
Neurobiology of Learning and Memory 82 (2004) 253–267

www.elsevier.com/locate/ynlme
Hippocampus, cortex, and basal ganglia: Insights
from computational models of complementary learning systems

Hisham E. Atallah, Michael J. Frank, and Randall C. O’Reilly*

Department of Psychology, Center for Neuroscience, University of Colorado at Boulder, 345 UCB, Boulder, CO 80309, USA

Received 16 April 2004; revised 4 June 2004; accepted 8 June 2004

Available online 20 July 2004
Abstract

We present a framework for understanding how the hippocampus, neocortex, and basal ganglia work together to support

cognitive and behavioral function in the mammalian brain. This framework is based on computational tradeoffs that arise in neural

network models, where achieving one type of learning function requires very different parameters from those necessary to achieve

another form of learning. For example, we dissociate the hippocampus from cortex with respect to general levels of activity, learning

rate, and level of overlap between activation patterns. Similarly, the frontal cortex and associated basal ganglia system have im-

portant neural specializations not required of the posterior cortex system. Taken together, this overall cognitive architecture, which

has been implemented in functioning computational models, provides a rich and often subtle means of explaining a wide range of

behavioral and cognitive neuroscience data. Here, we summarize recent results in the domains of recognition memory, contextual

fear conditioning, effects of basal ganglia lesions on stimulus–response and place learning, and flexible responding.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The brain is not a homogenous organ: different brain

areas clearly have some degree of specialized function.
There have been many attempts to specify what these

functions are, based on a variety of theoretical ap-

proaches and data. In this paper, we summarize our

approach to this problem, which is based on the logic of

computational tradeoffs in neural network models of

brain areas. The core idea behind this approach is that

different brain areas are specialized to satisfy funda-

mental tradeoffs in the way that neural systems perform
different kinds of learning and memory tasks. This way

of characterizing the specializations of brain areas is in

many ways consistent with ideas from other frame-

works, but we argue that it offers a level of precision and

subtlety that may prove beneficial in understanding

complex interactions between different brain areas. This
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paper reviews a number of illustrations of this point,

through applications of computational models to a

range of data in both the human and animal literatures,

including: recognition memory, contextual fear condi-
tioning, effects of basal ganglia lesions on stimulus–re-

sponse and place learning, and flexible responding.

One of the central tradeoffs behind our approach

involves the process of learning novel information rap-

idly without interfering catastrophically with prior

knowledge. This form of learning requires a neural

network with very sparse levels of overall activity

(leading to highly separated representations), and a
relatively high learning rate. These features are incom-

patible with the kind of network that is required to

acquire general statistical information about the envi-

ronment, which needs highly overlapping, distributed

representations with relatively higher levels of activity,

and a slow rate of learning. The conclusion we have

drawn from this mutual incompatibility is that the brain

must have two different learning systems to perform
these different functions, and this fits quite well with a

mail to: oreilly@psych.colorado.edu


254 H.E. Atallah et al. / Neurobiology of Learning and Memory 82 (2004) 253–267
wide range of converging cognitive neuroscience data on
the properties of the hippocampus and posterior neo-

cortex, respectively (e.g., McClelland, McNaughton, &

O’Reilly, 1995; Norman & O’Reilly, 2003; O’Reilly &

McClelland, 1994; O’Reilly & Rudy, 2001).

A similar kind of reasoning has been applied to un-

derstanding the specialized properties of the frontal

cortex (particularly focused on the prefrontal cortex)

relative to the posterior neocortex and hippocampal
systems. The tradeoff in this case involves specializations

required for maintaining information in an active state

(i.e., maintained neural firing) relative to those required

for performing semantic associations and other forms of

inferential reasoning. Specifically, active maintenance

(often referred to by the more general term of working

memory) requires relatively isolated representations so

that information does not spread out and get lost over
time (O’Reilly, Braver, & Cohen, 1999; O’Reilly &

Munakata, 2000). In contrast, the overlapping dis-

tributed representations of posterior cortex support

spreading associations and inference by allowing one

representation to activate aspects of other related rep-

resentations. The prefrontal cortex system also requires

an adaptive gating mechanism to be able to rapidly

update new information while also robustly maintaining
other information—the basal ganglia have the right

neural properties to provide this function (Frank,

Loughry, & O’Reilly, 2001).

Putting these arguments together, this computational

framework supports a tripartite cognitive architecture

represented in Fig. 1, composed of posterior cortex
Fig. 1. Tripartite cognitive architecture defined in terms of different

computational tradeoffs associated with posterior cortex (PC), hippo-

campus (HC), and frontal cortex (FC) (with motor frontal cortex

constituting a blend between FC and PC specializations). Large

overlapping circles in PC represent overlapping distributed represen-

tations used to encode semantic and perceptual information. Small

separated circles in HC represent sparse, pattern-separated represen-

tations used to rapidly encode (‘‘bind’’) entire patterns of information

across cortex while minimizing interference. Isolated, self-connected

representations in FC represent isolated stripes (columns) of neurons

capable of sustained firing (i.e., active maintenance or working mem-

ory). The basal ganglia also play a critical role in the FC system by

modulating (‘‘gating’’) activations there based on learned reinforce-

ment history.
(PC), hippocampus (HC), and frontal cortex (FC),
which is thought to include the basal ganglia as well

(and many other relevant brain areas are not included,

for simplicity). Each component of the architecture is

specialized for a different function by virtue of having

different parameters and neural specializations (as mo-

tivated by the above tradeoffs), but the fundamental

underlying mechanisms are the same across all areas.

Specifically, our models are all implemented within the
Leabra framework (O’Reilly, 1998; O’Reilly & Mu-

nakata, 2000), which includes a coherent set of basic

neural processing and learning mechanisms that have

been developed by different researchers over the years.

Thus, many aspects of these areas work in the same way,

and in many respects the system can be considered to

function as one big undifferentiated whole. For example,

any given memory is encoded in synapses distributed
throughout the entire system, and all areas participate in

some way in representing most memories. Therefore,

this architecture is much less modular than most con-

ceptions of the brain, while still providing a principled

and specific way of understanding the differential con-

tributions of different brain areas. These seemingly

contradictory statements are resolved through the pro-

cess of developing and testing concrete computational
simulations that help us understand the ways in which

these areas contribute differentially, and similarly, to

cognitive and behavioral functions.

In many ways, the understanding we have achieved

through these computational models accords well with

theories derived through other motivations. For exam-

ple, there is broad agreement among theorists that a

primary function of the hippocampus is the encoding of
episodic or spatial memories (e.g., Squire, 1992; Vargha-

Khadem et al., 1997). This function emerges from the

use of sparse representations in our models, because

these representations cause the system to develop con-

junctive representations that bind together the many

different features of an episode or location into a unitary

encoding (e.g., O’Reilly & McClelland, 1994; O’Reilly &

Rudy, 2001). Similarly, a widely held distinction be-
tween recognition memory and recall memory in hu-

mans (as elaborated later) is supported by our model

(Norman & O’Reilly, 2003).

However, the models are also often at variance with

existing theorizing. Perhaps the single most pervasive

example of this comes from the nearly universal at-

tempts to definitively localize the ‘‘engram’’ or substrate

of memory storage. People inevitably want to know, ‘‘is
this memory in the hippocampus or in the cortex?’’ As

noted above, in our computational models, the answer is

always both (unless the hippocampus has been removed,

of course). Thus, the relevant question is, what kind of

behavioral functions can the synaptic changes in one

brain area support relative to those in another area? For

example, our models show that, with relatively brief
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exposures, encoding in the hippocampus can often
support recall of the specific details of a given episode,

while neocortical representations can usually only sup-

port a general feeling of familiarity, without the ability

to recall specific details (Norman & O’Reilly, 2003).

Critically, the traditional notions of ‘‘familiarity’’ and

‘‘recall’’ do not capture all the distinction between

neocortical and hippocampal contributions, as we

showed in a number of cases in Norman and O’Reilly
(2003). For example, neocortical representations can be

sensitive to contextual information, and even to arbi-

trary paired associates, which is not well accounted for

by traditional notions of how the familiarity system

works.

The distributed nature of memory encoding also

bears on the central debates regarding the fate of

memories that are initially encoded primarily by the
hippocampus—considerable evidence suggests that these

memories can become independent of the hippocampus

over time through a ‘‘consolidation’’ process (e.g.,

McClelland et al., 1995; Squire, 1992; Sutherland et al.,

2001). Thus, people are tempted to conclude that the

memory is ‘‘transferred’’ out of the hippocampus and

into the neocortex. In contrast, our models suggest that

the neocortical contribution to the memory (which was
always present to some degree) is simply strengthened to

the point that it becomes capable of more robust recall

even in the absence of the hippocampus. This does not

mean that the memory has to leave the hippocampus,

and indeed we believe that the hippocampal system is

actively participating in recalling even very old memo-

ries, which is consistent with the theorizing of Mos-

covitch and Nadel (1998). In short, memory always
remains distributed throughout the brain. But different

brain areas can support different types of behavioral

functions based on their independent encoding of these

memories. Labels such as ‘‘declarative’’ and ‘‘proce-

dural’’ do not necessarily capture the subtlety and

complexity of these distinctions.

Another example of the subtlety of the computational

models comes from understanding the role of the basal
ganglia in cognition and behavior. According to our

framework, the basal ganglia play an intrinsically mod-

ulatory role; this can be difficult to accommodate in

verbal theories. For example, many people regard the

basal ganglia as a ‘‘habit learning’’ system, that learns to

encode stimulus–response associations over time (e.g.,

Packard, Hirsh, & White, 1989). However, it is clear that

motor responding is relatively unimpaired by basal
ganglia dysfunction; instead, basal ganglia damage

seems to affect the ability to initiate or select motor

actions (e.g., Hikosaka, 1998; Mink, 1996). Thus, it is

more likely that the basal ganglia modulate or gate the

functioning of the frontal cortical areas that they project

to, helping to select the most appropriate actions for a

given situation. The distinction is perhaps a subtle one,
but it may have important implications for under-
standing behavioral data, as we discuss later.

In the remainder of this chapter, we explore the im-

plications of our computational architecture in greater

detail, focusing on data regarding the hippocampal

contributions to both human and rat learning and

memory, and on rat and human studies of basal ganglia

function.
2. Hippocampus and posterior neocortex

We have developed an instantiation of our theory in

the form of a computational model of the hippocampus

and neocortex, as shown in Fig. 2, along with a sum-

mary of the computational tradeoff argument. This

same basic model has been applied to a wide range of
data from animals and humans (Frank, Rudy, &

O’Reilly, 2003; Norman & O’Reilly, 2003; O’Reilly,

Norman, & McClelland, 1998; O’Reilly & Rudy, 2001;

Rudy & O’Reilly, 2001) (see O’Reilly & Norman, 2002

for a concise review). Thus, this model is perhaps one of

the most well tested in the neural network literature. As

noted earlier, the critical feature of this model is that it

employs sparse, though still distributed, representations
in the primary hippocampal regions of CA3, CA1, and

particularly DG. It also incorporates a number of other

features of the hippocampal anatomy and physiology

that have been analyzed as being important to its overall

functions (O’Reilly & McClelland, 1994).

In brief, the hippocampal model performs encoding

and retrieval of memories in the following manner:

during encoding, the hippocampus develops relatively
non-overlapping (pattern-separated) representations in

region CA3 (which is strongly facilitated by the very

sparse dentate gyrus (DG) inputs). Active units in CA3

are linked to one another (via Hebbian learning), and to

a re-representation of the input pattern in region CA1.

During retrieval, presentation of a partial version of a

previously encoded memory representation leads to re-

construction of the complete original CA3 representa-
tion (i.e., pattern completion) and, through this,

reconstruction of the entire studied pattern on the EC

output layer (and then to cortex) via area CA1. As re-

viewed in Norman and O’Reilly (2003) and O’Reilly and

Rudy (2001), our hippocampal model closely resembles

other neural network models of the hippocampus

(Burgess & O’Keefe, 1996; Hasselmo & Wyble, 1997;

Moll & Miikkulainen, 1997; Touretzky & Redish, 1996;
Treves & Rolls, 1994; Wu, Baxter, & Levy, 1996). There

are differences, but the family resemblance between

these models far outweighs the differences.

In contrast with the rapid, conjunctive learning

supported by the hippocampus, our cortical model can

support generalization across a large number of expe-

riences for two main reasons. First, our simulated



Fig. 2. (A) Our hippocampus model (Norman & O’Reilly, 2003; O’Reilly & Rudy, 2001), showing an example activity pattern. Note the sparse

activity in the DG and CA3, and intermediate sparseness of the CA1—these different levels of sparseness enable rapid learning of arbitrary con-

junctive information (i.e., ‘‘episodic learning’’). (B) Computational motivation for two complementary learning and memory systems in the brain:

there are two incompatible goals that such systems need to solve. One goal is to remember specific information (e.g., where one’s car is parked). The

other is to extract generalities across many experiences (e.g., developing the best parking strategy over a number of different days). The neural

solutions to these goals are incompatible: memorizing specifics requires separate representations that are learned quickly, and automatically, while

extracting generalities requires overlapping representations and slow learning (to integrate over experiences) and is driven by task-specific constraints.

Thus, it makes sense to have two separate neural systems separately optimized for each of these goals.
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cortical neurons have a slow learning rate (i.e., small
changes in synaptic efficacy after a single presentation of

a stimulus). That property insures that any single event

has a limited effect on cortical representations. It is the

gradual effect of multiple exposures that shapes the

representation, which enables these representations to

capture things that are reliably present across many

experiences (i.e., the general statistical structure or reg-

ularities of the environment). Second, our model em-
ploys representations that involve a relatively large

number of neurons (e.g., roughly 15–25%). This prop-

erty increases the probability that similar events will

activate overlapping groups of neurons. Those shared

neurons will be responsible for representing the regu-

larities of the environment across multiple experiences.

2.1. Recognition memory

The hippocampal/cortical model has recently been

applied to understand the neural dissociation between

recall and recognition (Norman & O’Reilly, 2003).

Many converging sources of data support the idea that

the cortical areas surrounding the hippocampus (i.e.,

medial temporal lobe cortex or MTLC, principally the

perirhinal cortex) can support a form of recognition
memory, but not recall, which depends on the hippo-

campus proper (for a review, see (Yonelinas, 2002)). In a

recognition experiment, a list of stimuli is presented to
the subject. At a later time, the subject has to differen-
tiate those stimuli from ones that were not on the list.

The hippocampal and cortical neural-network models

were presented with inputs (patterns of neural activity)

that corresponded to different stimuli. Furthermore,

stimulus similarity was manipulated by varying the dif-

ference between any two inputs. The effect of these

presentations on both the hippocampal and cortical

models was measured to determine the unique contri-
butions of the MTLC versus the hippocampus in these

kinds of recognition memory tests.

Cortical activation became sharper after repeated

presentation of a stimulus. Specifically, the relatively few

simulated neurons that were initially the most active

increased their activity, while the majority of neurons

decreased their activity. This is due to the fact that

Hebbian learning increases the synaptic efficacy of
highly active units, causing them to be more active,

while also suppressing the activation of other neurons

through inhibitory interneurons. Thus, it was possible to

identify familiar stimuli by measuring the average

activity of the units with the highest activity. Familiar

stimuli caused a higher average activity in those units

than novel stimuli.

Yet the cortical model cannot support recall. Due to
its slow learning rate and bias for generalization, the

cortex does not encode the details of a stimulus or

the context in which it was presented. In fact, when the
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similarity between a previously seen stimulus and a
novel probe stimulus was increased, the cortex failed to

reliably differentiate between them. For example, if the

studied item was the word ‘‘RAT,’’ the cortex produced

a high familiarity signal for the plural form ‘‘RATS’’ on

the test. As expected from our general theoretical

framework, the cortical model generalized across spe-

cific instances. If the cortex has a threshold at which a

signal is categorized as familiar, both ‘‘RAT’’ and
‘‘RATS’’ may pass that threshold.

It is important to note that by setting a high threshold

for recognition, the cortical model may be able to reject

the stimulus ‘‘RATS’’ based on its difference from the

studied item ‘‘RAT.’’ But by doing so, the cortical

model risks in rejecting another studied stimulus

‘‘CAR’’ because its familiarity signal did not reach the

high recognition threshold. The cortex may incorrectly
reject ‘‘CAR’’ on the test because it was not properly

encoded in the study phase. In other words, raising the

recognition threshold will decrease the number of false

alarms (e.g., incorrectly accepting ‘‘RATS’’) but at the

same time it will increase the number of misses (e.g.,

incorrectly rejecting ‘‘CAR’’).

Thus, based on this reasoning, a subject with a focal

hippocampal lesion should fail a recognition task if they
are asked to either accept or reject stimuli based on their

familiarity when the studied and novel stimuli are sim-

ilar. No matter where the recognition threshold is placed

either the false alarms or misses will be impair perfor-

mance. One such task used in the behavioral literature is

the yes/no recognition task. The subject is presented one

stimulus on the test, and is asked if the stimulus is

familiar or not.
Despite poor performance on the yes/no paradigm,

the cortical model performed well on a forced-choice

test. On a forced-choice test, the subject is asked to

choose between a studied and a very similar novel

stimulus (e.g., was ‘‘RAT’’ or ‘‘RATS’’ on the list?). The

model produced a reliable difference in familiarity when

both the studied and novel item were presented on the

test. In this case, there is no need to set a threshold. For
every pair of stimuli on the test, the familiarity signals

are compared. The stimulus that produces a higher

familiarity signal is chosen. Therefore, the model pre-

dicts that, contrary to a yes/no paradigm, a forced-

choice paradigm will be solvable by subjects with a focal

hippocampal lesion.

In contrast with the cortical model, the hippocampal

model predicts no difficulties with either the recognition
or the recall tests. As we described above, the hippo-

campus will assign different representations for different

stimuli. It will also differentiate similar stimuli based on

their specific features. For example, the hippocampus

will encode RAT on the study list in its singular form,

and will tie the representation to the study context.

Accordingly, a subject with an intact hippocampus will
be able to recall the stimulus (i.e., when asked to list the
studied stimuli). They will also be able to use recall to

solve a recognition task (e.g., RAT was on this list not

RATS). The ability to recall stimuli will be comple-

mented by the familiarity signal that is independently

computed by the MTLC.

2.1.1. Recognition memory after focal hippocampal

damage

The above predictions from the computational

models have been tested in experiments on a patient

with selective hippocampal damage and matched con-

trols. Holdstock et al. (2002) compared recognition

performance of patient YR and an age-matched control

group. YR is a 61-year-old woman that had focal hip-

pocampal damage due to a painkiller overdose. The

damage did not extend to the surrounding MTL cortex.
The authors’ goal was to determine the conditions under

which recognition is spared after focal hippocampal

damage. The stimuli were images of different objects.

The studied and novel stimuli were in some cases very

similar (i.e., images of the same object with minor dif-

ferences in shape). On the recall test, the subjects had to

name the objects they have seen in the study phase. On

the yes/no recognition task, images were presented one
at a time, and the subjects had to respond ‘‘yes’’ if the

image was seen in the study phase. On the forced-choice

recognition task, a studied image was presented with

two novel ones, and the subjects were asked to find the

studied one. The experiment also included a forced-

choice object–location association task. In this task, the

subjects saw an object placed in a certain location on a

table. On the test, the subjects had to recognize the
familiar object–location association among a number of

novel combinations. All those tasks were matched for

difficulty by comparing the control group’s performance

on each one of them.

YR was impaired on the recall task but not the

forced-choice object recognition task. She also showed a

deficit compared to the control group on two other

recognition tasks. The first task was a yes/no recognition
task. But she was impaired on this task only when the

studied and novel stimuli were similar. YR was also

impaired on a forced-choice object–location association

task. As the model predicted, hippocampal damage

impaired performance on a yes/no recognition task

when the studied and novel stimuli were similar. On the

contrary, performance on a forced-choice object recog-

nition task was spared even when the studied and novel
stimuli were similar. Thus, the availability of the studied

stimulus and the similar novel stimulus on the test

increased YR’s sensitivity to familiar objects.

Forced-choice performance was impaired only when

the task contained stimuli from different modalities.

In contrast to the object recognition task, the object–

location task involved visual and spatial information.
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This finding also supports the model’s prediction that
the hippocampus is necessary for binding information

across modalities.

2.1.2. Contextual conditioning in the rat

Other tests of the computational model have come

from experiments conducted on intact and hippocam-

pally lesioned rats. This ability to apply the same

model to predict results from human and animal
subjects is an important asset, because traditional

theories have created a divergence between the human

and animal lines of research. For example, concepts

like ‘‘conscious recollection’’ and ‘‘verbal recall,’’

which are widely used in the human memory litera-

ture, but are not applicable to animal research. Some

of the most direct tests of the computational models

have come from the contextual fear conditioning par-
adigm, which has been shown to depend on the hip-

pocampus (e.g., Anagnostaras, Maren, & Fanselow,

1999). Contextual fear conditioning refers to the as-

sociation between an environment and a fear response

resulting from an aversive experience in that environ-

ment. Typically, a rat is given a mild electric shock in

a cage formed of a unique set of cues (shape, size,

color, etc.). When at a later time, the rat is returned to
this environment, it will show a fear response (freez-

ing). In contrast to the hippocampal involvement in

this task, a hippocampal lesion did not impair an as-

sociation between an auditory cue with shock (e.g.,

Anagnostaras et al., 1999; Kim & Fanselow, 1992).

Thus, the hippocampus seems to be important for the

representation of context and not in the learning and

expression of a fear response.
The logic of a series of studies designed to test our

computational models (Rudy, Barrientos, & OReilly,

2002; Rudy & O’Reilly, 1999, 2001), builds on the pre-

exposure version of contextual fear conditioning, as

developed by Fanselow (1990). This paradigm has two

basic conditions. In one condition, the rats are pre-ex-

posed to the conditioning environment prior to receiving

an immediate shock upon being later placed in that
environment. In the other condition, rats are only im-

mediately shocked in the environment, with no pre-ex-

posure. If the rat is shocked immediately after being

placed in an environment, they fail to show contextual

fear. But if the rat had experienced the environment

during pre-exposure (without being shocked then), they

did show contextual fear after an immediate shock.

Presumably, there is minimal exposure period required
for the rat to form a conjunctive representation of the

context. Pre-exposure allows the rat to form the con-

junctive representation even if it is not associated with

shock. When the rat is placed in the same environment

to be shocked, the features of that environment reacti-

vate the conjunctive representation. Thus, it seems the

brief exposure before the shock is sufficient for the
reactivation but not the formation of the conjunctive
representation.

Rudy and O’Reilly (1999) showed that pre-exposure

to the isolated features of a context (e.g., shape of the

cage) did not improve contextual fear. Only the pre-

sentation of the configuration of features potentiated the

fear response in the control rats. Thus, an increase in

the salience of the individual features cannot account for

the pre-exposure effect. In contrast, a conjunctive rep-
resentation facilitates the activation of all the features

bound by a mere activation of a subset of those features.

Rudy et al. (2002) provided further evidence for the

formation of a conjunctive representation during pre-

exposure, and its cued recall at the time of immediate

shock. This experiment make use of a specific bucket to

transport the rat from the housing colony to the pre-

exposure environment. Using this same bucket, the rats
were then transported to a novel environment and im-

mediately shocked. Fear was then assessed in either the

pre-exposure context or the immediate shock one.

Control rats showed more fear for the pre-exposure

context than the shock one when the old bucket was

used. This result is striking because the rats were never

shocked in the pre-exposure environment. Thus, the

bucket reactivated the pre-exposure context as the rat
was taken to the shock environment. When the shock

was induced, the rat associated fear with the activated

representation. Again, the immediate shock did not

allow the formation of a conjunctive representation of

the new context. As expected, rats with a hippocampal

lesion did not show this effect.

The ability of the bucket to reactivate the memory of

the pre-exposure environment provides a direct animal
model of cued recall in humans. When a human subject

is asked what happened ‘‘yesterday,’’ hippocampal

pattern completion will activate the representation as-

sociated with the word ‘‘yesterday.’’ This representation

will include the information about what happened and

where it happened.

2.2. Comparison with other hippocampal learning theories

The examples above, and a number of others we did

not discuss, demonstrate that our computational models

can account for a large body of data in both the human

and animal literatures. The models are task indepen-

dent, in the sense that a single common model can be

applied to a diverse array of paradigms. Furthermore,

the models exhibit differential effects depending on fac-
tors such as the similarity of stimuli, type of test effects,

etc., which may not be easily summarized with simple

dichotomies between memory systems. Nevertheless,

existing theoretical dichotomies do capture many of the

central tendencies of the model’s behavior. In this sec-

tion, we highlight some of these similarities and differ-

ences with existing theories.
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2.2.1. Hippocampus: Declarative memory system

Perhaps the most widely accepted theoretical frame-

work is the declarative versus procedural dichotomy

(e.g., Squire, 1992). Declarative memory involves re-

membering facts (e.g., The 21st of December is the

shortest day of the year) and events (e.g., I went to the

movies yesterday). Procedural memory, on the other

hand, involves the acquisition of skills (e.g., learning to

play ping-pong) and other forms of non-conscious
learning (priming, conditioning, etc.). There is evidence

that the media temporal lobe (including the hippocam-

pus and surrounding cortical areas) support declarative

memory, while other other cortical and subcortical areas

(e.g., basal ganglia and cerebellum) support procedural

memory. Overall, we agree that the medial temporal

lobe is critical for many aspects of declarative memory.

However, we also think that it may play a key role in
procedural and other forms of subconscious learning

(e.g., Chun & Phelps, 1999), and that other areas play

critical roles in declarative memory (e.g., basal ganglia

and prefrontal cortex). Thus, this kind of content-based

distinction may not map as clearly onto the neural

substrates as one based more directly on the neural

specializations of the underlying areas, as we have ad-

vocated.

2.2.2. Hippocampus: ‘‘Representational flexibility’’?

Another prominent theory of hippocampal function

is centered around the idea that the hippocampus plays

a critical role in the acquisition and retention of rela-

tional and flexible representations (e.g., Cohen & Ei-

chenbaum, 1993). Specifically, the hippocampus acts as

an ‘‘associator’’ of different items and events, and the
resulting network of information is not rigidly tied with

a specific task but can be accessed and used to support a

multitude of goals. This flexible memory system is

contrasted with the procedural memory system, which is

largely involved in stimulus–response associations. It

can also learn stimulus–stimulus associations but this

learning cannot be adapted to novel situations. Thus,

procedural learning is characterized by the gradual fa-
cilitation of a trained association. For example, Ei-

chenbaum, Stewart, and Morris (1990) reported

evidence for their theory in a water maze task. They

found that both normal and hippocampal rats can learn

to locate a hidden platform if they were always released

from the same location. When released from a novel

location, only the normal rats were successful in finding

the platform. They concluded that the hippocampus
supports the flexible use of relational information in a

novel situation.

Again, many aspects of this theory are consistent with

our own. The suggestion that the hippocampus is an

associator of individual cues is comparable to our

characterization of the hippocampus as the locus of

conjunctive representations. In the hidden-platform
water maze task, normal rats can locate the platform in
a conjunctive representation of all the available distal

cues. In contrast, rats with a hippocampal lesion use a

response strategy (e.g., turn left) to locate the platform.

But when those rats are released from a different loca-

tion, a left turn may take them away from the platform.

However, our model differs from this theory with regard

to the role of the hippocampus in behavioral flexibility

per se. Indeed, our framework is at odds with this
characterization because we maintain that the hippo-

campus is specialized to learn specific details of events,

due to its highly conjunctive, pattern-separated repre-

sentations. Thus we would not expect the hippocampus

to contribute to flexible behavior—by ‘‘memoriz-

ing’’conjunctive features, the hippocampus should treat

novel situations as distinct entities, and therefore may

actually prevent generalization. Nevertheless, there are
specific circumstances in which these hippocampal spe-

cializations may indeed be critical for flexibility. To be

more clear, we first provide some working criteria for

animal behavior to be considered ‘‘flexible.’’

• The ability to flexibly apply or generalize acquired

knowledge in novel situations.

• The ability to flexibly switch between different behav-

ioral tendencies, depending on the context of the en-
vironment.

• The ability to flexibly adapt to new situations and to

change behavior with changing task demands.

Using these criteria, we argue that the term flexibility

cannot be assigned a single neural substrate, and fur-

ther, that specializations of specific brain regions can

give rise to flexible behavior in some situations, but they

may actually hinder flexibility in others. We discuss this
first in terms of hippocampus contributions to flexible

behavior, before moving on to the basal ganglia/cortical

system which we think is critical for the third kind of

flexibility enumerated above.

The ability of the hippocampus to represent spatial

context can facilitate flexible behavior in the second

sense listed above (context sensitive behavior). The

Morris water maze with novel starting location (Ei-
chenbaum et al., 1990) is an example of increased flex-

ibility due to hippocampal representations of the

environmental context (i.e., place-field representations).

In this case, only the starting point changes, but the

context of the environment does not (i.e., it is the same

water maze in both cases). Thus, the hippocampus is

likely able to pattern complete from the contextual

feature stimuli to relevant spatial information, which in
turn supports navigation to the hidden platform.

Without these hippocampal place-field representations

of the overall environment, specific cue–response asso-

ciations will not generalize to novel starting locations.

However, the context sensitivity imparted by the

hippocampus can also lead to less flexible behavior, by

preventing the generalization of knowledge (the first
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sense). For example, there is evidence that the hippo-
campus can be detrimental to performance in novel

situations where spatial information becomes irrelevant.

McDonald and White (1994) trained rats to swim to-

wards a visible platform. The rats were later presented

with a novel situation: the platform was moved to a new

location. Rats with a hippocampal lesion outperformed

normal rats by reaching the platform more quickly be-

cause they correctly disregarded the old location of the
platform. Thus, one might conclude instead that the

hippocampus seems to be solely contributing spatial

information in the water maze task, instead of some

more generalized flexibility capacity.

Similar results were found in a study exploring ac-

quisition of conditioned associations in two different

contexts (Honey & Good, 1993). Specifically, rats

learned about feature A in one context (A+, context1)
and feature B in another (B+, context2). Note that the

context is completely irrelevant for acquiring these fea-

ture associations. Nevertheless, intact rats exhibited less

generalization compared to hippocampally lesioned rats

when testing the features in the alternate contexts (A in

context2 and B in context1). In this case, it is difficult to

say whether the hippocampus is contributing to flexi-

bility (by supporting different behaviors depending on
different contexts) or hindering it (by preventing gener-

alization of rewarding behaviors in novel contexts).

More generally, we believe that the ability of the hip-

pocampus to rapidly encode novel information is going

to be useful in a wide range of different task situations,

but that the hippocampus itself is not primarily re-

sponsible for the flexible manipulation of the informa-

tion that it learns. For a detailed example of how
hippocampus can play an encoding role, while not

supporting flexible retrieval, in the transitive inference

task that has been widely cited as supporting the rep-

resentational flexibility account (e.g., Dusek & Eichen-

baum, 1997), see Frank et al., 2003 and associated data

VanElzakker, O’Reilly, and Rudy, 2003.

We argue next that the prefrontal cortex/basal gan-

glia system is specially involved in flexibly selecting
adaptive responses in novel situations. Indeed, we argue

that the basal ganglia play a dominant role in this

function.
3. The basal ganglia: Modulator of cortical representa-

tions

As noted earlier, in our model, the basal ganglia (BG)

act as a modulatory system that can provide adaptive

gating signals to the frontal cortex (e.g., Frank et al.,

2001). These gating signals can help to select a particular

motor action or larger motor plan from among a number

of alternatives currently under consideration. In this

way, the basal ganglia contribute to flexible behavior by
helping to activate task-appropriate actions, enabling
them to overcome prepotent existing associations. This

view contrasts in some ways with the prevalent idea that

the basal ganglia encode stimulus–response associations

as part of the ‘‘habit’’ or procedural learning system. For

example, several researchers have found double dissoci-

ations in both animals and humans in which the BG are

necessary for stimulus–response and procedural learn-

ing, whereas the hippocampus is recruited for spatial and
episodic memory tasks (e.g., Packard et al., 1989; Pack-

ard & Knowlton, 2002; Poldrack et al., 2001; Poldrack,

Prabakharan, Seger, & Gabrieli, 1999; Schroeder, Win-

gard, & Packard, 2002).

In our account of these data, we agree that the hip-

pocampus is important for spatial and episodic memory

tasks, whereas the basal ganglia function in tandem with

the slower-learning cortical system that cannot rapidly
acquire the novel conjunctive representations needed for

spatial and episodic tasks. The stimulus–response and

procedural learning tasks, on the other hand, require

learning to select task-appropriate responses, which is

consistent with a modulatory basal ganglia role. We

discuss this account in greater detail later, after pro-

viding a somewhat more detailed account of our basal

ganglia/frontal cortex model.

3.1. The basal ganglia model

If the BG and frontal cortex work together as a sys-

tem, then what are the respective contributions of the

two areas? We argue that different parts of frontal cortex

(FC) represent different possible ‘‘actions,’’ and that the

BG modulate representations in all areas of frontal
cortex via distinct anatomical loops (Alexander &

Crutcher, 1990; Alexander, Crutcher, & DeLong, 1990).

Specifically, we suggest that the role of the BG is to

facilitate or suppress actions that are being considered in

frontal cortex (Frank, in press; Mink, 1996). In this

discussion we will focus on simple motor representations

in premotor cortex, but the same arguments can be ex-

tended to include cognitive actions, such as the updating
of working memory in prefrontal cortex (Frank et al.,

2001; O’Reilly & Frank, submitted).

We propose that cortico–cortical connections are in-

volved in selecting multiple possible responses for a gi-

ven set of incoming sensory stimuli. Without the benefits

of a modulator, frontal cortex would try to simulta-

neously execute all of these responses, leading to high

amounts of motor interference. The BG select the most
appropriate of these responses by facilitating its execu-

tion while suppressing that of competing responses

(Mink, 1996). Two main projection pathways from the

striatum go through different BG output structures on

the way to thalamus and up to cortex, serving the

facilitatory and suppressive functions (Figs. 3 and 4).

Cells originating in the ‘‘direct’’ pathway inhibit the



Fig. 3. The cortico–striato–thalamo–cortical loops, including the direct

and indirect pathways of the basal ganglia. The cells of the striatum are

divided into two sub-classes based on differences in biochemistry and

efferent projections. The ‘‘Go’’ cells project directly to the GPi, and

have the effect of disinhibiting the thalamus, thereby facilitating the

execution of an action represented in cortex. The ‘‘NoGo’’ cells are

part of the indirect pathway to the GPi, and have an opposing effect,

suppressing actions from getting executed. Dopamine from the SNc

projects to the dorsal striatum, differentially modulating activity in the

direct and indirect pathways by activating different receptors: The Go

cells express the D1 receptor, and the NoGo cells express the D2 re-

ceptor. Dopamine from the VTA projects to ventral striatum (not

shown) and frontal cortex. GPi, internal segment of globus pallidus;

GPe, external segment of globus pallidus; SNc, substantia nigra pars

compacta; SNr, substantia nigra pars reticulata; and VTA, ventral

tegmental area.

Fig. 4. Neural network model of direct and indirect pathways of the

basal ganglia, with differential modulation of these pathways by DA in

the SNc. The premotor cortex (PMC) selects a response via direct

projections from the Input. BG gating results in bottom-up support

from Thalamus, facilitating execution of the response in cortex. In the

Striatum, the Go representation for the response (first column) is

stronger than its NoGo representation (third column). This results in

inhibition of the left column of GPi and disinhibition of the left

Thalamus unit, ultimately facilitating the execution of Response1 in

PMC. A tonic level of DA is shown here, during the response selection

phase. A burst or dip in DA ensues in a second error feedback phase

(not shown), depending on whether the response is correct or incorrect

for the particular input stimulus. Simulated D1 and D2 receptors are

excitatory on the direct/Go pathway and inhibitory on the indirect/

NoGo pathway. See Frank (in press) for details.
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internal segment of the globus pallidus (GPi), whereas

the net effect of firing of cells in the ‘‘indirect’’ pathway
is to excite the GPi. Because the GPi tonically inhibits

the thalamus, direct pathway activity results in thalamic

disinhibition, and ‘‘gates’’ the execution of the corre-

sponding command in cortex (Chevalier & Deniau,

1990). Thus, direct pathway activity sends a ‘‘Go’’ signal

to cortex, enabling it to execute a given response. Con-

versely, indirect pathway activity has the opposite effect,

sending a ‘‘NoGo’’ signal to suppress competing re-
sponses. Note that this disinhibitory interaction with

cortex is inherently modulatory in nature, and is very

different from a hypothetical alternative where the BG

directly excites cortex (Frank et al., 2001).

The above description of BG–FC circuitry is some-

what vague in that it does not specify how the BG

‘‘knows’’ when to signal Go and when to signal NoGo.

Our account of how the BG learn this distinction builds
on suggestions by Schultz and others that phasic changes

in dopamine (DA) firing support learning during rein-

forcement (e.g, Schultz, 1998, 2002; Schultz, Dayan, &

Montague, 1997). Under normal conditions, DA cells

fire at intrinsic baseline levels. Unexpected rewards evoke

transient bursting of DA cells and increase DA release.

By enhancing synaptic plasticity, DA release during

unexpected rewards can drive the animal to learn to
perform the action that led to the reward Wickens, 1997.

In the BG, the main effect of DA is to enhance Go

firing and suppress NoGo firing (Frank, in press). We

argue that it is not mere coincidence that Go and NoGo

cells primarily express D1 and D2 receptors, respectively
(Aubert, Ghorayeb, Normand, & Bloch, 2000; Gerfen,
1992). Given that DA is excitatory to synaptic input on

D1 receptors (Hernandez-Lopez, Bargas, Surmeier,

Reyes, & Galarraga, 1997), its effect is to increase Go

activity. And given that it is inhibitory on D2 receptors

Hernandez-Lopez et al., 2000, its effect is to suppress

NoGo activity. Thus, increases in DA excite Go cells

while inhibiting NoGo cells. The resulting increases in

Hebbian learning in Go cells may allow the animal to
learn to facilitate the action that led to reinforcement.

Note that DA firing can also transiently drop below

baseline levels. Indeed, this is consistently observed

when animals expect to receive a reward based on pre-

vious conditioning, but it is not actually delivered

(Hollerman & Schultz, 1998; Satoh, Nakai, Sato, &

Kimura, 2003). In this case, NoGo cells may become

more excited than their Go counterparts, as they are
released from the suppressive influence of DA. Hebbian

processes may then enable the animal to learn not to

subsequently execute the non-reinforcing response,

and instead to consider some other response (Frank, in

press).
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As DA bursts and dips reinforce Go and NoGo
representations in the BG, our model showed that the

most adaptive (i.e., rewarding) responses represented in

premotor areas will tend to get facilitated while less

adaptive ones are suppressed. Further, as the BG learn

to facilitate adaptive responses, their representations

may become enhanced in premotor cortical areas. In this

way, DA reward processes within the BG may ingrain

prepotent motor ‘‘habits’’ in cortical areas (Frank, in
press). Once these habits are ingrained, there is less need

for selective facilitation by the BG. This is consistent

with observations that dopaminergic integrity within the

BG is much more critical for the acquisition than the

execution of instrumental responses (Parkinson et al.,

2002; Smith-Roe & Kelley, 2000). We have also shown

how these same learning principles can shape prefrontal

cortex updating signals to solve complex working
memory tasks (O’Reilly & Frank, submitted).

In the following sections, we discuss the application

of this basal ganglia model within the larger context of

our overall tripartite cognitive architecture. First, we

discuss the subtle but important distinctions between the

functions of action selection versus stimulus response

mapping, and how these different views of the BG make

different experimental predictions. Next, we argue that
the BG may be differentially important for overcoming

prepotent response mappings. Then, we return to the

issue of behavioral flexibility, discussed above, in the

context of more specific BG contributions. Finally, we

address the putative direct competition between the HC

and BG in place and response learning, which we argue

may instead arise from differential modulation of the

two structures on motor cortex that follow different time
courses.

3.2. Action selection versus stimulus–response mapping

Our model emphasizes the role of the BG in the

suppression and selection of cortical representations

based on reward history. Those representations include

motor responses and plans in the motor and premotor
cortices. This characterization is in partial agreement

with the stimulus–response (S-R) theory of the dorsal

striatal function (for a review, see Packard & Knowlton,

2002). However, our model stresses the involvement of

the BG in situations where a number of potent responses

are competing to be expressed. In other words, we pre-

dict that the BG may not be involved in a situation in

which the subject has to learn a single S-R association.
In the cued water maze task, for example, rats with a

dorsal striatal lesion normally learn to approach a single

visible platform (Devan & White, 1999; McDonald &

White, 1994). In contrast, the striatal lesion produces a

deficit when two visible platforms (one of them does not

provide escape) are placed in the maze (Packard &

McGaugh, 1992). Thus, the BG seem to be involved
when the animal is given a choice between two S-R as-
sociations rather than in the association of one stimulus

with one response.

Interestingly, a two-choice cue task in a Y-maze does

not seem to involve the BG (McDonald & White, 1991;

Ragozzino, Ragozzino, Mizumori, & Kesner, 2002b).

This is in direct contrast with the results from the two-

choice water maze task mentioned above (Packard &

McGaugh, 1992). We believe that this discrepancy is
also suggestive for a role of the BG in choosing among

alternative response options. The Y-maze, unlike the

water maze, limits the response options to two: a left or

right response. In contrast, the water maze allows an

almost unlimited number of possible trajectories. We

propose that the BG are needed to enforce the most

efficient trajectory towards the stable platform. In fact,

rats with dorsal striatal lesion show abnormal swim
paths in the watermaze even on the hidden-platform

task (Devan, McDonald, & White, 1999; Furtado &

Mazurek, 1996; Wishaw, Mittleman, Bunch, & Dunnett,

1987).

A comparison between performance in the Y-maze

and the radial maze also led us to the same conclusion.

Increasing the number of options in the radial maze

(eight options instead of the two in the Y-maze) also
reveals a deficit in rats with dorsal striatal lesion (Kan-

tak, Green-Jordan, Valencia, Kremin, & Eichenbaum,

2001; Packard et al., 1989; McDonald & White, 1991;

Sakamoto & Okaichi, 2001).

3.2.1. Overcoming prepotent responses

Overcoming a prepotent response is another situation

where we predict the involvement of the BG. Such a sit-
uation requires the BG to suppress the expression of the

prepotent response, and support the selection of a more

adaptive one. In fact, the evidence suggests that even

when the animal is given two choices (e.g., the Y-maze), a

disruption of the BG impairs the performance of reversal

and strategy-switching tasks (Ragozzino et al., 2002b;

Ragozzino, Jih, & Tzavos, 2002a; Sakamoto & Okaichi,

2001; Wishaw et al., 1987). For example, Ragozzino
et al., 2002a reported that the inactivation of the dorso-

medial striatum does not affect the acquisition of a

response task (i.e., making a left turn in the four-arm plus

maze). Yet those rats failed to adjust their behavior in the

reversal phase, when they were rewarded for making a

right turn. We believe that the BG are involved because

reversal creates a difficult choice situation in which the

animal has to select a currently rewarded response and
suppress a previously rewarded one.

3.2.2. Behavioral flexibility

The basal ganglia/cortical system can contribute to

the ‘‘adaptive’’ sense of flexibility as described earlier, by

helping to modulate behavior as task demands change.

For example, the ability to switch strategies and
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responses has been widely considered as an example of
behavioral flexibility. Despite the term’s vagueness, we

believe that the use of the term in this context is more

fitting than in the description of hippocampal function.

Thus, there is evidence that the BG help adaptation to

novel situations (such as reversal) irrespective to the

content of the modalities involved (Cools, Barker,

Sahakian, & Robbins, 2001; Gotham, Brown, & Mars-

den, 1988; Ragozzino et al., 2002b; Swainson et al.,
2000). In one case, Ragozzino et al. (2002b) showed that

the BG are essential for switching from a response to a

cue strategy and vice versa. In contrast, as we mentioned

above, the hippocampus becomes detrimental to per-

formance if a spatial strategy is replaced by a visual cue

strategy (McDonald & White, 1994).

In the context of our BG model, we argue that the

basal ganglia can learn from negative feedback and help
to modulate the execution of motor commands, pro-

viding NoGo signals for the no-longer-appropriate ac-

tions, and Go signals to the newly appropriate actions.

As explained above, this learning depends on the do-

paminergic (DA) modulation of Go/NoGo firing in the

BG. We have found in our computational models that a

sufficient dynamic range of DA signals is required

for demanding learning tasks such as in the reversal
condition (Frank, in press; O’Reilly, Noelle, Braver, &

Cohen, 2002; Rougier, Noelle, Braver, Cohen, &

O’Reilly, submitted; Rougier & O‘Reilly, 2002). That is,

to learn changing reinforcement values of behaviors, the

DA signal has to be able to both increase and decrease

substantially from baseline levels. Decreases in DA may

be necessary not only to suppress initially non-reward-

ing responses, but may be particularly critical to over-
ride responses that were once rewarding but have since

changed. This issue was explored in our computational

model to explain certain negative effects of dopaminer-

gic medication on cognition in Parkinsons’ disease (PD)

(Frank, in press).

While medication in PD improves performance in

task-switching, it actually tends to impair performance

in probabilistic reversal (Cools et al., 2001; Gotham
et al., 1988; Swainson et al., 2000). These authors noted

that the task-dependent medication effects are likely

related to the fact that different tasks recruit different

parts of the striatum. Dopaminergic damage in early

stage PD is restricted to the dorsal striatum, leaving the

ventral striatum with normal levels of DA (Agid et al.,

1993; Kish, Shannak, & Hornykiewicz, 1988). This ex-

plains why DA medication alleviates deficits in task-
switching, which relies on dorsal striatal interactions

with dorsolateral prefrontal cortex. However, the

amount of medication necessary to replenish the dorsal

striatum might ‘‘overdose’’ the ventral striatum with

DA, and is therefore detrimental to tasks that recruit it.

Thus reversal learning is impaired because it depends on

the ventral striatum and ventral prefrontal cortex in
monkeys (e.g., Dias, Robbins, & Roberts, 1996; Stern &
Passingham, 1995), and recruits these same areas in

healthy humans (Cools, Clark, Owen, & Robbins, 2002).

To simulate medication effects, it was hypothesized

that medication increases the tonic level of DA, but that

this interferes with the natural biological system’s ability

to dynamically regulate phasic DA changes. Specifically,

phasic DA dips during negative feedback may be par-

tially shunted by DA agonists that continue to bind
to receptors. When this was simulated in the model,

selective deficits were observed during probabilistic re-

versal, despite equivalent performance in the acquisition

phase (Frank, in press), mirroring the results found in

medicated patients. Because increased tonic levels of DA

suppressed the indirect/NoGo pathway, networks were

unable to learn ‘‘NoGo’’ to override the prepotent re-

sponse learned in the acquisition stage. This account is
consistent with similar reversal deficits observed in

healthy participants administered an acute dose of

bromocriptine, a D2 agonist (Mehta, Swainson, Ogilvie,

Sahakian, & Robbins, 2000).

3.3. Place versus response learning

As noted earlier, a number of researchers have hy-
pothesized that the hippocampus and basal ganglia are

two competing, parallel learning systems that align es-

sentially with the declarative versus procedural distinc-

tion (e.g., Packard et al., 1989; Packard & Knowlton,

2002; Poldrack et al., 1999, 2001; Schroeder et al., 2002).

Specifically, the hippocampus is thought to mediate

spatial and episodic learning, while the basal ganglia

mediates the acquisition of ‘‘habits.’’ This view is sche-
matized in Fig. 5A. Our own view of the relationship

between BG and hippocampus, based on the computa-

tional model described earlier and relevant anatomical

projections, is summarized in Fig. 5B. Here, we distin-

guish between ventral and dorsal striatal areas, which

receive preferentially from hippocampus and cortex,

respectively (e.g., Groenewegen, Vermeulen-van Der

Zee, Te Kortschot, & Witter, 1987). Both BG areas are
thought to play a modulatory role on motor responding,

but based on different representations encoded by their

inputs. Thus, ventral striatum (vBG) modulate re-

sponding based on the conjunctive hippocampal repre-

sentations that provide its input, while dorsal striatum

(dBG) provides modulation based on more elemental

sensory representations. Indeed, the nucleus accumbens

(a principal component of the vBG) is often thought of
as the interface between limbic desires and motor output

behavior, because it integrates hippocampal and amyg-

dala information to modulate response selection (Mog-

enson, Jones, & Yim, 1980). The resolution between

competing response strategies engendered by these dif-

ferent BG areas and their respective inputs may be re-

solved within the basal ganglia themselves (e.g., via the



Fig. 5. Two contrasting views of the relationship between basal ganglia (BG) and hippocampus (HC). (A) In one view, the two systems compete

directly to drive motor responding, with the HC supporting spatial, place-based behaviors (e.g., ‘‘go to this location’’), and the BG supporting

‘‘habitual’’ response-based behaviors (e.g., ‘‘turn left’’). (B) Our view suggests instead that the BG as a whole modulates motor responding based on

different kinds of inputs, from HC and posterior cortex (PC). Ventral striatum (vBG) receives from HC, and dorsal striatum (dBG) from PC. Thus,

the BG per se does not compete directly with HC, but instead helps to support responding based on its inputs. Similarly, the PC supports responding

based on simpler elementary stimuli. Competition between different response strategies may be mediated within the BG itself (e.g., in the globus

pallidus) and directly within the frontal cortex response areas.

264 H.E. Atallah et al. / Neurobiology of Learning and Memory 82 (2004) 253–267
globus pallidus; Mink, 1996), and also within motor

response areas of frontal cortex.

One critical difference between these two views is that

we do not view hippocampus as competing with basal

ganglia per se. Instead, the hippocampus and the ventral

BG work in concert, each contributing specialized
functions according to the principles outlined earlier

(i.e., hippocampus can rapidly bind information into

conjunctive spatial representations, while the vBG can

help modulate responding based on these spatial inputs,

informed by prior reward-based learning history). These

two different views make different predictions and

explanations of experimental outcomes.

Some of the relevant data comes from studies where
the effects of lesions of the dorsal striatum and hippo-

campus have been contrasted in the context of a task

where either a place-based or response-based strategy

can be employed. For example, in a plus maze, rats can

be trained to go into a particular arm given the same

initial starting arm. This behavior is ambiguous, and

could be supported by a response-based strategy (e.g.,

‘‘go left’’), or a place-based strategy (go to this partic-
ular location within the overall maze-room environ-

ment). Disambiguation comes by placing the rat in the

opposite starting arm: a response strategy will cause the

rat to go to the opposite location, while a place strategy

will result in going to the same location. In such studies,

dorsal striatum lesions impair the use of a response-

based strategy, while hippocampal lesions impair the use

of a place-based strategy (Packard, 1999; Packard &
McGaugh, 1996; Poldrack & Packard, 2003). These re-

sults have been interpreted as support for a competition

between BG and HC. However, it is also consistent with

our model, because dBG was lesioned, not vBG. When

vBG (specifically nucleus accumbens) is lesioned, how-

ever, it reliably produces significant deficits in spatial

tasks, similar to those produced by hippocampal dam-

age (e.g., Annett, McGregor, & Robbins, 1989; Roullet,
Sargolini, & Mele, 2001; Sargolini, Florian, Oliverio,
Mele, & Roullet, 2003; Seamans & Philips, 1994; Setlow

& McGaugh, 1998).

Other interesting data from the plus maze and related

paradigms show that behavior in intact animals is ini-

tially consistent with place responding, but then later

transfers to response-based strategies. The fact that
hippocampal behavior dominates early in training is

consistent with the notion that HC rapidly develops

conjunctive representations, while the cortical/BG sys-

tem slowly ingrains habits.

Other data support the coordinated but still distinct

contributions of hippocampus and ventral basal ganglia

to spatial processing. For example, Seamans and Philips

(1994) deactivated the medial nucleus accumbens with
lidocaine injections while rats performed a spatial task

in the radial maze. The spatial task involved a sampling

phase in which four of the eight arms were baited with

food while the other arms were blocked. Thirty minutes

later, the rats were required to avoid the four arms

visited in the sampling phase because only the remaining

arms were baited. Lidocaine injections before the sam-

pling phase had no effect on performance on the test
phase. In contrast, injections right before the test phase

impaired the rats’ ability to avoid the sampled arms.

This study suggests that disabling the nucleus ac-

cumbens had no effect on the acquisition of spatial in-

formation on the sampling phase. The deficit was found

only when the rats were required to respond based on

the information acquired on the sampling phase. Thus,

it is possible that the medial nucleus accumbens is in-
volved in modulating a response system based on the

task demands (win-shift). Sutherland and Rodriguez

(1989) reported similar results in the spatial water maze

task. They found that rats with a lesion of the whole

nucleus accumbens were unable to find a submerged

platform using spatial cues. In contrast, a post-acquisi-

tion lesion did not affect performance. In other words,

the nucleus accumbens seems to be involved in the
acquisition but not retention of spatial learning. The
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results from both experiments suggest that the nucleus
accumbens is not involved in either the acquisition of

spatial representations nor the navigational perfor-

mance in a maze. Instead, it may have a time-limited

effect in associating spatial representations with a goal-

directed strategy (i.e., acquisition of win-shift strategy).
4. Summary and conclusions

To summarize, we have developed a tripartite cog-
nitive architecture based on computational tradeoffs

among different types of neural computations that re-

quire different parameters and mechanisms. This archi-

tecture consists of the posterior cortex, hippocampus,

and frontal cortex/basal ganglia system. We have im-

plemented concrete computational models of these dif-

ferent brain areas, and tested their ability to account for

a wide range of human and animal behavioral data. In
many ways, this computational framework accords well

with existing theoretical ideas, but it also makes different

predictions in a number of cases. We have argued here

that this mechanistic framework may provide a better fit

to the data than theories based on verbal dichotomies.
References

Agid, Y., Ruberg, M., Hirsch, E., Raisman-Vozari, R., Vyas, S.,

Faucheux, B., Michel, P., Kastner, A., Blanchard, V., Damier, P.,

Villares, J., & Zhang, P. (1993). Are dopaminergic neurons

selectively vulnerable to Parkinson’s disease? Advances in Neurol-

ogy, 60, 148–164.

Alexander, G., Crutcher, M., & DeLong, M. (1990). Basal ganglia–

thalamocortical circuits: Parallel substrates for motor, oculomotor,

‘‘prefrontal’’ and ‘‘limbic’’ functions. In H. Uylings, C. Van Eden,

J. De Bruin, M. Corner, & M. Feenstra (Eds.), The prefrontal

cortex: Its structure, function, and pathology (pp. 119–146).

Amsterdam: Elsevier.

Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture

of basal ganglia circuits: Neural substrates of parallel processing.

Trends in Neuroscience, 13, 266–271.

Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1999). Temporally

graded retrograde amnesia of contextual fear after hippocampal

damage in rats: Within-subjects examination. Journal of Neurosci-

ence, 19, 1106.

Annett, L., McGregor, A., & Robbins, T. (1989). The effects of

ibotenic acid lesions of the nucleus accumbens on spatial learning

and extinction in the rat. Behavioral Brain Research, 31, 231–242.

Aubert, I., Ghorayeb, I., Normand, E., & Bloch, B. (2000). Pheno-

typical characterization of the neurons expressing the D1 and D2

dopamine receptors in the monkey striatum. Journal of Compar-

ative Neurology, 418, 22–32.

Burgess, N., & O’Keefe, J. (1996). Neuronal computations underlying

the firing of place cells and their role in navigation. Hippocampus,

6, 749–762.

Chevalier, G., & Deniau, J. M. (1990). Disinhibition as a basic process

in the expression of striatal functions. Trends in Neurosciences, 13,

277–280.
Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit

contextual information in amnesic subjects with hippocampal

damage. Nature Neuroscience, 2(9), 844–847.

Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the

hippocampal system. Cambridge, MA: MIT Press.

Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2001).

Mechanisms of cognitive set flexibility in parkinson’s disease.

Brain, 124, 2503–2512.

Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining

the neural mechanisms of probabilistic reversal learning using

event-related functional magnetic resonance imaging. Journal of

Neuroscience, 22, 4563–4567.

Devan, B., McDonald, R., & White, N. (1999). Effects of medial and

lateral caudate-putamen lesions on place- and cue guided behaviors

in the water maze: Relation to thigmotaxis. Behavioural Brain

Research, 100, 5–14.

Devan, B. D., & White, N. M. (1999). Parallel information processing

in the dorsal striatum: Relation to hippocampal function. Journal

of Neuroscience, 19, 2789.

Dias, R., Robbins, T. W., & Roberts, A. C. (1996). Dissociation in

prefrontal cortex of affective and attentional shifts. Nature, 380,

69.

Dusek, J. A., & Eichenbaum, H. (1997). The hippocampus and

memory for orderly stimulus relations. Proceedings of the National

Academy of Sciences of the United States of America, 94, 7109–

7114.

Eichenbaum, H., Stewart, C., & Morris, R. G. M. (1990). Hippocam-

pal representation in place learning. Journal of Neuroscience,

10(11), 3531–3542.

Fanselow, M. S. (1990). Factors governing one-trial contextual

conditioning. Animal Learning and Behavior, 18, 264–270.

Frank, M.J. (in press). Dynamic dopamine modulation in the basal

ganglia: A mjf.da.bib-neurocomputational account of cognitive

deficits in medicated and non-medicated Parkinsonism. Journal of

Cognitive Neuroscience.

Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions

between the frontal cortex and basal ganglia in working memory: A

computational model. Cognitive, Affective, and Behavioral Neuro-

science, 1, 137–160.

Frank, M. J., Rudy, J. W., & O’Reilly, R. C. (2003). Transitivity,

flexibility, conjunctive representations and the hippocampus: II. A

computational analysis. Hippocampus, 13, 341–354.

Furtado, J., & Mazurek, M. (1996). Behavioral characterization of

quinolinate-induced lesions of the medial striatum: Relevance for

Huntington’s disease. Experimental Neurology, 138, 158–168.

Gerfen, C. (1992). The neostriatal mosaic: Multiple levels of compart-

mental organization in the basal ganglia. Annual Review of

Neuroscience, 15, 285–320.

Gotham, A., Brown, R., & Marsden, C. (1988). ‘Frontal’ cognitive

function in patients with Parkinson’s disease ‘on’ and ‘off’

levodopa. Brain, 111, 299–321.

Groenewegen, H., Vermeulen-van Der Zee, E., Te Kortschot, A., &

Witter, M. (1987). Organization of the projections from the

subiculum to the ventral striatum in the rat. A study using

anterograde transport of Phaseolus vulgaris leucoagglutinin. Neu-

roscience, 23, 103–120.

Hasselmo, M. E., & Wyble, B. (1997). Free recall and recognition in a

network model of the hippocampus: Simulating effects of scopol-

amine on human memory function. Behavioural Brain Research, 89,

1–34.

Hernandez-Lopez, S., Bargas, J., Surmeier, D., Reyes, A., & Galar-

raga, E. (1997). D1 receptor activation enhances evoked discharge

in neostriatal medium spiny neurons by modulating an L-type Ca2þ

conductance. Journal of Neuroscience, 17, 3334–3342.

Hernandez-Lopez, S., Tkatch, T., Perez-Garci, E., Galarraga, E.,

Bargas, J., Hamm, H., & Surmeier, D. (2000). D2 dopamine

receptors in striatal medium spiny neurons reduce L-type Ca2þ



266 H.E. Atallah et al. / Neurobiology of Learning and Memory 82 (2004) 253–267
currents and excitability via a novel PLCb1-IP3-calcineurin-signal-

ing cascade. Journal of Neuroscience, 20, 8987–8995.

Hikosaka, O. (1998). Neural systems for control of voluntary action—a

hypothesis. Advances in Biophysics, 35, 81–102.

Holdstock, J. S., Mayes, A. R., Roberts, N., Cezayirli, E., Isaac, C. L.,

O’Reilly, R. C., & Norman, K. A. (2002). Under what conditions is

recognition spared relative to recall after selective hippocampal

damage in humans? Hippocampus, 12, 341–351.

Hollerman, J., & Schultz, W. (1998). Dopamine neurons report an

error in the temporal prediction of reward during learning. Nature

Neuroscience, 1, 304–309.

Honey, R. C., & Good, M. (1993). Selective hippocampal lesions

abolish the contextual specificity of latent inhibition and condi-

tioning. Behavioral Neuroscience, 107, 23–33.

Kantak, K. M., Green-Jordan, K., Valencia, E., Kremin, T., &

Eichenbaum, H. B. (2001). Cognitive task performance after

lidocaine-induced inactivation of different sites within the basolat-

eral amygdala and dorsal striatum. Behavioral Neuroscience, 115,

589–601.

Kim, J. J., & Fanselow, M. S. (1992). Modality-specific retrograde

amnesia of fear. Science, 256, 675–677.

Kish, S., Shannak, K., & Hornykiewicz, O. (1988). Uneven pattern of

dopamine loss in the striatum of patients with idiopathic Parkin-

son’s disease. New England Journal of Medicine, 318, 876–880.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why

there are complementary learning systems in the hippocampus and

neocortex: Insights from the successes and failures of connectionist

models of learning and memory. Psychological Review, 102, 419–

457.

McDonald, R. J., & White, N. M. (1994). Parallel information

processing in the water maze: Evidence for independent memory

systems involving dorsal striatum and hippocampus. Behavioral

and Neural Biology, 61, 260–270.

Mehta, M., Swainson, R., Ogilvie, A., Sahakian, B., & Robbins, T.

(2000). Improved short-term spatial memory but impaired reversal

learning following the dopamine D2 agonist bromocriptine in

human volunteers. Psychopharmacology, 159, 10–20.

Mink, J. W. (1996). The basal ganglia: Focused selection and

inhibition of competing motor programs. Progress in Neurobiology,

50, 381–425.

Mogenson, G., Jones, D., & Yim, C. (1980). From motivation to

action: Functional interface between the limbic system and the

motor system. Progress in Neurobiology, 14, 69–87.

Moll, M., & Miikkulainen, R. (1997). Convergence-zone episodic

memory: Analysis and simulations. Neural Networks, 10, 1017–

1036.

Moscovitch, M., & Nadel, L. (1998). Consolidation and the hippo-

campal complex revisited: In defense of the multiple-trace model.

Current Opinion in Neurobiology, 8, 297.

Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and

neocortical contributions to recognition memory: A complemen-

tary learning systems approach. Psychological Review, 110, 611–

646.

O’Reilly, R. C. (1998). Six principles for biologically-based computa-

tional models of cortical cognition. Trends in Cognitive Sciences,

2(11), 455–462.

O’Reilly, R. C., Braver, T. S., & Cohen, J. D. (1999). A biologically

based computational model of working memory. In A. Miyake &

P. Shah (Eds.), Models of working memory: Mechanisms of active

maintenance and executive control (pp. 375–411). New York:

Cambridge University Press.

O’Reilly, R. C., & Frank, M. J. (submitted). Making working memory

work: A computational model of learning in the frontal cortex and

basal ganglia.

O’Reilly, R. C., & McClelland, J. L. (1994). Hippocampal conjunctive

encoding, storage, and recall: Avoiding a tradeoff. Hippocampus,

4(6), 661–682.
O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in

cognitive neuroscience: Understanding the mind by simulating the

brain. Cambridge, MA: MIT Press.

O’Reilly, R. C., Noelle, D., Braver, T. S., & Cohen, J. D. (2002).

Prefrontal cortex and dynamic categorization tasks: Representa-

tional organization and neuromodulatory control. Cerebral Cortex,

12, 246–257.

O’Reilly, R. C., & Norman, K. A. (2002). Hippocampal and

neocortical contributions to memory: Advances in the complemen-

tary learning systems framework. Trends in Cognitive Sciences, 6,

505–510.

O’Reilly, R. C., Norman, K. A., & McClelland, J. L. (1998). A

hippocampal model of recognition memory. In M. I. Jordan, M. J.

Kearns, & S. A. Solla (Eds.), Advances in neural information

processing systems (Vol. 10, pp. 73–79). Cambridge, MA: MIT

Press.

O’Reilly, R. C., & Rudy, J. W. (2001). Conjunctive representations in

learning and memory: Principles of cortical and hippocampal

function. Psychological Review, 108, 311–345.

Packard, M. G., & McGaugh, J. (1992). Double dissociation of fornix

and caudate nucleus lesions on acquisition of two water maze tasks:

Further evidence for multiple memory systems. Behavioral Neuro-

science, 106, 439–446.

Packard, M. (1999). Glutamate infused posttraining into the

hippocampus or caudate-putamen differentially strengthens place

and response learning. Proceedings of the National Academy

of Sciences of the United States of America, 96, 12881–

12886.

Packard, M., & Knowlton, B. (2002). Learning and memory

functions of the basal ganglia. Annual Review in Neuroscience,

25, 563–593.

Packard, M., & McGaugh, J. (1996). Inactivation of hippocampus or

caudate nucleus with lidocaine affects expression of place and

response learning. Neurobiology of Learning and Memory, 65, 65–

72.

Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects

of fornix and caudate nucleus lesions on two radial maze tasks:

Evidence for multiple memory systems. Journal of Neuroscience, 9,

1465–1472.

Parkinson, J., Dalley, J., Cardinal, R., Bamford, A., Fehnert, B.,

Lachenal, G., Rudarakanchana, N., Halkerston, K., Robbins, T.,

& Everitt, B. (2002). Nucleus accumbens dopamine depletion

impairs both acquisition and performance of appetitive Pavlovian

approach behaviour: Implications for mesoaccumbens dopamine

function. Behavioral Brain Research, 137, 149–163.

Poldrack, R., & Packard, M. (2003). Competition among multiple

memory systems: Converging evidence from animal and human

brain studies. Neuropsychologia, 41, 245–251.

Poldrack, R., Prabakharan, V., Seger, C., & Gabrieli, J. (1999). Striatal

activation during cognitive skill learning. Neuropsychology, 13,

564–574.

Poldrack, R. A., Clark, J., PareBlagoev, E. J., Shohamy, D., Moyano,

J. C., Myers, C., & Gluck, M. A. (2001). Interactive memory

systems in the human brain. Nature, 413, 546–549.

Ragozzino, M., Jih, J., & Tzavos, A. (2002a). Involvement of the

dorsomedial striatum in behavioral flexibility: Role of muscarinic

cholinergic receptors. Brain Research, 953, 205–214.

Ragozzino, M. F., Ragozzino, K. E., Mizumori, S. J. Y., & Kesner, R.

P. (2002b). Role of the dorsomedial striatum in behavioral

flexibility for response and visual cue discrimination learning.

Behavioral Neuroscience, 116, 105–115.

R.J., McDonald, & N.M., White (1991). A triple dissociation of

memory systems: Hippocampus, amygdala, and dorsal striatum.

Behavioral Neuroscience, 107, 3–22.

Rougier, N. P., Noelle, D., Braver, T. S., Cohen, J. D., & O’Reilly, R.

C. (submitted). Prefrontal cortex and the flexibility of cognitive

control: Rules without symbols.



H.E. Atallah et al. / Neurobiology of Learning and Memory 82 (2004) 253–267 267
Rougier, N. P., & O‘Reilly, R. C. (2002). Learning representations in a

gated prefrontal cortex model of dynamic task switching. Cognitive

Science, 26, 503–520.

Roullet, P., Sargolini, F., & Mele, A. (2001). NMDA and AMPA

antagonist infusions into the ventral striatum impair different steps

of spatial information processing in a nonassociate task in mice.

Journal of Neuroscience, 21, 2143–2149.

Rudy, J. W., Barrientos, R. M., & OReilly, R. C. (2002). Hippocampal

formation supports conditioning to memory of a context. Behav-

ioral Neuroscience, 116, 530–538.

Rudy, J. W., & O’Reilly, R. C. (1999). Contextual fear conditioning,

conjunctive representations, pattern completion, and the hippo-

campus. Behavioral Neuroscience, 113, 867–880.

Rudy, J. W., & O’Reilly, R. C. (2001). Conjunctive representations, the

hippocampus, and contextual fear conditioning. Cognitive, Affec-

tive, and Behavioral Neuroscience, 1, 66–82.

Sakamoto, T., & Okaichi, H. (2001). Use of win-stay and win-shift

strategies in place and cue tasks by medial caudate putamen

(mcpu) lesioned rats. Neurobiology of Learning and Memory, 76,

192–208.

Sargolini, F., Florian, C., Oliverio, A., Mele, A., & Roullet, P. (2003).

Differential involvement of nmda and ampa receptors within the

nucleus accumbens in consolidation of information necessary for

place navigation and guidance strategy of mice. Learning and

Memory, 10, 285–292.

Satoh, T., Nakai, S., Sato, T., & Kimura, M. (2003). Correlated coding

of motivation and outcome of decision by dopamine neurons.

Journal of Neuroscience, 23, 9913–9923.

Schroeder, J. P., Wingard, J. C., & Packard, M. G. (2002). Post-

training reversible inactivation of hippocampus reveals interference

between memory systems. Hippocampus, 12, 280–284.

Schultz, W. (1998). Predictive reward signal of dopamine neurons.

Journal of Neurophysiology, 80, 1.

Schultz, W. (2002). Getting formal with dopamine and reward.

Neuron, 36, 241–263.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate

of prediction and reward. Science, 275, 1593.

Seamans, J., & Philips, A. (1994). Selective memory impairments

produced by transient lidocaine-induced lesions of the nucleus

accumbens in rats. Behavioral Neuroscience, 108, 456–468.

Setlow, B., & McGaugh, J. (1998). Sulpiride infused into the nucleus

accumbens impairs memory for spatial water maze training.

Behavioral Neuroscience, 112, 603–610.

Smith-Roe, S., & Kelley, A. (2000). Coincident activation of NMDA

and dopamine D1 receptors within the nucleus accumbens core is
required for appetitive instrumental learning. Journal of Neurosci-

ence, 22, 7737–7742.

Squire, L. R. (1992). Memory and the hippocampus: A synthesis from

findings with rats, monkeys, and humans. Psychological Review, 99,

195–231.

Stern, C., & Passingham, R. (1995). The nucleus accumbens in

monkeys (Macaca fascicularis). Experimental Brain Research, 106,

239–247.

Sutherland, R., & Rodriguez, A. (1989). The role of the fornix/fimbria

and some related subcortical structures in place learning and

memory. Behavioural Brain research, 32, 265–277.

Sutherland, R. J., Weisend, M. P., Mumby, D., Astur, R. S., Hanlon,

F. M., Koerner, A., Thomas, M. J., Wu, Y., Moses, S. N., Cole, C.,

Hamilton, D. A., & Hoesing, J. M. (2001). Retrograde amnesia

after hippocampal damage: Recent vs. remote memories in two

tasks. Hippocampus, 11, 27–42.

Swainson, R., Rogers, R. D., Sahakian, B., Summers, B., Polkey, C., &

Robbins, T. W. (2000). Probabilistic learning and reversal deficits

in patients with Parkinson’s disease or frontal or temporal lobe

lesions: Possible adverse effects of dopaminergic medication.

Neuropsychologia, 38, 596.

Touretzky, D. S., & Redish, A. D. (1996). A theory of rodent

navigation based on interacting representations of space. Hippo-

campus, 6, 247–270.

Treves, A., & Rolls, E. T. (1994). A computational analysis of the role

of the hippocampus in memory. Hippocampus, 4, 374–392.

VanElzakker, M., O’Reilly, R. C., & Rudy, J. W. (2003). Transitivity,

flexibility, conjunctive representations and the hippocampus: I. An

empirical analysis. Hippocampus, 13, 334–340.

Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A.,

Van Paesschen, W., & Mishkin, M. (1997). Differential effects of

early hippocampal pathology on episodic and semantic memory.

Science, 277, 376–380.

Wickens, J. (1997). Basal ganglia: Structure and computations.

Network: Computation in Neural Systems, 8, R77–R109.

Wishaw, I., Mittleman, G., Bunch, S., & Dunnett, S. (1987).

Impairments in the acquisitation, retention and selection of spatial

navigation strategies after medial caudate-putamen lesions in rats.

Behavioural Brain Research, 24, 125–138.

Wu, X., Baxter, R. A., & Levy, W. B. (1996). Context codes and the

effect of noisy learning on a simplified hippocampal CA3 model.

Biological Cybernetics, 74, 159–165.

Yonelinas, A. P. (2002). The nature of recollection and familiarity: A

review of 30 years of research. Journal of Memory and Language,

46, 441–517.


	Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems
	Introduction
	Hippocampus and posterior neocortex
	Recognition memory
	Recognition memory after focal hippocampal damage
	Contextual conditioning in the rat

	Comparison with other hippocampal learning theories
	Hippocampus: Declarative memory system
	Hippocampus: ``Representational flexibility''?


	The basal ganglia: Modulator of cortical representations
	The basal ganglia model
	Action selection versus stimulus-response mapping
	Overcoming prepotent responses
	Behavioral flexibility

	Place versus response learning

	Summary and conclusions
	References


