functions of the Cortical Lobes

e Occipital lobe: vision
e Temporal lobe: hearing, speech perception, object recognition...
e Parietal lobe: representing body & external spaces

e Frontal lobe: Motor control, cognitive control (planning, working
memory, etc)



Other Areas
Hippocampus (rapid episodic encoding).
Thalamus (sensory input, attention).
Amygdala (emotion, affective associations).

Basal ganglia (BG) (motor control, sequencing, reward learning, gating
of PFC...).

Cerebellum (motor learning, forward model? cognitive role via
timing?).

Midbrain neuromods: VTA - dopamine, raphe - serotonin, locus
coeruleus - norepinephrine.
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Tripartite Functional Organization

PC = posterior perceptual cortex: slow integrative learning

HC = hippocampus and related structures: rapid memorization

Vs

FC = prefrontal cortex: active maintenance (“working memory”)

Defined by set of functional trade-offs.



Tripartite Functional Organization

Posterior Cortex
(sensory & semantics)

Hippocampus
(episodic memory)

Defined by set of functional trade-offs.



Multiple systems in decision making
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Computational Trade-offs in Learning & Memory

Trade-offs: Computational objectives that are mutually incompatible and
thus cannot be achieved by a single brain system.

— Begin to address psychological distinctions between ditferent learning &
memory processes, informed by mechanisms required.

e Learning statistical structure vs. memorizing specific events

e Isolated maintenance (holding in mind multiple items of info)
vs. inference (spreading activation: smoke—fire)

e Robust maintenance vs. rapid updating



1. Slow vs Fast Learning
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But you also have to be able to learn rapidly.

Tradeoff solved by 2 systems: cortex learns slowly, hippo rapidly.
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Learning must be slow to capture (statistical) structure (averaging).
But you also have to be able to learn rapidly.

Tradeoff solved by 2 systems: cortex learns slowly, hippo rapidly.

3rd system: Active memory (prefrontal cortex) ~ fastest (immediately accessible)

but learning to develop pfc reps in first place is slow, allows abstraction.



1b. Slow vs Fast [Reinforcement] Learning

alues probabilit and learnin rate
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[Reinforcement] Learning must be slow to capture best actions that work on average.

But you also have to be able to sensitive to rapid changes in value (e.g., stock market).

Tradeoff solved by 2 systems:
BG learns slowly, PFC flexibly updates new states and can override habitual choices.
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[Reinforcement] Learning must be slow to capture best actions that work on average.

But you also have to be able to sensitive to rapid changes in value (e.g., stock market).

Tradeoff solved by 2 systems:
BG learns slowly, PFC flexibly updates new states and can override habitual choices.

— lots of evidence for differential BG and PFC contributions to habitual and rapid
action-outcome learning, across species, methods.



2. Active Memory vs Overlapping Distributed Reps

Overlapping distributed representations are useful for capturing
information about the world.

But overlap & interconnectivity cause spread, which is not useful for
maintaining specific information over time.

Tradeoff solved by two systems: PC has overlapping distributed
representations, FC is isolated for maintenance.



3. Active Memory: Another Trade-off

Active memory needs specialized updating & maintenance mechs.

Protecting representations from interference (robust maintenance of
working memory) vs. being receptive to update important, unexpected
information

Basal ganglia may contribute to this updating function



4. Model-Based vs. Model-Free RL (not in text)

e Model-free: (Habits)

— Incrementally learn to associate stimuli (states) and actions with
value, using only (DA-based) reward prediction errors to update
values (TD learning and variants thereof; BG model). Then just
select action with highest “Q value” (or Go-NoGo value).

e Model-based: (Cognitive)

— Actually represent the environment (“world-model”) and predicted
transition from one state to another, and how these are affected by
our (and others’) actions....



Devaluation experiment
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Behavioral results
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Killcross & Coutureau (2003)

Prelimbic (PL) PFC lesions cause animals to leverpress habitually even with
only moderate training

- also dorsomedial PFC and mediodorsal thalamus (same loop)

= double dissociation with IL PFC



What do these findings tell us?

e The same action (lever-pressing) can arise from two psychologically &
neurally dissociable pathways

— moderately trained behavior is goal-directed: dependent on
outcome representation of what might happern

— overtrained behavior is habitual: apparently not dependent on
outcome, like S-R learning

e S-R habits really exist (in humans too), they just don’t describe all of
behavior

e Lesions suggest two parallel systems, in that the intact one can
apparently support behavior at any stage. (see also BG vs Hippo in S-R
Vs cognitive map)



Strategy |: Model-based RL
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learn model of task through
experience (= cognitive map)

choosing actions is hard (need to
compute Q values by iterative
search through map)




Strategy |: Model-based RL

4 0

1 2

learn model of task through
experience (= cognitive map)

but flexible, efficient representation
(recompute values online)

QELR)=2




Strategy IlI: Model-free RL
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— then simply retrieve them to choose action
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Strategy IlI: Model-free RL

4 0 1 2

choosing actions is easy so . Q(S,L) =4
behavior is quick, reflexive (S-R) Stored: Q(S.R) =0
H_._
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Summary: Model-based vs Model-free RL

instrumental conditioning reveals that rats indeed have S-R habits (and humans,
Tricomi et al, 2009)

but even humble rat is cognitive: must distinguish habits from goal-directed
behaviors

understand this distinction algorithmically in terms of different RL strategies for
decision making, and mechanistically in terms of functional properties of biological

systems involved (BG, PFC, HC..)

note: same overt behavior can be the product of different neural (computational)
systems (controllers)

For computational models of these and related phenomena, including how the brain
might arbitrate between the two systems, see Daw, Niv & Dayan (2005) and Frank &
Claus (2006)



Model-based vs model free in humans
(Daw et al, 2011)
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The economics of multiple systems: WM vs RL
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RL2 model:

The economics of multiple systems: WM vs RL
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The economics of multiple systems: WM vs RL
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The economics of multiple systems: WM vs RL

Proportion correct responses

RL+WM model:

Correct proportion|

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

Trials per stimulus

RL2 RL6
i - \u‘twu.? f—i—
\\\Q Y. £ = o
_ 4 .18
J \..‘.... o~
) /4
¢ &
RLF Subjects
e P S i
\u..\\;, : .”.‘..u —& .\u\.. " - ¥
i S [ $/
4 [/ mr—
v 4 3
F [ 4
5
6
4 6 8 2 2 4 6 8 10

p(a) = [1 —w(®)] * prr(a) + w(t) * pwr(a)

Ilmmn_mm:.__ﬂ fﬁ ...
——late leaming )

2 34 5 68 7
Delay since last correct

pware(re|se, ar)wn, (t)

pwarc(re]st, ar)wng(t) 4+ pri(re]st, ar) (1 — wny(t))

Collins & Frank 2012; 2017; 2018



5. Exploration vs Exploitation (not in text);
See Aston-Jones & Cohen, 2005, Ann Rev Neurosci

Reinforcement learning: Dopamine can reinforce rewarding actions so that
they are more likely to be executed in the future.

This allows an agent to exploit the best possible actions in a situation that
are most likely to lead to reward

But what if other possible actions are even better? How would you ever
know?



5. Exploration vs Exploitation (not in text);
See Aston-Jones & Cohen, 2005, Ann Rev Neurosci

Reinforcement learning: Dopamine can reinforce rewarding actions so that
they are more likely to be executed in the future.

This allows an agent to exploit the best possible actions in a situation that
are most likely to lead to reward

But what if other possible actions are even better? How would you ever
know?

Norepinephrine (NE) modulates the noise in cortical representations,
allows agent to sometimes randomly select some other action.



Exploration vs Exploitation
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Exploration vs Exploitation

Reinforcement learning: Dopamine can reinforce rewarding actions so that
they are more likely to be executed in the future.

This allows an agent to exploit the best possible actions in a situation that
are most likely to lead to reward

But what if other possible actions are even better? How would you ever
know?

Two strategies:
e stochastic choice, where stochasticity is dynamically altered (INE)

e directed uncertainty-driven exploration (strategic information seeking)



LC and Norepinephrine

Two modes of LC firing;:
e Tonic: high baseline firing

Effectively adds noise, RT variability (Usher et al '99)
Supports exploration of new behaviors (McClure et al 05)

e Phasic: low tonic, but high evoked firing
Facilitates response execution and exploitation.

e Phasic mode observed: focused attention, infrequent target detection,

good task performance

e High tonic mode during poor performance
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Usher et al, 1999 Model of LC
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LC/NE effects: Adaptive Gain

Aston-Jones & Cohen (2005)

Gain modulation
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e Phasic NE facilitates response execution

e Tonic NE enhances noise, reps of multiple actions for exploration.



LC tonic/phasic mode under top-down control

Performance monitoring /
Utility assessment
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When actions no longer rewarding, NE system responds by increasing
noise and exploration of new actions. See McClure et al 2005 for model



ADHD: NE dysfunction?

Consistent finding of increased RT variability in ADHD
Also exploration?
Responsive to medications that modulate NE

(Also lots of evidence for reduced BG/DA)



ADHD: NE dystunction?
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Also: NE (but not DA) metabolites in urine correlated w/ RT variability in ADHD
(Llorente et al, 2006)



Exploration

e By exploiting learned strategies, we can get a certain amount of reward
e But when to explore?

e Theory: Explore based on relative uncertainty about whether other
actions might yield better outcomes than status quo (Dayan & Sejnowksi 96)
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Exploration

e By exploiting learned strategies, we can get a certain amount of reward

e But when to explore?

e Theory: Explore based on relative uncertainty about whether other
actions might yield better outcomes than status quo
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Exploration

e By exploiting learned strategies, we can get a certain amount of reward

e But when to explore?

e Theory: Explore based on relative uncertainty about whether other
actions might yield better outcomes than status quo
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Humans combine both
stochastic and uncertainty-driven exploration
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Prefrontal gene effect on uncertainty-driven exploration
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Does the brain track relative uncertainty for exploration?



Does the brain track relative uncertainty for exploration?
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Summary

e The functional architecture of the brain reflects the need to
simultaneously achieve multiple, computationally incompatible
objectives

e To avoid making trade-offs we have evolved specialized structures
e The process of trying to build computational models (that are

compatible with neurobiological and behavioral data) helps us identity
these trade-offs



Challenges

Networks are good at some things, but have problems with others..
e Nobody’s perfect: People tend to be bad at same things networks are..

e Don’t throw the baby out w/the bathwater!
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The Binding Problem: Potential Solutions

Attention: only focus on one item.

Encode conjunctions: no need to have all possible conjunctions
separately represented.

Dynamic synchrony: things that fire together go together.

Nobody’s perfect: people make tons of binding errors..



Other General Problems

e Representing multiple instances of the same thing
(attention + counting, location)

e Comparing representations
(overlap — multiple digits, settling in shared weights — goodness,

PMC-PFC)

e Nobody’s perfect...



Recursion and Subroutine-like processing

In middle of processing, need to perform same processing (recursion)
or different processing (subroutine)

Easy in standard serial computer (store current state, call subroutine
w/appropriate arguments)

Harder when data and processing not separated!

HCMP, PEC

Nobody’s perfect...
The mouse the cat the dog bit chased squeaked.



Generalization

How to recognize new inputs given dedicated, specialized reps?
e Distributed representations: combinations of existing features.
e Abstraction: learn that all dogs might bite, not just that spike bit me..

e Nobody’s perfect: Transfer is not good at all..



Important Distinctions

e Controlled vs Automatic Processing.

e Declarative/Procedural vs Explicit/Implicit.

Consciousness = influence (on Constraint Satisfaction):
e Centrality: more influence on other areas.
e Duration: longer = more influence.

e Intensity: higher = more influence.
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