Parkinson’s disease and dopamine (DA) control of movement

Rigidity and
trembling of head

Dopamine levels in a
normal and a Parkinson's
affected neuron.

Forward filt

Mormal

movement

Reduced arm
swinging

Rigidity and
trembling of
extremities

Shutfling gait !
with short
steps

Movement

1
QIsOroers

e Standard account is that DA directly boosts movement performance

e Models suggest that DA modulates motivational incentive and
learning, too
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What is Dopamine Doing?

Dopamine carries the brain’s _.mx_d signal
reward prediction error

reward

Wise & Romper, 89 Schultz et. al, 98




Reinforcement learning and dopamine: prediction errors
Positive PE: Negative PE:

dopamine:
o

¢

¢ ¢
QQ’<
®.
e ¢

(9 (¥

Schultz, Satoh, Roesch, Zaghoul, Glimcher, Hyland.. and many more

Dopamine

— Cluinine
Poo. — Sucrose




Basic Data: VTA dopamine firing in Conditioning

No prediction
Reward occurs

o C3) R

Reward predicted
Reward occurs

CS R
Reward predicted
No reward occurs

Cs (no R)

Schultz, Montague & Dayan, 2007



Temporal Difference Learning: Equations

Value function, sum of discounted future rewards:
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Temporal Difference Learning: Equations
Value function, sum of discounted future rewards:

V() = (Or@®) + 41 r(t+ 1) +4%r(t +2)...) (1)

Recursive definition:

V(t) = (r(t) +7V(E+ 1)) (2)

Error in predicted reward (from previous to next time-step):

5(t) = (r(t) + 4V (t+1)) - V(¢) (3)



Temporal Difference Learning: Equations

Value function, sum of discounted future rewards:

V() = (°r@®) + v+ 1) + 2+ 2)...)

Recursive definition:

V()= ({r@t) +4V(t+ 1))

Error in predicted reward (from previous to next time-step):

5@t) = (r®) +1V(E+ 1)) - V()

Update value estimate:

V(t) « V(t) + ad(t)

o = learning rate

(1)

(2)

(3)

(4)



Burst/Pause correlations with Rew Prediction Errors
Cell #2
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Bayer et al, 2007 JNeurophys



How are dopamine-based RPE signals used to select actions?

Dopamine system

Frontal
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What Do the Basal Ganglia Do?
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What Do the Basal Ganglia Do?

Hardly Anything:

BG do not directly implement any cognitive (or motor) process.

Almost Everything:

BG modulate activity in multiple cortical areas: affects motor, implicit
learning, motivation, decision making and executive function
processes.

Parkinson’s disease (PD), ADHD: DA depletion in BG, resulting
deficits in all above domains.

Also: excess BG DA can induce impulsivity, e.g. pathological
gambling, compulsive shopping (for review Dagher & Robbins, 2009)



Fronto-basal ganglia circuits in motivation, action, cognition

WM, goals,
if-then scenarios

dl PFC

‘motor’ BG |behav. gate
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Basal Ganglia Architecture: Cortically based loops

Functional territories
~Bimbic | [ Associative |  Sensory Motor

7 qumc_.mr no:mxlgl

Vo

Striatum

|/

Pallidum/nig

\

Alexander, G.E. etal (1986). "Parallel arganization of functionally segregated circuits linking basal ganglia
and cortex." Ann. Eev. Meurosci. 9: 357-381.

BG damage = deficits in motor, learning, motivation, working memory, cognitive control



The Basal Ganglia as a Gate: Action Selection

(tigure borrowed from Ivry & Spencer, 2004)

e BG selectively facilitates (gates) one action while suppressing others (Mink, 1996;
Frank et al, 2001; Gurney et al, 2001; Brown et al, 2004...)

e Gating occurs in proportion to relative probability of positive-negative outcomes for
each action, learned via dopamine...



Striato-Cortical Functional Circuitry
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Neural circuit model of BG in learning / decision making
Integrates a wide range of physiological data into a single coherent framework

Sensory Input
?/ / ore-SMA to Motor Output /.\ _ @ q _” " <_”<3|®”_+
CVm~ YevelEg ml Yi~
+a0 O <_”<3|®”_+ +1
% i Tm_.<3.u_
‘. N
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SNc (DA) gﬂb e J A s@uv A @@mv
Basal Ganglia GPi Thalamus
—>» excitatory —» r?

—=e inhibitory —g dopamine ——® acetylcholine

Frank, 2005, 2006; Franklin & Frank, 2016



Striato-Cortical Functional Circuitry
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Striato-Cortical Functional Circuitry
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— @ inhibitory
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Simulation



Striato-Cortical Functional Circuitry
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Striato-Cortical Functional Circuitry
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Disinhibition as a gating mechanism

mOchm,Ho Zco_mc& || :_:“

-)
Substantia Nigra | | _______z_ L]
Pars Reticulata | [[iim il
Tonic Inhibition Disinhibition Tonic Inhibition
(-)
Superior

i

Colliculus

Saccadic Eye Movement

Hikosaka and colleagues; Chevalier & Deniau, 90 etc



Striato-Cortical Functional Circuitry
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Striato-Cortical Functional Circuitry

pre/motor
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Striato-Cortical Functional Circuitry
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Evidence for go/nogo mechanism:
Optogenetic stimulation of direct and indirect pathways
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Go — inhibits SNr; NoGo — excites SNr ...and induces/inhibits movement

Kravitz et al, 2010, Nature



Dual pathways in the BG: Cartoon version

cerebral cortex

- thalamus

°
GP/SNr

e Go/NoGo terminology is misleading (implies “act” vs. “not act”)

e Benefit vs. cost of alternative actions (both at the same time!)

e Phasic DA signals drive learning via modulation of activation dynamics



D1 effects on BG learning: Positive PE



D1 effects on BG learning: Positive PE

cerebral cortex

- thalamus

°-Q

GP/SNr

Three factor learning: presynaptic, postsynaptic and DA



D2 effects on BG learning: Negative PE

cerebral cortex

thalamus

originally: prediction based on computation (function) and circumstantial data

D2 weights accumulate with experience - learned Parkinsonism Frank et al, 2004; 2005



D2 effects on BG learning: Negative PE

cerebral cortex
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Zalocusky et al, 2016



Separate striatal populations code for pos/neg action values

o

1

spikes/s

o

5

Different Q_and Same Qy
vs 90-50

Hold on Go

* %

Same @, and Different Qg
50-10 vs 50-90

Hold on

Go

1
i

Samejima et al., 2005 Science



BG.proj
uses DA RPE to drive contrastive Hebbian learning signal
No supervised target; just reward-DA driven learning
But still XCAL / CHL at level of synapse - activity dependent learning.

Note: wiki version is yet more simplified for demo



Simulating Probabilistic Classification

o—o |ntact

~— PD

x--x No Indir

o--a Global Nogo

Probabilistic Classification

| |
0 50 100 150 200
Trial

e Intact nets extracted probabilistic structure by resolving differences in
Go/NoGo representations.

e PD nets were impaired due to reduced dynamic range of DA,
capturing experimental data in same task.

Frank, 2005, ] Cog Neurosci



Simulating human learning and DA meds

—— ntact
+~ — = Simulated DA Meds

Probabilistic Reversal
BG Model Performance
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Percent Error

Block



Simulating human learning and DA meds

—— ntact
+~ — = Simulated DA Meds

Probabilistic Reversal
BG Model Performance
100 T

Percent Error

40

e Medication: 1T DA levels, but tonic stimulation of D2 receptors prevents
DA dips from inducing NoGo learning.

Cools et al, 2001; Frank, 2005



Model predictions supported by rodent D1/D2 manips

DISTINCT DOPAMINERGIC CONTROL OF THE DIRECT AND INDIRECT
PATHWAYS IN REWARD-BASED AND AVOIDANCE LEARNING
BEHAVIORS

Distinct Roles of Synaptic Transmission
in Direct and Indirect Striatal Pathways
to Reward and Aversive Behavior

Takatoshi Hikida,!-2 Kensuke Kimura,'-3 Norio Wada,! Kazuo Funabiki,’ and Shigetada Nakanishi.*

Distinct roles for direct and
indirect pathway striatal neurons
in reinforcement

Alexxai V Kravitz!4, Lynne D Tye!># & Anatol C Kreitzer! -3

Transient stimulation of distinct subpopulations of
striatal neurons mimics changes in action value

Lung-Hao Tai'”’, A Moses Lee'->7, Nora Benavidez', Antonello Bonci*% & Linda Wilbrecht'*

Nucleus accumbens D2R cells signal prior outcomes
and control risky decision-making

Kelly A. Zalocusky"??, Charu Ramakrishnan', Talia N. Lerner'3, Thomas J. Davidson'?, Brian Knutson* & Karl Deisseroth!*



Dichotomous Dopaminergic
Control of Striatal Synaptic Plasticity

Weixing Shen, Marc Flajolet,? Paul Greengard,? D. James Surmeier’*

Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning

Hsing-Chen Tsai,"** Feng Zhang,»* Antoine Adamantidis,” Garret D. Stuber,® Antonello Bonci,” Luis de Lecea,’ Karl
Deisseroth™

also monkey d1/d2 pharmacology, e.g. Nakamura & Hikosaka 06



Pitting action against RL accounts of D1/D2
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Yttri & Dudman, 2016, Nature



Blocking neurotransmission in mouse Go/NoGo pathways

Direct pathway Indirect pathway
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Hikida et al, 2010, Neuron



Reward prediction error and human functional imaging

50 100 150 200 250 300 350

Trial

McClure et al, 2003; O’Doherty et al, 2004; Daw et al, 2006; Caplin et al, 2010; Badre & Frank, 2011 etc



Human probabilistic reinforcement learning
Train

312,

A (80/20) B (20/80) 9
Choose A?

Avoid B?
C (70/30) D (30/70) 9
b S ¢

E (60/40) F (40/60)




Testing the model:
Parkinson’s and medication effects

»— Seniors
- -0 PD OFF
¢ —-¢PDON

Probabillistic Selection
Test Performance

100
90} -

- |

S 80f -

T 70t -

% L

$ 60r I
50t -

Choose A Avoid B
Test Condition

Frank, Seeberger & O’Reilly (2004)

(See also: Cools et al, 06, Frank et al 07, Moustafa et al 08, Bodi et al 09, Palminteri et al, 09, Voon et al 10, etc)



Striatal Go/NoGo activity

BG model: DA modulates learning from pos/neg PE’s

BG Model Go/NoGo Associations

0.6f »— Intact
0.5- o—-eSimPD

I + —+ Sim DA Meds
0.4t W
0.3} S J\%
3l 1 S
0.1+ .\.\‘ //%
0.0r %\.
0150 Pos NoGo Neg

Test Condition

e (o learning to positive S-R requires sufficient phasic DA bursts

e NoGo learning to negative S-R requires sufficiently low DA during pauses



Striatal Go/NoGo activity
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BG model: DA modulates learning from pos/neg PE’s

BG Model Go/NoGo Associations

»—» [ntact
e—-eSimPD
¢ — ¢ Sim DA Meds
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Test Condition
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Test Condition

e Burst magnitude facilitates Go learning (D1)

e Pause duration facilitates NoGo learning (D2)



DA stimulation vs. D2 blockade on go/nogo learning

PD TS

Money (€)

gain loss gain loss

Filled bars = medicated (I-dopa or D2 blockade)

Open bars = unmedicated

Palminteri et al, 2009

see Wiecki et al, 2009 for model of D2 blockade effects on NoGo learning in rats
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Genetics of striatal dopamine function
and model-based predictions

e DARPP-32: protein concentrated in striatum, required for
D1-dependent plasticity (Calabresi et al 00, Stipanovich et al 08)

Meyer-Lindenberg et al, 2007



Genetics of striatal dopamine function
and model-based predictions

e DARPP-32: protein concentrated in striatum, required for
D1-dependent plasticity (Calabresi et al 00, Stipanovich et al 08)

Meyer-Lindenberg et al, 2007

Dylan quotes Aristotle quotes Plato on DARPP-32!



Genetics of striatal dopamine function
and model-based predictions

e DARPP-32: protein concentrated in striatum, required for
D1-dependent plasticity (Calabresi et al 00, Stipanovich et al 08)

Meyer-Lindenberg et al, 2007

Dylan quotes Aristotle quotes Plato on DARPP-32!

= Model: D1= probabilistic Go learning



DRD2 gene: affects striatal D2 receptor function
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and heres what the red hot chilli peppers have to say about this gene



DRD2 gene: affects striatal D2 receptor function
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[C-11]Raclopride g 35 1
m -
2 30 -
2
o
8 297
4
o
o
® 201
7]
T CIT e
Wang et af, 2004 ,m.“_,.__ 557 o

Hirvonen et al, 2009

and heres what the red hot chilli peppers have to say about this gene

= Model: D2 = probabilistic NoGo learning
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Frank et al 07, PNAS



In humans: probabilistic reinforcement learning
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Not just learning: striatal DA modulates “incentive salience”
(influence of value on choice)

A) Empirical data OpAL Simulations
Control
S 2500 - 2500/l control
3 [ pA depleted 5 DA depleted
@ 2000 - @ 2000
L]
c
‘E 1500 | £ 1500
(=] (=3
(2] (2]
£ 1000 £ 1000
£]
g &
- 500 = 500
I B
1 4 16 64 T4 e e
fixed ratio schedule fixed ratio schedule

Opponent Actor Learning (OpAL): Modeling Interactive Effects of Striatal
Dopamine on Reinforcement Learning and Choice Incentive

Anne G. E. Collins and Michael J. Frank

Salamone et al, 2003

also: risky decision making; Floresco, Rutledge etc; effort/reward choice tasks T-maze etc.




Dissecting DA contributions to learning vs. choice incentive

(OpAL model)
Low DA High DA
Weights Weights
G| [6) [6B) N(1)| |N@)| [NG3) G| |G| [GB) N [N@)| [NG)

Collins & Frank, Psych Rev, 2014



Dissecting DA contributions to learning vs. choice incentive

(OpAL model)
Low DA High DA
Weights Weights
G(1)| |G(2)] |GB) N [N@)| NG G()| |6@)| [GB3) N [N@)| [NG)
Activities
PsxG Prnx N
_ _ —3
M \
.///
.
o
DA

Collins & Frank, Psych Rev, 2014



Dissecting DA contributions to learning vs. choice incentive

(OpAL model)
Low DA High DA
Weights Weights
G| [62) [GB) N [N@)| NG G()| |6@)| [GB3) N [N@)| [NG)
Activities Activities
fexG Pux N PexG Brx N

DA

Collins & Frank, Psych Rev, 2014



Dissecting DA contributions to learning vs. choice incentive

(OpAL model)
Low DA High DA
Weights Weights
G| [s@f [c3) N()| [N@)| [N3) G| |c@)| [63) N [N@)| [NG)
Activities Activities
Pex G Bnx N Pox G Pnx N
— . —
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hetn] |act| Jacte ac)| |ace)| [act)
Choice: 3 Choice: 1

Collins & Frank, Psych Rev, 2014



Dissecting DA contributions to learning vs. choice incentive
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Collins & Frank, Psych Rev, 2014



Back to reversal learning: DA-mediated Go/NoGo learning
alone is limited

—— Intact
~ — = Simulated DA Meds

Probabilistic Reversal
BG Model Performance
100 T

Percent Error

40

e Simulated D2 agonists prevent learning in D2 MSNs

e intact BG model learns probabilistic reversal, but not optimally =
motivates need for dynamic learning rate...

Cools et al, 2001; Frank, 2005



Bayesian approach to dynamic learning

Belief
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Bayesian approach to dynamic learning

Value

Belief

Uncertainty

0 0.25 0.50 0.75 1.0
Probability of a Positive Outcome

e Learning from individual noisy outcomes should depend on uncertainty
(cf Kalman filter).

- - - True reward rate —— Estimated reward rate

|||||

e.g., Yu & Dayan 05; Behrens et al 2007; Nassar et al 2010; Mathys et al 2011



Bayesian approach to dynamic learning

Value

Belief

Uncertainty

0 0.25 0.50 0.75 1.0
Probability of a Positive Outcome

e Learning from individual noisy outcomes should depend on uncertainty

e For choice tasks, uncertainty in A>B (overlap)

e.g., Yu & Dayan 05; Behrens et al 2007; Nassar et al 2010; Mathys et al 2011



MSN population entropy indexes choice uncertainty

MSN population Entropy

High Entropy Low Entropy

YYYY  YYYY
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Role for cholinergic intereurons in modulating learning?

Cue Reward

\,

p~]

DA

Spikes/s

o

TAN

Spikes/s

-200 0 200 400
Time (ms) Time (ms)

e TANSs gate plasticity (e.g., Graybiel, Bergman, Cragg etc)
e TAN ablations impair reversal learning (e.g,. Witten et al 2010)

e striatal M1 blockade impairs reversal learning (McCool et al 08)
Morris et al., 2004



TAN effects on network learning

U Sensory Input
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e TANs modulate MSN excitability during phasic DA signal (e.g., Koos)

e Long pause — disinhibit corticostriatal input across population, more learning



TANs moderate divergence in MSN weights with learning and
population entropy

e TAN pauses modulate MSN excitability during phasic DA (via M1, presynaptic M2
and nicotinic effects on GABA-internerons)

e Long pause — larger population of MSNs learn from DA

e Short pause — learning focused on sparse population

e = TAN pause modulates effective learning rate
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Acquisition Reversal

Accuracy
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Accuracy
o
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Franklin & Frank, 2015, eLife



MSN-TAN feedback circuit for adaptive learning rates

High Entropy Low Entropy

YYYY  YYYY

MSN popuiation firing rate distribution
N

Time

TAN pause

MSN-TAN collaterals: Bolam et al ‘86, Chuhma et al 11; Gonzalez et al 13

MSN entropy — longer TAN pauses



TAN/MSN /DA interactions optimize learning across levels of
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e benetfit of long/short pause depends on level of stochasticity

e 85/15vs 40/10 environments

e Self-regulating pause optimizes learning/reversal overall

Franklin & Frank, 2015, eLife



Bayesian approach to dynamic learning

e How do deal with volatility?



Bayesian approach to dynamic learning

0 025 050 0.75 1.0
Probability of a Positive Outcome

Generative model

e How do deal with volatility?

e.g., Yu & Dayan 05; Behrens et al 2007; Nassar et al 2010; Mathys et al 2011



approximate Bayesian approach to dynamic learning

Bayesian Learner
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e add uncertainty to belief distributions (decay counts)

e regulate trade off by dynamically changing decay according to changes
in choice uncertainy

Franklin & Frank 2015, eLife



BG-TAN net is analogous to Bayesian uncertainty-driven
learner

Bayesian Learner

Neural Network
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Mean Weight Difference
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Go unit weights
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T T T 1
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Trial

same result in OpAL formulation

Franklin & Frank, 2015, eLife



DA-mediated Go/NoGo learning alone is limited:
Probabilistic reversal learning

—— Intact
~ — = Simulated DA Meds

Probabilistic Reversal
BG Model Performance
100 T

Percent Error

40

e Simulated D2 agonists prevent learning in D2 MSNs

e intact BG model learns probabilistic reversal, but not optimally =
motivates need for dynamic learning rate...



Cools et al, 2001; Frank, 2005



Deep Brain Stimulation of the Subthalamic Nucleus (STN)
for treatment of Parkinson’s disease

Video #1: http:/ /ski.clps.brown.edu/dbs2.mp4
Video #2: http:/ /ski.clps.brown.edu/dbs.mp4



But not all is grand in the world of DBS...
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hi, i found your email address in an article i was reading about dbs surgery
for parkinsons. my dad had the surgery last may and we have a mess on
our hands. two months following the surgery we began to notice some
personality changes. he became impulsive, cocky, oblivious to his
surroundings, forgetful, has lied, he has no empathy, he uses foul language
... canceled his 2 follow up dr appointments, he was always very detailed
oriented and now he is sloppy, and he is spending a lot of money. he has
NOT gone one day without buying something. he can’t sit still, he’s always
on the move. going somewhere and buying something...



But not all is grand in the world of DBS...

hi, i found your email address in an article i was reading about dbs surgery
for parkinsons. my dad had the surgery last may and we have a mess on
our hands. two months following the surgery we began to notice some
personality changes. he became impulsive, cocky, oblivious to his
surroundings, forgetful, has lied, he has no empathy, he uses foul language
... canceled his 2 follow up dr appointments, he was always very detailed
oriented and now he is sloppy, and he is spending a lot of money. he has
NOT gone one day without buying something. he can’t sit still, he’s always
on the move. going somewhere and buying something...

STN-DBS dramatically improves PD motor symptoms, but can induce impulsivity
(Saint-Cyr et al 06, Frank et al, 07; Wylie et al 10; Hélbig et al 09)



From reinforcement learning...




...to reinforcement conflict-based decision making




Neural circuit model of BG in learning / decision making

Sensory Input

===

Basal Ganglia GPi

—> excitatory —» w?

—e inhibitory —Z§ dopamine

Dg@ AHB@WV AHs@uv

Frank, 2005, 2006 | Cog Neurosci, Neural Networks



Anatomy of BG gating: without STN

Frontal Cortex

striatum

/ \
/ \



Anatomy of BG gating: with subthalamic nucleus (STN)

Frontal Cortex

striatum

e PFC-STN provides an override mechanism



Subthalamic Nucleus:
Dynamic modulation of decision threshold

preSMA/ACC  Conflict!

H(P(choice))

striatum

e Conlflict (entropy) in choice prob: = Hold Your Horses!



STN and frontal cortex are directly connected via white matter

Aron et al (2007), ] Neurosci



Neural model and STN ephys: decision conflict

a) Model b) Data
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data from Isoda & Hikosaka 2008 Wiecki & Frank, 2013 Psych Review



Neural model and STN ephys: decision conflict

a) Model b) Data
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Human probabilistic reward /choice conflict

T L 2D |6 X

A (80%) B (20%) C (70%) D (30%) E (60%) F (40%)

Low Contflict: e.g., 80 vs 30%  H(Piysima) = -06
High Conflict: e.g., 80 vs 70%  H(Pijime:) = -84



Human probabilistic reward /choice conflict

T L 2D |6 X

A (80%) B (20%) C (70%) D (30%) E (60%) F (40%)

Low Contflict: e.g., 80 vs 30%  H(Piysima) = -06
High Conflict: e.g., 80 vs 70%  H(Pijime:) = -84

— Need STN to prevent impulsive responses



Human probabilistic reward /choice conflict

T | 2D |6 X

A (80%) B (20%) C(70%) D (30%) E (60%) F (40%)

Low Contflict: e.g., 80 vs 30%  H(Piysima) = -06
High Conlflict: e.g., 80 vs 70%  H(Pijimas) = .84

— Need STN to prevent impulsive responses
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0.25

sp/sec (z-score)

025
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human STN spiking, Zaghloul et al., 2012



STN-DBS reverses conflict RT adjustments

Deep Brain Stimulation
Within-Subject Conflict

400
300 .ﬁ
200 ._| ._| .ﬁ
‘0" 10071 Z
E o \\ 7
A -100f %
_m 2001 g Hi - Lo Confiict (Correct) %
-woo.. [ZZZ2 Hi - Lo Conflict (Error)
-4001 %
-500

Seniors Off DBS On DBS
Patient Condition

Frank, Samanta, Moustafa & Sherman (2007)

see also Wylie et al 10; Hélbig et al 09; Cavanagh et al 11; Coulthard et al 12; Green et al 13



Interim Summary

e DBS induces speeded responding in conflict conditions

e Simulations: STN modulates decision threshold o< cortical conflict



Interim Summary

e DBS induces speeded responding in conflict conditions
e Simulations: STN modulates decision threshold o cortical conflict

e More precise predictions to be tested:
— Does mediofrontal cortex and STN represent reinforcement conflict?

— Does decision threshold vary as a function of mediofrontal conflict?

— Does STN-DBS alter this relationship?



Diffusion model
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Abstraction: the drift diffusion model

X(t)

Diffusion model

.,.__.ﬂ}ﬁ.,.?i
.f{c
o)
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T T I T 1
340 680 1020 1360 1700
Time (msec)

e Provides quantitative fits to error rates and RT distributions in many tasks

e Allows estimation of decision threshold (a), separately from other factors (v, z, T'er)

e.g. Ratcliff & McKoon, 2008



Abstraction: the drift diffusion model

Diffusion model
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e Provides quantitative fits to error rates and RT distributions in many tasks

e Allows estimation of decision threshold (a), separately from other factors



Contrasting drift rate vs threshold

Drift reflects the evidence for one response
over another (this accumulates over time).
An increase in drift is like having very clear

information for one response over another. /

Probability
Density

/ ‘Correct’

Faster Responses
More Errors

Faster Responses
Fewer Errors

Drift=2 ._.:Bm:o_aum\

“Easy / Optimal”

Threshold reflects the boundary that terminates
evidence accumulation (drift) and executes one
of two responses. An increase in threshold is
like having a more cautious response style.

Slower Responses
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Drift=1 Threshold=1

“Impulsive”
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Drift=1 Threshold=3
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Created from the HDDM_demao.py application
Wiecki, Sofer & Frank, in preparation

Freeware available at:
https://github.com/hddm-devs/hddm



Mechanism

nature
neuroscience

Subthalamic nucleus stimulation reverses
mediofrontal influence over decision threshold

James F Cavanagh!, Thomas V Wiecki!, Michael X Cohen??3, Christina M Figueroa', Johan Samanta®3,
Scott J Sherman? & Michael J Frank!%7







Hierarchical interactions in BG-FC circuits:
PFC & cognitive control influences on learning

Collins & Frank 2013, Psych Rev; Frank & Badre 2012



Broader speculations:
Why does motor control develop so slowly in humans??

e Standard story: infants born early due to large head, small birth canal

e 'Fourth trimester’
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“You no longer need to support his head. When he’s on his stoma ch, he can lift
his head and chest. He can open and close his hands..”



Broader speculations:
Why does motor control develop so slowly in humans??

Standard story: infants born early due to large head, small birth canal

"Fourth trimester’

But 3 month old infants still pretty incompetent (from babycenter.com):

“You no longer need to support his head. When he’s on his stoma ch, he can lift
his head and chest. He can open and close his hands..”

Hypothesis: human brain is wired to discover generalizable structure....



which is initially inefficient.
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Task-sets (TS)
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Abstracting Task-set rules

TS, | S, ) A,

WSH Si1 ) A

TS as abstract rule objects
Reverberi et al 2011
Woolgar et al 2011
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Abstracting Task-sets rules




Abstracting Task-sets rules

Latent task-set space:
Unknown size

TS, Sy l A,

TS, || S, ) A,
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C-TS model

Task-sets are clustered
across contexts and can be
revisited in new contexts

E t=1:T

* Prior prob on TS space given a new C:

l

s = hﬂ.ﬁmﬂm:_, - .H...W:m:.m.u:._.: = _D\rw
TS el = A Vi # new, P(TS® =TSi|cn41) >; P(TSilc;)/A

* o> 0: Clustering parameter
- Chinese restaurant process Jordan, Blei Teh 2005

see also Gershman et al 2010



Neurobiologically plausible
implementation

Action

==\ pThal



Neurobiologically plausible
implementation
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implementation




Neurobiologically plausible

implementation
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Neural Network - Results
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The network learns efficiently unsupervised,
Predicts positive, negative transfer

Collins & Frank, Psych Review, 2013



Re-using and creating task-sets
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Collins & Frank 2013, Psych Rev; Collins et al, 2014 | Neurosci; Collins & Frank, in review

fMRI evidence: Badre & Frank 2012



Model mimicry: C-TS and hierarchical BG-PFC network

T

- r=0.76
. p = 0.0002

a (clustering)

N w
_w s 1oo

0 005 01 015
C—PFC one-to one prior

e Sparseness of context-PFC connectivity matrix is linked to « clustering
e Both models are approximations of the same process: building TS structure

e fMRI evidence for hierarchical PFC-BG mechanisms Badre & Frank 2012

Collins & Frank 2013 Psych Rev



