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A B S T R A C T   

When navigating uncertain worlds, humans must balance exploring new options versus exploiting known re
wards. Longer horizons and spatially structured option values encourage humans to explore, but the impact of 
real-world cognitive constraints such as environment size and memory demands on explore-exploit decisions is 
unclear. In the present study, humans chose between options varying in uncertainty during a multi-armed bandit 
task with varying environment size and memory demands. Regression and cognitive computational models of 
choice behavior showed that with a lower cognitive load, humans are more exploratory than a simulated value- 
maximizing learner, but under cognitive constraints, they adaptively scale down exploration to maintain 
exploitation. Thus, while humans are curious, cognitive constraints force people to decrease their strategic 
exploration in a resource-rational-like manner to focus on harvesting known rewards.   

Effective learning and decision-making requires balancing two stra
tegies: exploiting known good options versus exploring uncertain, 
potentially better ones (Sutton & Barto, 1998). Exploration involves 
forgoing short-term rewards to reduce uncertainty and discover better 
long-term values, while exploitation maximizes short-term rewards at 
the expense of learning about other options. The inherent tradeoff be
tween exploration and exploitation requires learners to shift adaptively 
between these behavioral strategies to maximize long-term rewards. 
Factors that affect explore-exploit decisions are essential to our under
standing of how learners navigate uncertain environments. Reducing 
uncertainty through exploration is potentially advantageous but fea
tures of the environment can limit the utility of exploration. For 
example, in environments with a short horizon, when learners anticipate 
few future encounters with a choice, the benefit of exploring to reduce 
uncertainty for future choices is low. Accordingly, humans reduce their 
exploration in such environments (Rich & Gureckis, 2018; Wilson, 
Geana, White, Ludvig, & Cohen, 2014). Environment size is another, less 
studied feature affecting exploration; humans can use spatially struc
tured values to explore (Schulz et al., 2019; Wu, Schulz, Speekenbrink, 
Nelson, & Meder, 2018), but effects of systematic manipulations of 
environment size on exploration have not been investigated. As the 
number of options available to choose from relative to the horizon 

increases, exploration should become less advantageous; however, 
whether humans can adaptively adjust exploratory strategies as they do 
with horizon changes is unknown. 

In addition to normative reductions in exploration with increasing 
environment size, cognitive constraints may cause humans to adjust 
their exploration rate. Tracking and updating many potential options to 
enable effective exploration places demands on cognitive resources, as 
does maintaining accurate value estimates for exploitation. Cognitive 
constraints interfere with learning and valuation processes, but humans 
can anticipate and adjust for this interference: people proactively 
employ strategies for efficient learning under cognitive constraints, such 
as adjusting effort based on the expected value of control (Shenhav et al., 
2017; Shenhav, Botvinick, & Cohen, 2013), exploiting hidden structure 
(Collins & Frank, 2013; Wu et al., 2018), and balancing resource- 
intensive but fast and flexible working memory with reinforcement 
learning (Collins, Albrecht, Waltz, Gold, & Frank, 2017). These adjust
ments allow performance to be maintained even with cognitive chal
lenges, but how cognitive constraints affect how humans adjust the 
tradeoff between exploration and exploitation is less clear. 

Work manipulating cognitive load during exploratory choices has 
used techniques such as concurrent working memory tasks or time 
pressure; these manipulations have been found to variously change 

* Corresponding author. 
E-mail address: brownvm2@upmc.edu (V.M. Brown).  

Contents lists available at ScienceDirect 

Cognition 

journal homepage: www.elsevier.com/locate/cognit 

https://doi.org/10.1016/j.cognition.2022.105233 
Received 21 February 2022; Received in revised form 2 June 2022; Accepted 22 July 2022   

mailto:brownvm2@upmc.edu
www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2022.105233
https://doi.org/10.1016/j.cognition.2022.105233
https://doi.org/10.1016/j.cognition.2022.105233
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2022.105233&domain=pdf


Cognition 229 (2022) 105233

2

exploratory strategies or reduce exploration in favor of exploitation 
(Cogliati Dezza, Cleeremans, & Alexander, 2019; Otto, Knox, Markman, 
& Love, 2014; Wu, Schulz, Pleskac, & Speekenbrink, 2022). Exploration 
strategies in more complex environments also likely involve a shift from 
simpler subcortical explore-exploit processes to more sophisticated 
cortical strategies (Badre, Doll, Long, & Frank, 2012; Costa, Mitz, & 
Averbeck, 2019; Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006; 
Ebitz, Albarran, & Moore, 2018). Much of this work to date, however, 
has examined cognitive demands and exploration in stylized bandit 
tasks, whereas most real-world explore-exploit decisions are made in 
large option spaces where option values are spatially structured, form
ing advantageous or disadvantageous subspaces (Schulz, Wu, Ruggeri, & 
Meder, 2019; Wu et al., 2018). The strategies people use to adaptively 
resolve the explore-exploit dilemma when navigating large action 
spaces are debated: it is unclear what factors promote uncertainty- 
seeking vs. uncertainty-averse behaviors, for example (Frank, Doll, 
Oas-Terpstra, & Moreno, 2009; Hallquist & Dombrovski, 2019). In 
particular, we lack empirical knowledge of how human exploration is 
affected by naturalistic cognitive demands, such as environment size or 
the need to maintain multiple latent option values. Another question is 
to what extent behavioral responses to increased cognitive demands 
reflect proactive strategies like those in resource-rational models (Lieder 
& Griffiths, 2020; Wu et al., 2022) versus cognitive failures such as 
inability to maintain precise value representations. 

Specifically, shifts in exploratory behavior under cognitive demands 
could result from several factors (Dubois et al., 2021; Frank et al., 2009; 
Gershman, 2018; Sutton & Barto, 1998; Wilson et al., 2014; Wu et al., 
2018). At the simplest level, less precise value representations would 
manifest in increased choice stochasticity or random exploration. 
Another, strategic process potentially sensitive to cognitive constraints 
is the directed exploration of more uncertain options guided by explo
ration bonuses (Auer, 2002; Sutton, 1990). Here, choices are based on 
both the expected value and the uncertainty (exploration bonus) of each 
option. In their full form, exploration bonuses require tracking both 
value and uncertainty of all options; a simpler form that may be adopted 
in cognitively challenging environments is switching (inverse of 
perseveration) or novelty bonuses. In this form, uncertainty is reduced 
to choice history and uncertainty seeking behavior simply favors options 
less recently chosen. Random and directed exploration differ in their 
purpose and interpretation: increases in random exploration reduce the 
influence of value on choice and so make choices more noisy, while 
increases in directed exploration specifically prioritize more uncertain 
options. For example, imagine ordering a dish at an Italian restaurant, 
where one has enjoyed some previously ordered dishes (e.g., cacio e 
pepe) and not others (e.g., lasagna), while other dishes (e.g., gnocchi) 
are novel. Increased random exploration would make one less value- 
sensitive and decrease how often one chooses higher-valued relative 
to lower-valued dishes (e.g., more likely to order lasagna relative to 
cacio e pepe), while increased directed exploration would increase the 
probability of a novel choice (e.g., ordering gnocchi). 

Competing explanations for exploratory choices can be hard to 
differentiate on standard learning tasks for two reasons. The first is the 
natural anticorrelation between value and uncertainty that emerges 
during value-based decision-making, as options with higher values will 
be selected more often, reducing their uncertainty. Paradigms with 
initial forced choice trials can decorrelate value and uncertainty to 
enable assessment of different exploratory strategies (random versus 
directed) on the first free choice (Dubois et al., 2021; Wilson et al., 
2014). This manipulation also experimentally controls the local uncer
tainty of each choice to assess effects of environment size and memory 
demands. Second, the pattern of choices only provides a rough picture of 
different strategies, such as exploitation or directed exploration. 
Computational models instantiate these strategies explicitly. Thus, by 
inferring model parameters corresponding to each strategy from human 
behavior, we can test hypotheses about alternative underlying strategies 
more precisely. Computational models of choice behavior during 

exploration represent choice stochasticity, exploration bonuses, and 
perseveration as specific parameters (Dubois et al., 2021; Frank et al., 
2009; Gershman, 2018; Wu et al., 2018). 

In the present study, participants made decisions to maximize re
wards with long choice horizons (30 free choices per block) to encourage 
initial exploration. We then assessed how manipulations changed this 
exploratory behavior. First, we used initial forced choice sampling to 
manipulate value and uncertainty independently under varying cogni
tive demands. Then, we assessed exploratory and exploitative strategies 
to understand how different cognitive demands – environment size and 
memory demands – affected exploratory and exploitative behavior. We 
focused on the first free choice in each block to assess independent ef
fects of value and uncertainty, a strategy enabled by the initial forced 
choice sampling. We then compared participants' choices to chance and 
value-maximizing behavior to determine if changes in exploratory and 
exploitative behavior were proactive adjustments or cognitive failures. 
We hypothesized that increased environment size would decrease 
exploration in empirical data, and that this decrease in exploration was 
adaptive based on normative models. We further examined whether this 
decreased exploration was due to increased memory load by comparing 
effects of environment size (where decreases in exploration may or may 
not be memory-dependent) and memory demands (which explicitly 
measures memory-dependent changes in exploration) and whether 
exploration was affected by spatial generalization. We then sought to 
characterize, using regression and formal computational models, what 
choice strategies drove changes in exploration with these manipulations. 

1. Methods 

1.1. Participants 

Participants were 95 undergraduate students enrolled in psychology 
courses who completed the experiment in exchange for course credit. 
Seventy-two (76%) identified as female (22 [23%] male, 1 [1%] 
declined to answer), median age was 19 years (range: 16–22), 73 (77%) 
identified as White (9 [9%] as Asian, 7 [7%] as Black, 3 [3%] as 
multiracial, and 2 [2%] as American Indian/Alaskan Native), and 92 
(97%) identified as non-Hispanic (3 [3%] Hispanic). All participants 
gave informed consent and the study was approved by the Pennsylvania 
State University IRB. 

1.2. Task 

Participants completed eight blocks of the PiE (Probabilistic Explo
ration) task (Fig. 1). This task was based on a task previously used to 
study exploration (the ‘clock’ task; (Moustafa, Cohen, Sherman, & 
Frank, 2008)) but with explicitly spatially arranged segments requiring 
fewer assumptions about how learners binned state spaces, and with 
varied cognitive demands based on environment size and memory de
mands. Participants were instructed that the goal of the task was to 
maximize winnings by learning which segments in the pie were the most 
likely to provide a reward (nickel shown) versus no reward (nickel 
crossed out). The probabilities of reward for each segment ranged from 
0.35 to 0.65 and were stable within a block of trials. Participants were 
not instructed on the reward distributions. Each block consisted of 4 or 8 
initial forced choice trials, followed by 30 free choice trials. The task had 
a 2 (environment size: 4 or 8 segments) x 2 (memory demands: outcomes 
for each action in the block shown or hidden) x 2 (initial forced choice 
trials: even or uneven sampling) design, such that each combination of 
conditions was consistent throughout each block and was experienced in 
one block only. 

During the initial forced choice trials at the beginning of each block, 
all but one segment was grayed out on each trial and participants were 
instructed to select the highlighted segment. As reward probabilities 
were consistent throughout free and forced choice sampling, observed 
outcomes during forced choice sampling were informative about the 
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reward probability for those segments. During the remaining free choice 
trials, participants freely selected from all segments. The number of 
forced choice trials was equal to the number of segments in each block (4 
or 8). During blocks with even sampling during forced choice trials, each 
segment was highlighted and chosen once. During blocks with uneven 
sampling, segments were highlighted 3, 2, 2, 1, 1, 0, and 0 times (for 8 
segments) or 2, 1, 1, and 0 times (for 4 segments). How often segments 
were highlighted and in what order was randomly chosen each block. 
This design, modeled after (Wilson et al., 2014), allowed for value and 
uncertainty to be independently manipulated for each segment for the 
trial of interest, the first free trial, in each block. 

1.3. Statistical regression analyses 

All analyses used R (version 4.1.1) and focused on choices during the 
first free trial in each block. Multilevel logistic regressions assessed 
differences between participants' probability of choosing segment types 
versus chance performance. Segment types were defined as previously 
sampled, always rewarded (segment chosen during forced choice sam
pling and all selections during forced choice sampling resulting in a 
reward), previously unsampled (segment not chosen during forced 
choice sampling), and previously sampled, not always rewarded 
(segment chosen during forced choice sampling but not always rewar
ded). These segment types are a model-free approximation of exploit
ative, directed exploratory, and random exploratory choices. Since we 
focused on factors affecting uncertainty and exploration, present 

analyses focused on blocks with unsampled segments and full manipu
lation of uncertainty (i.e., those with uneven initial sampling). Chance 
performance was estimated as the proportion of segments in each 
segment type for each combination of conditions, averaged across all 
participants. Separate regressions were run for each segment type, 
predicting the probability of choosing it as a function of condition and 
participant's random intercept. As standard logistic regression assumes a 
chance level of 0.5 rather than the true chance probabilities, log odds 
were adjusted based on the calculated chance proportions of each 
segment type for each combination of conditions. Identical analyses 
were run on simulated choices compared to chance behavior (see below 
for simulation details); additional analyses compared simulated choices 
and participants' empirical choices, with log odds adjusted to account 
for the empirical probability of each type of choice in the same way as 
adjustments for chance performance. 

Beyond changes in how sampled versus unsampled segments are 
chosen, another form of reduced exploration that may be adaptive in 
large environments is spatial generalization (Wu et al., 2018). To assess 
the extent of spatial generalization based on participants' choices, 
multilevel linear regressions assessed the distance between segments 
chosen on consecutive trials (only on trials in which the participant 
switched segments), measured as number of segments traveled versus 
chance as a function of previous reward receipt, points shown vs. hid
den, initial even vs. uneven sampling, and the interactions of these ef
fects. Segment distance ranged from 1 if a neighboring segment was 
chosen to 2 (for 4 segment blocks) or 4 (for 8 segment blocks) if a 

Fig. 1. Task schematic. On each trial, participants choose a segment and receive feedback of reward (nickel shown) or no reward (nickel crossed out). Each segment 
has a stable, randomly assigned probability of reward per block. In each block, participants choose from either 4 or 8 segments (manipulating environment size) and 
are shown points representing past outcomes or not (manipulating memory demands). At the beginning of each block, participants have 4 or 8 forced choice trials 
(equivalent to the number of segments in that block), during which only one segment is highlighted and available to choose. The remaining 30 trials are free choice 
and participants can choose any segment. The initial forced choice sampling is either even (each segment chosen once) or uneven (some segments chosen multiple 
times while some segments are unchosen). Participants completed eight blocks and each block was a unique combination of environment size, memory demands, and 
initial sampling (even or uneven). 
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segment across the circle from the previous choice was chosen. Chance 
performance was calculated from the average distance of all segments (4 
segments: 2*1 + 2, divided by 3; 8 segments: 2*1 + 2*2 + 3, divided by 
7). 

Regression models were estimated in a Bayesian framework using 
the ‘brms’ package in R (Bürkner, 2017; Carpenter et al., 2017)(brms 
version 2.16.1; rstan version 2.21.1). Three Monte Carlo chains were run 
with 3000 samples each (500 of which were warmup samples), for a 
total of 7500 samples used for inference. Significance was defined as 
97.5% of samples falling above or below 0; however, as any binary 
significance threshold is arbitrary (McElreath, 2020), results where 
85–97.4% of samples fell above or below 0 are noted but qualified as 
weaker evidence for an effect. 

1.4. Generative computational model 

Categorizing choices by reward and sampling history gives a rough 
approximation of influences on choice. For a more accurate measure
ment of the influences of exploitation and directed and random explo
ration, we constructed a process-based computational model including 
these influences. The computational model used an ideal Bayesian 
learner to learn the value distribution of each segment and a choice rule 
incorporating choice stochasticity, exploration bonuses, and persever
ation. The Bayesian learner was chosen as a parsimonious learning rule 
to focus on influences on choice behavior. 

The ideal Bayesian learner represented the value of each segment as 
a beta distribution that was updated with the outcome of each trial. At 
the beginning of each block, the α and β parameters of each segments' 
beta distribution were reset to 1, yielding an expectation of 0.5. After the 
outcome was revealed for a chosen segment, the α (if a reward was 
received) or β (if a reward was not received) parameter for that segment 
was increased by 1: 

αt+1 = W+ αt; βt+1 = (1 − W)+ βt;W = 1 if reward/0 if no reward (1) 

The choice rule was based on a softmax function transforming the 
mean value of each segment into a probability of being chosen relative 
to other segments (Eq. (2)). Free parameters affecting choice were in
verse temperature (β), which controlled the level of choice stochasticity 
versus sensitivity to mean values (Smean), an exploration bonus (ω), 
which changed the probability of a segment being chosen based on its 
uncertainty (Svar; positive values increased probability whereas negative 
values decreased probability), and perseveration (τ), which increased 
the probability of choosing the segment chosen on the last forced choice 
trial. For the exploration bonus, uncertainty was defined as the variance 
of the mean value of each option, reflecting the uncertainty about the 
true value of each option. This variance was calculated from the beta 
distribution of each segment's value (Bach & Dolan, 2012; E. Payzan- 
LeNestour & Bossaerts, 2011). 

P(S)t = 1
/(

1+ exp.
(
−
(
β*Smean(S)t +ω*Svar(S)t + τ*Ct− 1

) ) )
;Ct− 1

= 1 if S chosen on trial t − 1 and − 1 otherwise (2)  

1.5. Generative model fitting 

Models were fit using the ‘rstan’ package in R, which uses a Hamil
tonian Monte Carlo sampler for Bayesian estimation (rstan version 
2.21.1; (Carpenter et al., 2017). For each model, three chains were run 
with 3000 samples per chain (1000 of which were used for warmup), for 
6000 total samples used for inference. Hamiltonian Monte Carlo di
agnostics did not indicate a lack of convergence. Data were estimated 
hierarchically, with parameter values estimated for each participant and 
for the distribution over the sample. 

All free parameters (β, ω, and τ) were estimated using a non-centered 
parameterization with a mean, standard deviation, and participant- 
specific variation. Priors for mean parameter values were normally 

distributed, with means of 0 and standard deviations of 5 (β and ω) or 1 
(τ). Priors for standard deviation parameter values used Student's t 
distributions with 10 (β), 5 (ω), or 3 (τ) degrees of freedom, means of 0, 
and standard deviations of 3 (β and ω) or 2 (τ). All participant-specific 
variation parameter values used priors of a normal distribution with 
mean of 0 and standard deviation of 1. Values of prior distributions were 
based on prior predictive checks simulating behavior on the task. 

To assess the effects of environment size and memory demands, a 
regression estimated changes in the mean of each parameter value with 
greater number of segments (8 vs. 4) and with points hidden (hidden 
versus shown). Multiple univariate regressions were run simultaneously 
with model estimation as recommended by (Brown, Chen, Gillan, & 
Price, 2020). Therefore, the reference parameter values were fit to 
behavior from the blocks with four segments and points shown (minimal 
cognitive load condition), with additional dummy-coded estimated ef
fects of 8 segments, points hidden, and the interaction of these effects on 
each parameter. These estimated effects were all given priors that were 
normally distributed with means of 0 and standard deviations of 1. Ef
fects of environment size and memory demands were assessed based on 
the posterior distribution of each condition and their interaction. Similar 
to the regression analyses above, effects were deemed significant if 
97.5% of the posterior was above or below 0, with effects with 
85–97.4% of the posterior above or below 0 interpreted as providing 
more limited evidence for an effect. Identical analyses were run on 
simulated behavior, with the exception of eliminating the effects of 
memory demands. Additionally, to test possible changes in behavior 
once people learned the overall structure of the task, changes in each 
parameter in the minimal cognitive load condition were tested with the 
linear effect of block number and by comparing parameter values in the 
first versus second half of the task. 

1.6. Parameter recovery 

To check whether generative model parameters could be indepen
dently estimated and related to changes in performance with changes in 
cognitive demands, parameters were simulated and recovered. This 
approach assessed the proportion of times that the median of the 
parameter recovered from simulated data fell within the 95% credible 
interval for the distribution of the empirically estimated parameter used 
to simulate the data. Specifically, we simulated behavior for 95 partic
ipants (the empirical sample size) using the median parameter values 
estimated for each condition from the empirical data. We then refit these 
simulated data with the same computational models to determine 
whether the recovered parameter values (during the minimal cognitive 
load condition and with changes in cognitive demands) match those that 
were originally estimated. This simulation was carried out 100 times 
and the median recovered parameter values for each simulation were 
plotted against the posterior distribution of the parameter values fit to 
empirical data. Successful recovery was further quantified as the pro
portion of recovered posterior median parameter values falling within 
the 95% credible interval for the posterior distribution of the parameter 
values fit to empirical data. 

1.7. Simulations 

To assess whether changes in exploration with increased environ
ment size represented value-maximizing behavior, task behavior was 
simulated for different environment size. Simulated behavioral perfor
mance was measured by the proportion of free choice trials resulting in 
reward, averaged over 100 simulated participants. For the primary 
simulations, as a parameter reflecting noise in participants' value esti
mates, β was fixed at the median empirical reference condition value of 
the human sample, 7.9. Ranges of parameter values for ω (− 10 to 10) 
and τ (− 1 to 1) parameters were based on ranges of values estimated 
from participants' behavior. In follow-up simulations with a smaller 
environment size and when allowing inverse temperature to vary, β was 
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allowed to vary from 0 to 10. Additionally, behavior was simulated for a 
smaller environment size of 2 segments. In this condition, initial uneven 
sampling meant that one segment was sampled twice and the other not 
at all; probabilities of reward for each segment were set to 0.4 and 0.6. 

2. Results 

In all conditions, participants made a mix of exploitative and 
exploratory choices (Fig. 2A). The proportion of choices attributable to 
different choice policies (previously sampled, always rewarded, 
reflecting primarily exploitative choices; previously sampled, not always 
rewarded, reflecting possible random exploration; and previously 
unsampled, reflecting directed exploration) differed by both memory 

demands and environment size. Notably, none of the condition effects 
were in the direction of chance performance (chance performance 
illustrated by dotted lines in Fig. 2A). To confirm that behavior in the 
minimal cognitive load condition was adaptive and differed from chance 
and to quantify differences with increased cognitive demands, a multi
level Bayesian logistic regression was run. In this regression, log odds 
were adjusted for proportion of choices under chance performance. 
Distributions of coefficients are displayed in Fig. 2B. Relative to chance 
performance, participants in the minimal cognitive load condition were 
more likely to choose options that were previously sampled and always 
rewarded (median log odds = 0.481; 98.6% of samples from the pos
terior distribution of log odds greater than 0) and less likely to choose 
options previously sampled and not always rewarded (median log odds 

Fig. 2. Initial free choices compared to chance performance. A: Types of choices on the first free trial in each block versus chance performance, blocks with uneven 
sampling only. Choices likely due to exploitation (green) occurred when participants chose a segment that had been consistently rewarded during forced choice 
sampling. Choices resembling directed exploration (blue) occurred when participants chose a segment that was unchosen during forced choice sampling, and choices 
resembling random exploration (salmon) occurred when participants chose a segment that had been chosen but not always rewarded during forced choice sampling. 
Chance performance is indicated by dotted lines for each type of choice. B: Statistical comparison of the likelihood of each first free choice type, with log odds (x axis) 
adjusted for chance performance. Y axis shows differences from chance in the minimal cognitive load condition (intercept) and with change in each type of cognitive 
demand and their combination. Posterior distributions from Bayesian hierarchical regressions are shown, with shading and asterisks indicating the percentage of 
samples from the posterior greater than or less than 0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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= − 1.34; 100% less than 0), with somewhat reduced tendency to choose 
the previously unsampled options as well (median log odds = − 0.439; 
94.8% less than 0). With greater memory demands, participants chose 
the previously unsampled options less (median log odds = − 0.700; 
98.4% less than 0) and the previously sampled, always rewarded options 
somewhat more (median log odds = 0.649; 96.6% greater than 0), with 
little change in frequency of choosing previously sampled, not always 

rewarded options (median log odds = 0.140; 67.3% greater than 0). 
Further, in a larger environment, participants chose the previously 
sampled, always rewarded (median log odds = 0.464; 90.8% greater 
than 0) and previously sampled, not always rewarded (median log odds 
= 0.484; 93.6% greater than 0) options somewhat more, with no change 
in choosing previously unsampled options (median log odds = − 0.228; 
76.4% less than 0). Taken together, both forms of cognitive load 

Fig. 3. Model parameters fit to initial free choices. A. Distributions of model parameters fit to empirical data. X axis indicates model parameters under the minimal 
cognitive load condition (intercept) and effects of changes in each type of cognitive demand. Y axis indicates parameter values, with shading and asterisks indicating 
the percentage of samples from the posterior supporting exploitative or exploratory behavior. Positive inverse choice stochasticity, negative exploration bonus, and 
positive perseveration parameter values indicate more exploitative vs. exploratory behavior. B. Distribution of initial free choices on each block for empirical data 
(left; identical to Fig. 2A) versus simulated performance from median fitted parameters (right). 
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manipulation increased exploitation, as shown by choosing previously 
sampled, always rewarded options more, but had dissociable effects on 
directed exploration of unsampled options (decreased with greater 
memory demands) and random exploration of previously sampled, not 
always rewarded options (increased with larger environment size). 
Regarding spatial generalization, participants chose marginally closer 
segments than chance in larger, but not smaller environments. For 8 
segment blocks, the average distance traveled between choices was 2.04 
segments (91.3% of samples less than the chance distance of 2.29) and 
for 4 segments the average distance was 1.37 (31.5% of samples less 
than chance distance). In both environment sizes, spatial generalization 
did not significantly differ by memory demands, initial sampling, or 
reward receipt on the previous trial. 

These behavioral results broadly support the notion that directed 
exploration decreases under memory demands and, possibly, in larger 
environments (a point we examine in-depth in normative simulations 
below). To more precisely measure how participants' choice policies 
shifted under cognitive demands, a learning model was fit to partici
pants' first free choices on each block. Choice models (based on an ideal 
Bayesian learner; Fig. 3A) included parameters representing inverse 
choice stochasticity (β), exploration bonus (ω), and perseveration (τ). 
Model checks showed that parameters from the model could measure 
changes in choice policies accurately: reference (minimal cognitive 
load) condition parameters and their shifts with cognitive demands 
(memory demands and environment size) were uncorrelated (Supple
mentary Fig. 2A) and were well recovered from simulated behavior 
(Supplementary Fig. 2B). Specifically, for parameter recovery, the per
centage of median recovered parameter values that fell within the 95% 
credible interval of posterior distribution fit to empirical behavior 
ranged from 90 to 100%, with a median of 98%. Initial choices simu
lated from median fit parameters per condition also recapitulated pat
terns seen in participants' empirical choices (Fig. 3B), indicating that the 
model captured participants' choice behavior well. 

Compared to chance, parameters of the model under the minimal 
cognitive load condition showed less choice stochasticity (reflecting 
value-sensitive choices, β: median = 7.94, 100% greater than 1 
[chance]), greater exploration bonus (ω: median = 2.48, 97.7% greater 
than 0), and negligible change in perseveration (τ: median = − 0.02, 
55.5% less than 0). This basic result confirms that participants made 
value-sensitive choices and favored options with higher uncertainty 
(greater variance), and did not rely on simpler, choice history-driven 
exploration as would be measured by changes in perseveration. Partic
ipants' choice strategies did not meaningfully change across blocks 
(relationship between block number and parameter: beta median =
0.425, 80.9% greater than 0; tau median = − 0.083, 83.1% less than 0; 
omega median = 0.012, 50.5% greater than 0; results were similar when 
comparing parameters estimated from trials in the first versus second 
half of the task instead of assuming a linear change in parameters across 
blocks), ruling out participants' initial unfamiliarity with the task as an 
explanation for their high exploration rate. Under greater memory de
mands, participants became moderately less sensitive to values and 
decreased the exploration bonus, with little effect on perseveration, 
indicating that choices became slightly noisier and less uncertainty- 
seeking (median β change = − 1.81, 88.4% less than 0; median ω 
change = − 2.80, 95.5% less than 0; median τ change = − 0.02, 54.6% 
less than 0). With larger environment size, participants showed a 
reduced exploration bonus and a slightly decreased choice stochasticity 
parameter (median ω change = − 3.92, 99.8% less than 0; median β 
change = 1.79, 86.9% greater than 0) and little change in perseveration 
(median τ change = − 0.18, 76.7% less than 0), suggesting their choices 
were less uncertainty-seeking and more value-driven. The interaction of 
memory demands and environment size was modest, with participants 
becoming slightly more perseverative (median β change = − 1.31, 73.0% 
less than 0; median ω change = − 0.88, 64.7% less than 0; median τ 
change = 0.42, 90.5% greater than 0). Therefore, both conditions 
independently reduced the uncertainty seeking seen in the minimal 

cognitive load condition, with greater memory demands leading to 
increased noise and larger environment size causing increased value 
sensitivity. 

Decreased exploration may be adaptive as environment size in
creases relative to the choice horizon and exploring all options becomes 
infeasible. To test this idea, behavior was simulated at different levels of 
exploration bonus and perseveration. Parameter values were then 
related to average probability of reward for chosen options for all free 
trials in a block. For both exploration bonus and perseveration, 
parameter values representing more exploitative behavior (higher, more 
negative values of ω and higher, more positive values of τ) resulted in 
choices with a greater average probability of reward (effect of parameter 
value on average reward probability of chosen option, ω: t = − 24.29, p 
< .001; τ: t = 14.12, p < .001; Fig. 4A and B). This effect was present 
regardless of initial sampling type (even vs. uneven) and number of 
segments. Interestingly, parameter values resulting in greater average 
probability of reward also had more variance in performance across 
participants. This pattern suggests that more exploitative agents perform 
better on average even though they can become stuck in local maxima 
(good but not great segments), since the performance overall is 
improved more than the occasionally poor performance is harmful. 
Simulated initial free choices from the combination of parameters 
leading to the highest average reward probability (β = 7.9, ω = − 10, τ =
1) are shown with thick solid lines in Fig. 4C. A Bayesian multilevel 
logistic regression (Fig. 4D) compared value-maximizing simulated 
initial choices to chance to relate value-maximizing simulated behavior 
to regression-based analyses of empirical behavior. This analysis showed 
that simulated value-maximizing choices, relative to random choices, 
were much less likely to be previously unsampled options (median log 
odds = − 3.09, 100% below 0) or previously sampled, not always 
rewarded options (median log odds = 0.26, 100% below 0) and more 
likely to be previously sampled, always rewarded options (median log 
odds = 1.42; 100% greater than 0). Next, these simulated value- 
maximizing choices were compared to the frequency of choosing each 
option in participants' empirical data (Fig. 4E). When compared to 
empirical choice frequencies, simulated value-maximizing choices were 
more likely to be either previously sampled, always rewarded (median 
log odds = 0.75, 100% greater than 0) or previously sampled, not always 
rewarded options (median log odds = 0.85, 100% greater than 0), and 
less likely to be previously unsampled options (median log odds =
− 2.00, 100% less than 0). Therefore, although participants chose pre
viously unsampled options less than chance (as shown above), they still 
chose these options more than a value-maximizing agent. 

Overall, these results suggest that the shift from chance to value- 
maximizing behavior involves increased exploitation and decreased 
directed exploration. Relative to participants' actual choices, value- 
maximizing choices were more likely to be known options, regardless 
of whether they had been consistently rewarded, and less likely to be 
unsampled options. Therefore, participants explored novel, uncertain 
options more than was needed to maximize value. The reduction in both 
directed and random exploration suggests that humans deliberately 
explore more than is needed in this task; in contrast, if only random 
exploration was reduced in simulated compared to empirical data, this 
pattern would suggest that behavior may be more exploratory due to 
noise only. 

This uniformly high cost of directed exploration could be due to two 
factors: the large environment size in the task and the degree of random 
exploration shown by participants. To understand if directed explora
tion improves performance in smaller environments or with higher 
random exploration, ω, τ, and β parameters were allowed to vary 
simultaneously for environments with 2 segments as well as 4 and 8. 
With inverse temperature fixed at a relatively high value (10), a gradient 
emerged as the number of segments decreased (Supplementary Fig. 1A). 
Specifically, in the smallest environment (2 segments), a combination of 
greater directed exploration and increased perseveration led to the best 
performance. Conversely, with a relatively low inverse temperature (3), 
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more exploitative behavior led to better performance, particularly in 4 
and 8 segment conditions (Supplementary Fig. 1B). This finding suggests 
that under certain conditions – small environment size and less random 
exploration, and when accompanied with perseveration – greater 
directed exploration can be beneficial, but is not helpful with greater 
environment size and with relatively low random exploration. 

Changes in participants' behavior with increasing cognitive demands 
could reflect cognitive failures or a shift towards value-maximizing 
behavior given the cognitive constraints in the task. To determine 
what drove behavior changes, changes in value-maximizing behavior 
with greater environment size were simulated. With greater environ
ment size relative to the reference condition, simulated value- 
maximizing choices were more likely to be both previously sampled, 
not always rewarded (median log odds = 0.485, 100% greater than 0) 
and previously unsampled options (median log odds = 0.51, 100% 
greater than 0), with little change in previously sampled, always 
rewarded options (median log odds = 0.01; 55.6% greater than 0; 
Fig. 4D). Memory demands reflect cognitive constraints and do not 
affect value-maximizing behavior and so were not simulated. Compared 
to the frequency of choosing each option in participants' empirical data 
(Fig. 4E), increases in environment size caused simulated value- 
maximizing behavior to increase the frequency of previously sampled, 
not always rewarded (median log odds = 0.16, 97.8% greater than 0) 
and previously unsampled options (median log odds = 1.61, 100% 
greater than 0) and did not increase the frequency of choosing 

previously sampled, always rewarded options with greater environment 
size as much as in empirical choices (median log odds = − 0.42, 100% 
less than 0). As the frequency of choosing unsampled options with 
simulated value-maximizing choices was still very low with greater 
environment size, the increases relative to chance and empirical choices 
represent a significant but very small increase from negligible directed 
exploration with minimal cognitive load, while the increase in previ
ously sampled, not always rewarded options relative to both chance and 
empirical data suggests that increased environment size causes value- 
maximizing behavior to encompass less-frequently rewarded options. 

3. Discussion 

We investigated how human exploration responds to cognitive 
challenges often encountered in the real world – large environment sizes 
and memory demands. We found that in the baseline low-demand 
condition participants made exploitative choices but also engaged in 
both random and directed exploration (Wilson et al., 2014). Under 
cognitive demands, people adjusted their behavior to maintain exploi
tation. These adjustments did not reflect a shift towards chance char
acteristic of cognitive failures; instead, they were consistent with 
anticipating and proactively maintaining exploitation with increases in 
cognitive load. 

Under cognitive load, participants became even more exploitative 
and shifted their exploratory choices. The adjustment depended on the 

Fig. 4. Value-maximizing simulated behavior. A. Reward probability of behavior simulated at each parameter value, averaged within each simulated participant. 
Violin plots and boxplots indicate variability in average reward probability across simulated participants. Shading indicates exploitative vs. exploratory parameter 
values. X axis on each plot indicates the simulated parameter value and Y axis indicates the average reward probability per simulated participant. B. Simulated 
performance (average reward across participants) for all combinations of exploration bonus (X axis) and perseveration (Y axis) parameter values. Each panel in
dicates performance by the environment size and type of initial sampling. C. Distribution of initial free choices on each block for empirical data with simulated 
performance from parameters from model with value-maximizing performance (solid thick lines) and chance performance (dotted lines). D. Statistical comparison of 
the likelihood of each first free choice type of behavior from simulated value-maximizing model, with log odds (x axis) adjusted for chance performance. Y axis shows 
differences from chance during the minimal cognitive load condition (intercept) and with change in each type of cognitive demand and their combination. Posterior 
distributions from Bayesian hierarchical regressions are shown, with shading and asterisks indicating the percentage of samples from the posterior greater than or less 
than 0. E. Statistical comparison of the likelihood of each first free choice type of behavior from simulated value-maximizing model, with log odds (x axis) adjusted 
for comparison to empirical performance. Y axis shows differences from empirical performance during the minimal cognitive load condition (intercept) and with 
change in each type of cognitive demand and their combination. Posterior distributions from Bayesian hierarchical regressions are shown, with shading and asterisks 
indicating the percentage of samples from the posterior greater than or less than 0. 

Fig. 4. (continued). 
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type of cognitive demand: in a larger environment participants chose 
previously sampled but infrequently rewarded choices, reflecting 
greater random exploration, while under memory demands, participants 
reduced directed exploration by choosing fewer options that were 
unsampled to that point. Fitting participants' behavior with a generative 
model allowing choice stochasticity (representing ability to maintain 
accurate values), an exploration bonus, and perseveration to affect 
value-based choices showed that, in a smaller environment and with low 
memory demands, behavior was driven by exploiting intact value rep
resentations and an exploration bonus, with little effect of perseveration. 
Increased environment size decreased the exploration bonus and further 
decreased choice stochasticity, while increased memory demands 
decreased the exploration bonus and increased choice stochasticity. 

These changes with increased cognitive load could be due to two 
effects: first, participants may change their behavior in response to 
increasingly noisy value representations once their cognitive resources 
are overwhelmed. Conversely, they may proactively adjust behavior 
when they anticipate that the demands of the environment will exceed 
their capacity to maintain and update the reinforcement history for each 
of the many options. Our data suggest that participants engage in the 
latter strategy by increasing exploitative choices and decreasing directed 
exploration. If participants instead became overwhelmed by noisy value 
representations, behavior would have shifted closer to chance, resulting 
in decreased exploitative choices and increased random exploration, or 
have showed a shift from a more complex form of exploration driven by 
exploration bonuses to a simpler form driven by reduced perseveration. 
This proactive adjustment was mirrored in the parameters governing the 
computational model that best captured participants' choices: chance 
performance would have resulted from large increases in choice sto
chasticity, but instead the clearest shift was a decrease in the exploration 
bonus. This shift in behavior was present even under memory demands, 
which should not shift optimal behavior away from exploration (unlike 
increased environment size). Taken together, these results suggest that 
when entering a cognitively demanding environment, participants 
proactively shift choices to maintain exploitative, value-driven behavior 
at the expense of exploration. Therefore, the uncertainty aversion par
ticipants show with increased cognitive demands suggests that partici
pants engage in meta-reasoning about their cognitive capacity. This shift 
is similar to a resource-rational strategy (Lieder & Griffiths, 2020; 
Shenhav et al., 2017); to further test resource rationality, future work 
should explicitly derive a resource-rational model to measure against 
behavior in this paradigm. 

Choices simulated from a computational model, composed of an 
ideal Bayesian learner with a choice rule incorporating choice stochas
ticity, exploration bonuses, and perseveration, revealed that this shift 
away from exploration was in line with value-maximizing behavior. The 
best performance resulted from parameter values that severely curtailed 
exploration. With an even smaller environment size than used here (two 
segments only), some exploratory behavior was adaptive, but in the 
environment sizes in the present task (four and eight segments), returns 
increased monotonically with reductions in exploration. These results 
indicate that, given the reward structure of the task, exploration can be 
helpful in small but detrimental in large environments. Therefore, the 
decreased exploration seen in larger environments adaptively reflects 
both a value-maximizing strategy and, by reducing the cognitive load 
associated with maintaining the uncertainty of each choice's outcome, a 
further adjustment to cognitive demands. Interestingly, although par
ticipants decreased exploration under cognitive demands, their explo
ration in the minimal cognitive load condition, as measured by the 
exploration bonus parameter, was higher than needed to maximize 
value. Positive exploration bonuses, indicated by good fits of models 
incorporating upper confidence bound (UCB) choice rules, have been 
found in a variety of tasks (Frank et al., 2009; Gershman, 2018; Schulz, 
Bhui, et al., 2019); however, participants show ambiguity aversion with 
greater environment size (É. Payzan-LeNestour & Bossaerts, 2012) or 
when learning from continuous action spaces is approximated by many 

discrete values (Hallquist & Dombrovski, 2019). The presence of 
directed exploration under lower cognitive load in this task and others 
indicates that while people may explore more than indicated by value- 
maximizing behavior, when faced with increasing cognitive demands, 
they are able to decrease exploration and adjust in the direction of 
maximizing value. Why, despite the ability to adjust exploration with 
increasing cognitive load, do people explore more than a value- 
maximizing agent overall? We have found that exploration can be 
beneficial when rewards in an environment are very sparse (Hallquist & 
Dombrovski, 2019), or when the reward functions are monotonic across 
the task, and the agent can therefore assume a coarse segmentation 
across the environment (Frank et al., 2009). When navigating a 
rewarding environment, greater exploratory behavior may reflect an 
optimistic prior on the utility of exploring that enables rewarding op
tions to be discovered even in discontinuous or non-stationary envi
ronments. This belief in the utility of exploration may persist even in 
stable environments and with reward functions that are monotonic 
across choices that do not encourage exploration, as participants' 
exploratory behavior did not decrease as they gained more experience 
with the task. Further work should seek to understand the causes of this 
above-optimal exploration. 

The two cognitive load manipulations– increased environment size 
and increased memory demands – had partially dissociable effects on 
exploratory and exploitative behavior. In a larger environment, partic
ipants became more value-sensitive at the expense of both random and 
uncertainty-directed exploration. They also showed some evidence for 
spatial generalization of values. This pattern of behavior suggests that as 
environment size increases beyond participants' capacity to track value 
and uncertainty simultaneously, they forgo tracking uncertainty and 
engage in spatial generalization to maintain value estimates. Mean
while, memory demands degrade representations of both value and 
uncertainty. Although participants' behavior did not shift towards 
chance performance overall, the increased choice stochasticity with 
increased memory demands reflected noisier value representations. 
Therefore, participants may be able to adjust their exploration/exploi
tation tradeoff in a more resource-rational way with increasing envi
ronment size, whereas with increased memory demands people may 
show a mix of proactive adjustment (decreased uncertainty seeking) and 
reactive inability to maintain value estimates leading to noisier choices. 
Increased working memory demands with greater memory demands and 
not increased environment size may explain this difference in behavioral 
adjustments between conditions. 

Neurally, reductions in exploration are accompanied by increased 
value-related signals in ventromedial prefrontal cortex and decreases in 
associative neocortical areas, including frontopolar cortex, insula, dorsal 
anterior cingulate cortex, and inferior parietal cortex (Blanchard & 
Gershman, 2018; Daw et al., 2006; McGuire, Nassar, Gold, & Kable, 
2014); future work should investigate the role of these neural systems in 
cognitive load-based adjustments in directed exploration and exploita
tion. Additionally, noradrenergic activity (balanced by acetylcholine 
signals (Yu & Dayan, 2005) or tonic versus phasic activity (Aston-Jones 
& Cohen, 2005)) may regulate exploring novel options versus opti
mizing performance on the task at hand. Our finding that increased 
cognitive load decreases uncertainty seeking may indicate that antici
pated increases in cognitive demands shift noradrenergic activity away 
from an exploratory state to maximize focus on value-driven behavior. 

The present findings add to the existing literature on exploration, 
complex environments, and cognitive load. In large environments where 
outcomes are correlated, participants use the underlying structure of the 
environment to guide exploration (Schulz, Bhui, et al., 2019; Wu et al., 
2018). In the present task, where outcomes of different options were 
unrelated, we found minimal spatial generalization with greater envi
ronment size. Previous work attempting to study effects of cognitive 
load on exploration has used simultaneous working memory tasks 
alongside learning tasks (Cogliati Dezza et al., 2019; Otto et al., 2014). 
These concurrent working memory tasks decreased exploration or, 
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alternatively, reduced model-based choices with no effect on explora
tion. In the current task, we found decreased exploratory behavior 
across cognitive demand types (environment size, memory demands). 
Completing two concurrent tasks may not represent real-world cognitive 
demands well, since performance on the working memory task is not 
needed (and is, in fact, detrimental) to perform well on the learning task. 
By incorporating cognitive demands into the task, we show that the 
reduction in directed exploration is adaptive rather than reflecting 
increased noise in value representations. Another type of cognitive de
mand, adding time pressure to a learning task (Wu et al., 2022) simul
taneously reduces exploitation and directed exploration while 
increasing perseveration. Time pressure may make maintaining values 
more difficult, leading to increased perseveration and decreased 
exploitation, whereas increased environment size led to greater exploi
tation and no cognitive demands affected perseveration. 

In summary, we found that increased cognitive demands, in the form 
of a larger environment and increased memory demands, shifted par
ticipants' exploratory and exploitative strategies. These behavioral ad
justments were consistent with a shift towards value-maximizing, rather 
than chance, behavior, and indicated that participants responded to 
cognitive demands in a proactive, resource-rational-like way. 
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