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Investigations into action monitoring have consistently detailed a frontocentral voltage deflection in the
event-related potential (ERP) following the presentation of negatively valenced feedback, sometimes termed
the feedback-related negativity (FRN). The FRN has been proposed to reflect a neural response to prediction
errors during reinforcement learning, yet the single-trial relationship between neural activity and the quanta
of expectation violation remains untested. Although ERP methods are not well suited to single-trial analyses,
the FRN has been associated with theta band oscillatory perturbations in the medial prefrontal cortex.
Mediofrontal theta oscillations have been previously associated with expectation violation and behavioral
adaptation and are well suited to single-trial analysis. Here, we recorded EEG activity during a probabilistic
reinforcement learning task and fit the performance data to an abstract computational model (Q-learning)
for calculation of single-trial reward prediction errors. Single-trial theta oscillatory activities following
feedback were investigated within the context of expectation (prediction error) and adaptation (subsequent
reaction time change). Results indicate that interactive medial and lateral frontal theta activities reflect the
degree of negative and positive reward prediction error in the service of behavioral adaptation. These
different brain areas use prediction error calculations for different behavioral adaptations, with medial
frontal theta reflecting the utilization of prediction errors for reaction time slowing (specifically following
errors), but lateral frontal theta reflecting prediction errors leading to working memory-related reaction
time speeding for the correct choice.

© 2009 Elsevier Inc. All rights reserved.
Investigations into action monitoring have consistently detailed a
frontocentral voltage deflection in the event-related potential (ERP)
following the presentation of negatively valenced feedback, some-
times termed the feedback-related negativity (FRN). A leading theory
of the FRN suggests that it is reflective of the degree of negative
reward prediction error (Holroyd and Coles, 2002)—that is, the degree
to which outcomes are worse than expected. However, alternative
evidence suggests that the variance in feedback-locked ERPs are
primarily due to positive prediction errors (Holroyd et al., 2008). It is
possible that shortcomings inherent to the ERP methodology,
including cross-trial averages and difference waves, have contributed
to an opaque account of feedback-related neuroelectric activities.
Compounding this dilemma, difficulty in quantifying reward expec-
tation may have led to untested assumptions. Here, we quantified
reward expectation using computational models of reinforcement
learning. These computational values were used to interrogate
mediofrontal theta band oscillatory perturbations (arguably, the
basis of the FRN) at a single-trial level. In this report, we present
evidence that interactive medial and lateral frontal theta activities
.
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reflect the degree of reward prediction error in the service of
behavioral adaptation. Moreover, both positive and negative predic-
tion errors are reflected in frontal theta, but different brain areas use
these calculations for different behavioral adaptations.

Similarities between the eliciting circumstances of the FRN and
the functioning of the mesolimbic dopamine system (Schultz, 2002)
have yielded an influential theoretical account of FRN generation
based on reinforcement learning principles (Holroyd and Coles,
2002). Reinforcement learning theory suggests that the processes
underlying the ability to learn to seek reward and avoid punish-
ment in an uncertain environment can occur through trial and
error, by using the difference between expected outcomes and
external feedback to incrementally update internal representations
of state-action values (Sutton and Barto, 1998). The Holroyd and
Coles (2002) reinforcement learning theory of the FRN postulates
that the response-locked error-related negativity (ERN) and the
stimulus-locked FRN (which they term fERN) are reflections of the
same generic high-level error processing system and that activation
of feedback- and response-related systems are inversely related as
learning progresses from reliance on external stimuli (larger FRN)
to reliance on internal representations (larger ERN). This reinforce-
ment learning account specifically suggests that the FRN is reflective
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of the computation of negative reward prediction error—a signature
of when events are worse than expected (Holroyd and Coles, 2002;
Holroyd et al., 2004, 2003; Nieuwenhuis et al., 2004a,b).

One direct prediction of the reinforcement learning theory of the
FRN is that single-trial variations in amplitude should reflect the
degree of negative prediction error (Holroyd and Coles, 2002;
Nieuwenhuis et al., 2004a), a postulate that has not been directly
tested yet, possibly due to the cross-trial averaging procedure
common to ERPs. Feedback from any condition that is not optimal,
such as not gaining the highest amount when expecting inevitable
gain, elicits an FRN (Holroyd et al., 2004; Nieuwenhuis et al.,
2004b). The FRN is larger to unexpected or infrequent negative
feedback (Cohen et al., 2007; Donkers et al., 2005; Holroyd et al.,
2003; Potts et al., 2006; Yasuda et al., 2004; but see Cohen et al.,
2007), fitting with a reinforcement learning account. However, FRN
amplitude is not sensitively modulated by the magnitude of
negative outcome between conditions (Gehring and Willoughby,
2002; Hajcak et al., 2006; Holroyd et al., 2004; Marco-Pallares et al.,
2008; Yeung and Sanfey, 2004). Parametric changes in expectation
of loss (three or more conditions) have been reflected by
incrementally larger FRN amplitudes (Holroyd and Coles, 2002;
Nieuwenhuis et al., 2002; Holroyd et al., 2009), although this effect
is sometimes minor (Holroyd et al., 2004) or nonexistent (Hajcak et
al., 2005), unless participants are primed to define their expectation
(Hajcak et al., 2007). These discrepancies in parametric estimation
and the absence of magnitude-dependent modulation suggest that
it is necessary to estimate the participant's expectation to accurately
predict FRN amplitude dependencies. Computational models of
reinforcement learning that fit individual participant's trial-by-trial
sequence of choices can provide reasonable estimates of these
expectations.

Another important determinant of FRN magnitude is whether
behavioral adaptation is possible, and if so, whether negative feedback
can be used to alter behavior (Cohen and Ranganath, 2007; Hajcak et
al., 2005; Holroyd et al., 2009, 2003; Yasuda et al., 2004; Yeung et al.,
2005). This sensitivity to decision and action suggests that the FRN is
intimately related to the utilization of negative information in the
service of behavioral adaptation. Indeed, Cohen and Ranganath
(2007) have shown that within subjects, larger FRN amplitudes
precede behavioral switches, and this pattern qualitatively fits a
computational simulation that used prediction errors to guide future
behavioral choice. Furthermore, across subjects, individual differences
in FRN magnitude are predictive of the degree to which participants
subsequently avoid decisions with negative outcomes (Frank et al.,
2005). Variations in the morphology and amplitude of the FRN across
studies indicate that the FRN is maximally sensitive to feedback
eliciting a negative prediction error in the service of future behavioral
adaptation, despite its reliable occurrence when outcomes are worse
than expected more generally.

Although the prevailing literature focuses on the sensitivity of the
FRN to negative feedback, a recent study suggests that the major
differences in ERPs during reinforcement learning occur on correct
trials (Holroyd et al., 2008). Motivated by previous fMRI and EEG
studies (Nieuwenhuis et al., 2005; van Veen et al., 2004), these
authors argued that the FRN reflects the same underlying processes as
that ERP component associated with perceptual mismatch in an
oddball paradigm, the N2, with which the FRN shares many
similarities in terms of eliciting conditions, scalp topography, and
timing (Donkers et al., 2005; Holroyd, 2002). This account suggests
that a voltage positivity exists on better-than-expected trials and that
occurs in lieu of the FRN/N2. Indeed, a voltage positivity following
correct feedback has been empirically observed and is sensitive to
reinforcement learning contingencies of events being better than
expected (Eppinger et al., 2008; Holroyd et al., 2008; Potts et al.,
2006). It is clear that a formal investigation of prediction error in
relation to both positive and negative feedbacks is necessary to begin
to sort out these differing and sometimes conflicting accounts of the
EEG responses to reinforcement cues.

One under-addressed issue in the FRN literature is the limitation
imposed by the ERP signal averaging methods. A growing literature
suggests that ERP components such as the FRN may be reflective of
stimulus-driven phase realignment and power increases of ongoing
oscillatory activity, rather than a singular “burst” event (Fell et al.,
2004; Le Van Quyen and Bragin, 2007; Makeig et al., 2004, 2002;
Sauseng et al., 2007). While ERPs may not always be generated by
the alteration of ongoing oscillations, the methodological means to
parse these generative circumstances are fraught with ambiguity
(Ritter and Becker, 2009; Sauseng et al., 2007; Yeung et al., 2004,
2007). Although one need not adopt an oscillatory view to examine
activity at the single-trial level, this perspective has the potential to
provide novel insights into neurocognitive function as well as to
allow methodological advancements that are not assessable by the
ERP method, such as characterization of single-trial activities and
changes in presumed functional communication between brain
areas.

Both the ERN and the FRN have been shown to reflect a degree of
theta phase consistency and power enhancement over the medial
frontal cortex (Bernat et al., 2008; Cavanagh et al., 2009; Cohen et al.,
2007;Marco-Pallares et al., 2008; Trujillo and Allen, 2007), supporting
the major postulate of Holroyd and Coles' (2002) reinforcement
learning theory that these two ERPs reflect the same generic high-
level error processing system.We recently provided evidence that the
medial PFC (mPFC) error processing system interacts with lateral PFC
(lPFC) cognitive control systems following response errors via theta
band phase synchrony (Cavanagh et al., 2009). A separate study also
found theta band phase synchrony between mPFC and lPFC, which
increased linearly with increasing conflict during a Stroop task
(Hanslmayr et al., 2008). These sort of network-wide coherent
oscillations are thought to reflect entrained inter-regional activity,
increasing the coordination of spike timing across spatially separate
neural networks and presumably reflecting functional communica-
tion (Buzsáki, 2006; Buzsaki and Draguhn, 2004; Fries, 2005;
Womelsdorf et al., 2007). Theta oscillations may represent a general
operatingmechanism ofmedial and lateral frontal cortices involved in
action monitoring and behavioral adjustment.

In sum, the FRN has been proposed to reflect the degree of
negative prediction error, but crucial aspects of this theory remain
untested: particularly, the quantification of expectation to allow
trial-by-trial correlations between FRN and prediction error.
Another account suggests that the FRN does not reflect the degree
of negative prediction error; rather, positive prediction errors are
reflected by other ERP components that act to obscure the N2/FRN.
Both of these accounts may be hindered by reliance on the ERP
method of averaging over total ongoing voltage activities. We
propose that the FRN is at least partially reflective of theta band
oscillatory perturbations in the mPFC that are intimately related to
expectation violation, behavioral adaptation, and interaction with
lPFC cognitive control systems. To test these differing and
sometimes conflicting accounts, we investigated EEG activity
during a probabilistic reinforcement learning task. EEG data were
first converted to current source density to diminish volume
condition and then decomposed using time/frequency methods
(wavelet convolution and the Hilbert transform) for investigation
of single-trial theta band power and phase relations. Performance
data from the reinforcement learning task were fit to an abstract
computational model (Q-learning; Sutton and Barto, 1998), which
estimated action values and prediction errors, providing a quanti-
fication of the degree to which events are better or worse than
expected. We present evidence that interactive medial and frontal
theta activities reflect the degree of prediction error in the service
of behavioral adaptation following both positive and negative
feedbacks.
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Methods

Participants

All participants gave informed consent and the research ethics
committee of the University of Arizona approved the study.
Participants were recruited based upon pretest materials given to
undergraduate students in introductory psychology classes. Partici-
pants were invited to a screening session if they indicated low levels
of depressive symptomatology on the Beck Depression Inventory (BDI
scoreb7) during the pretest. The screening session was used to
identify participants who fit the recruitment criterion for the EEG
session: (1) aged 18–25 years, (2) stable low BDI (b7) and no self-
reported history of major depressive disorder, (3) no current
psychoactive medication use, (4) no history of head trauma or
seizures, and (5) no self-reported symptoms indicating a possibility of
an axis I disorder, as indicated by self-reported computerized
completion of the Electronic Mini International Neuropsychiatric
Interview (eMINI: Medical Outcome Systems, Jacksonville, FL). All
participants received experimental credit for their participation in
screening and EEG sessions. A total of 75 participants were recruited
for the EEG session reported in this study, although additional
exclusion criterion reduced the final number of participants included
in this study to 50 (see below).

Probabilistic learning task

The probabilistic learning task consisted of a forced choice training
phase consisting of up to six blocks of sixty trials each, followed by a
subsequent testing phase (Frank et al., 2004). During the training
phase, the participants were presented with three stimulus pairs,
where each stimulus was associated with a different probabilistic
chance of receiving “Correct” or “Incorrect” feedback. These stimulus
pairs (and their probabilities of reward) were termed A/B (80%/20%),
C/D (70%/30%), and E/F (60%/40%). Over the course of the training
phase, a participant usually learns to choose A over B, C over D, and E
over F, solely due to adaptive responding based on the feedback.

All training trials began with a jittered intertrial interval between
300 and 700ms. The stimuli then appeared for amaximumof 4000ms
and disappeared immediately after the choice was made. If the
participant failed to make a choice within the 4000 ms, “No Response
Detected”was presented. Following a button press, either “Correct” or
“Incorrect” feedback was presented for 500 ms (jittered between 50
and 100 ms after response). Although this timing may allow an
overlap in the EEG between later parts of the response with early
stimulus processing, immediate feedback may be necessary for
adequate encoding of the action value in the basal ganglia (Frank et
al., 2005; Maddox et al., 2003).

The participants underwent training trials (consisting of one to six
blocks of sixty stimuli each) until they reached aminimum criterion of
choosing the probabilistically best stimulus in each pair (AB≥65%,
CD≥60%, and EF≥50% correct choices). This same criterion has been
used in multiple previous studies with this task. Participants who did
not reach this criterion by the end of the sixth block were moved to
the testing phase regardless. During the testing phase, all possible
stimulus pairs (i.e., AD, CF, etc.) were presented eight times (120 trials
total) and no feedback was provided. Data from the test phase were
only analyzed if participants selected the most rewarding stimulus
(A) over the least rewarding (most negative) stimulus (B) more than
50% of the time when this stimulus pair was presented during the
testing phase, since data from participants who fail this basic criterion
are not interpretable (Frank et al., 2004, 2005, 2007a). This criterion
removed 14 participants from the analyses. In addition to the
exclusion criterion for behavioral performance, participants were
excluded if there were fewer than 30 EEG epochs in any condition
(this excluded an additional 11 participants). Data are only presented
from the training phase of the experiment in this report, as feedback
was only presented during the training phase. Note that the use of the
terms “correct” and “incorrect” throughout refer to the feedback, not
to the optimal or accurate response (i.e., incorrect refers to the
“Incorrect” feedback given on an “A” (80% correct) stimulus, although
this was the high probability or optimal choice).

Abstract computational modeling of performance data

The trial-by-trial sequence of choices for each subject was fit by a
Q-learning reinforcement learning model (Sutton and Barto, 1998;
Watkins, 1992). Q-learning assigns expected reward values to actions
taken during a particular state (i.e., choosing A when seeing an A/B
pair). We refer to these state-action values as Q values. See Fig. 1 for a
depiction of Q-learning. As in Frank et al. (2007b), this model includes
separate learning rate parameters for gain and loss (correct and
incorrect) feedback trials in the training phase of the probabilistic
learning task. These separate gain/loss learning rates (αG/αL) scaled
the updating of the stimulus–action values separately for rewards and
punishments. The expected value (Q) of any stimulus (i) at time (t)
was computed after each reinforcer (R=1 for Correct, R=0 for
Incorrect):

Qi tþ1ð Þ = Qi tð Þ + αG R tð Þ−Qi tð Þ½ �þ + αL R tð Þ−Qi tð Þ½ �− ;

where αG and αL are learning rates from gains and losses, respectively,
and which are multiplied by prediction errors to update Q values.
These Q values were entered into a softmax logistic function to
produce probabilities (P) of responses for each trial, with higher
probabilities predicted for stimuli having relatively larger Q values,
and a free parameter for inverse gain (β) to reflect the tendency to
explore or exploit:

Pi tð Þ = exp Qi tð Þ= βð Þ=
X

j exp Qi tð Þ= βð Þ:

These probabilities are then used to compute the log likelihood
estimate (LLE) of the subject having chosen that set of responses for a
given set of parameters over thewhole training phase. The parameters
that produce themaximumLLEwere found using the Simplexmethod,
a standard hill-climbing search algorithm implemented with Matlab
(The MathWorks, Natick, MA) function “fmincon.”

LLE =
X

t

ln Pi tð Þð Þ:

Since the best-fit learning rates and exploration parameters will
differ between subjects, they will result in somewhat different
predictions errors and performance. By choosing parameters that
maximize the likelihood of producing the actions selected by the
subject, the resultant model fits each individual subject. The
parameters that produced the maximum log likelihood are selected,
and the Q values produced by this particular set of parameters were
saved. Prediction errors (PE) for each subject were then computed
on a trial-by-trial basis from the estimated Q value of the chosen
stimulus at that time:

PE = R tð Þ− Qi tð Þ:

These prediction errors were then examined in a trial-by-trial
fashion with the stimulus-locked EEG data. Characterization of model
fits were computed as pseudo-R2 statistics ((LLE−r)/ r, where r is the
LLE of a chance performance model (Camerer and Ho, 1999; Frank et
al., 2007b)). Two participants had poor fits to the Q-learning model
(no change in initial parameters, R2=0) and parameters were unable
to be derived for prediction error. Grand-averaged model parameters
and fits are reported without these two participants. See Frank et al.
(2007b) for further details on Q-learning model fits.



Fig. 1. Q-learning and the FRN. (A) Example Q-learning algorithm and reinforcement learning task symbols (green boxes are not shown to participants). For example, if a participant
picks stimulus “A” and is rewarded, a positive prediction error will occur in relation to the extant action value. This value will update, increasing the likelihood of choosing “A” in the
future. The next time the A/B pair is shown, if the participant chooses “A” again and is punished, the negative prediction error occurs in relation to the action value (which was large
in this case, resulting in a more negative prediction error). (B) Negative prediction errors have been proposed to be reflected by the feedback-related negativity (FRN) component of
the ERP. Feedback-locked current source density ERPs show correct, incorrect, and difference (incorrect minus correct) waves from the FCz electrode. The topographic map shows
the power of the difference wave, averaged in window specified at the top of the graph (200–350 ms), demonstrating the timing and topography of the FRN.
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EEG recording and preprocessing

Scalp voltage was measured using 62 Ag/AgCl electrodes
referenced to a site immediately posterior to Cz. In addition, two
mastoid channels were recorded, as were separate bipolar channels
for recording horizontal and vertical eye movements. EEG was
recorded continuously in AC mode with band-pass filter (0.5–
100 Hz) with a sampling rate of 500 Hz. Impedances were kept
under 10 kΩ. All raw EEG data were visually inspected by two
researchers to reject bad sections with artifacts and to identify bad
channels to be interpolated. Data were then epoched (−1500 ms to
1500 ms) around each feedback onset in the training phase, these
epochs were then cleaned of eyeblink and muscle artifacts using
independent components analysis from the EEGLab toolbox (Delorme
and Makeig, 2004). Epochs were then transformed to current source
density (CSD) using the methods and functions of Kayser and Tenke
(2006) (and also algebraically re-referenced to linked mastoids for
analyses in the Supplemental materials). CSD computes the second
spatial derivative of voltage between nearby electrode sites, acting as
a reference-free spatial filter. The CSD transformation highlights local
electrical activities at the expense of diminishing the representation of
distal activities (volume conduction). The diminishment of volume
conduction effects by CSD transformation may reveal subtle local
dynamics and also lead to more accurate characterization of local
activities during the calculation of long-distance synchrony. See Fig. 1
for CSD ERPs (filtered from .5 to 15 Hz).

Supplementary figures (S1–S3) contrast linked mastoid voltage
ERPs, CSD ERPs, theta band-filtered CSD ERPs, and Hilbertized CSD
theta power for correct, incorrect, and difference wave conditions.
These plots highlight potential differences in condition-wide expec-
tancy (which could contribute to component overlap) as in Holroyd
and Krigolson (2007). There was no evidence for component overlap
due to change in condition-wide expectancy or due to volume
conduction in theta band-filtered CSD–EEG, suggesting that these
spatial and temporal filters effectively isolate phase-locked mPFC
theta proposed to underlie the FRN. To assess whether this activity
was specific to medial–frontal theta and not in part influenced by
later theta from parietal P3-related processes, we examined the
distribution of CSD theta power over the interval from 200 to
400 ms. There was a remarkably consistent mid-frontal scalp
topography, with no evidence of posterior contributions that would
be expected if P3-related processes where contributing to the signal
(see Supplementary Fig. S4).

Grand average time–frequency calculations

Time-frequency calculations were computed using custom-written
Matlab routines (Cavanagh et al., 2009; Cohen et al., 2008) of themethod
describedbyLachauxet al. (1999). TheCSD–EEG time series ineachepoch
was convolved with a set of complex Morlet wavelets, defined as a
Gaussian-windowed complex sine wave: e−i2πtfe−t2/(2×σ2), where t is
time, f is frequency (which increased from1 to 50Hz in 50 logarithmically
spaced steps), and σ defines the width (or “cycles”) of each frequency
band, set according to 4.5/(2πf). This convolution resulted in (1)
estimates of instantaneous power (the magnitude of the analytic signal),
defined as Z[t] (power time series: p(t)=real[z(t)]2+imag[z(t)]2); and
(2) phase (the phase angle) defined asϕt=arctan(imag[z(t)]/real[z(t)]).
Each epoch was then cut in length (−500 to +1000 ms peri-feedback)
and baseline corrected to the average frequency power in each condition
from −300 to −200 ms before the onset of the feedback. Power was
normalized by conversion to a decibel (dB) scale (10×log10[power(t)/
power(baseline)]), allowing a direct comparison of effects across
frequency bands.

Two different types of oscillation phase coherence were examined:
intertrial phase coherence (ITPC) and interchannel phase synchrony
(ICPS). For convenience, we use the term “coherence” when
describing the consistency of phase angles over trials within a single
electrode (ITPC) and the term “synchrony” when describing the
consistency of phase angles between two channels (ICPS), although
we do not assess the existence of zero phase difference for a textbook
definition of “synchrony.” ITPC measures the consistency of phase
values for a given frequency band at each point in time over trials, in
one particular electrode. Phase coherence values vary from 0 to 1,
where 0 indicates random phases at that time/frequency point across
trials, and 1 indicates identical phase values at that time/frequency
point across trials. The phase coherence value is defined as:

ITPC =
����
1
n
4
Xn

x=1

ei/xt

����;



Fig. 2. Grand average time–frequency plots show correct, incorrect, and difference conditions for: (A) CSD power changes (FCz), (B) phase coherence increases from baseline (FCz), and (C) phase synchrony increases from baseline (F6–FCz). A
strong theta band increase in power, phase coherence, and phase synchrony can be seen following incorrect feedback ∼300–500 ms; these effects are significantly different between conditions (as shown in the bar and line charts).
Topographic plots show difference wave distributions (averaged over 300–500 ms) for the theta band.
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where n is the number of trials for each time and each frequency band.
ITPC thus reflects the extent to which oscillation phase values are
consistent over trials at that point in time–frequency space (power, in
contrast, represents the intensity of that signal).

ICPS measures the extent to which oscillation phases are similar
across different electrodes over time/frequency. ICPS is calculated in a
similar fashion as intertrial phase coherence:

ICPS =
����
1
n
4
Xn

t=1

ei /jt −/kt½ �
����;

where n is the number of trials, ϕj and ϕk are the phase angles of
electrode j and k. Thus, phase angles are extracted from two
electrodes, and then subtracted: If the phase angles from the two
electrodes fluctuate in synchrony over a period of time, their
difference will be constant (i.e., nonuniformly distributed), leading
to ICPS values close to 1.

ITPC and ICPS values were computed as the percent change from
the pre-cue baseline. Note that wavelet convolution necessarily
“smears” activity over time at the expense of better frequency
resolution. Values for statistical analysis were averaged over time and
frequency in windows defined by the grand average wavelet plots in
Fig. 2 (over the theta band (4–8 Hz), averaged across 200–500 ms,
separately correct and incorrect trials). Topographical plots of the
incorrect minus correct difference display these averaged values for
each separate metric. Lateral electrodes of interest (F5/6) were
selected based on a previous investigation (Cavanagh et al., 2009);
subsequent analyses did not reveal any qualitative or quantitative
difference between other lateral electrode pairs, as described below.

Single-trial time–frequency calculations

Single-trial analyses of power and phase synchrony were com-
puted using the Hilbert transform on EEG data filtered in the theta
band from 5 to 8 Hz (using a zero phase-shift filter), separately for the
FCz (mPFC), F5 (left lPFC), and F6 (right lPFC) electrodes. A smaller
theta band width was determined based on temporal constraints,
allowing a minimum of 2.5 cycles of the lowest frequency (5 Hz).
Individual matrices were sorted according to the degree of prediction
error (Y axis) separately for correct and incorrect feedback trials,
which were then cut in length (X axis: − 500 to +1000 ms peri-
feedback), and interpolated into a common time–frequency space for
grand averaging; this method shows the amount of theta power (Z
axis; “cold” to “hot” colors) for increasing degrees of prediction error
(these figures are sometimes referred to as ERP images), see Fig. 3.
Measurement windows for single-trial values were derived based on
Fig. 3. Grand-averaged theta CSD power ERP plots from the FCz electrode for incorr
windows defined by the wavelet-based analyses, the ERP images and
mathematical constraints for the number of cycles required for phase
synchrony estimates. Theta band power values were averaged in
window of 200 to 400 ms after feedback for each trial. Theta phase
synchronywas calculated in awindow of 100 to 600ms after feedback
for each trial (at least 2.5 cycles of theta).

Postfeedback reaction time (RT) changes were computed as the
trial-to-trial difference in milliseconds (ms) between trials (subse-
quent trial RT minus the current trial RT), with higher values
reflecting greater slowing. This RT difference was computed for two
different types of conditions: (1) “delay,” the next trial type of the
same stimulus pair (i.e., the next AB pair following an AB pair, with a
varied number of interspersing CD or EF trials), and (2) “immediate,”
the subsequent trial of an opposite stimulus type (i.e., the next
stimulus following an AB pair, as long as it was a CD or EF pair). For
statistical analysis, mixed linear models (MLMs) were used (via SAS
Proc Mixed). MLMs estimate the relationship between two variables
(as beta weights) within each participant in the first level; here we
investigated single-trial level variables including PFC activities (phase
synchrony or power), prediction error (coded as an absolute value), or
reaction time change (immediate or delayed). The second level may
include moderating or condition-wide variables; here we included
accuracy (correct, incorrect) and in the case of lPFC analyses,
hemisphere (left, right). Note that prediction error was coded as an
absolute value in MLMs with an additional level for accuracy; this
approach allowed assessment of both the unsigned magnitude of
prediction error (main effect) and the direction of prediction error
(interaction with accuracy). Outliers exceeding three standard
deviations around each individual variable mean were removed
before analyses (∼1% of trials were removed on average). Mixed
model results are reported as unstandardized β, standard error, t
statistic (β/SE), and p value. Fig. 4 shows the individual standardized
β weights and standard errors for the relationships of interest. For
display purposes, select predictor variables were median split and the
values of the dependent variable were averaged within the upper and
lower bins (see Fig. 5).

Results

Demographics and performance

Participants (N=50, 26 females) were an average of 19 years old
(SD=1.35). All participants were right handed (as assessed by the
scale of Chapman & Chapman, 1987). Participants completed an
average of 4 blocks of training (SD=1.6), and were 65% accurate
(SD=9%) in the test phase. There were an average of 127 EEG epochs
ect and correct conditions, smoothed and sorted by degree of prediction error.



Fig. 4. Standardized beta weights (±SE) reflecting single-trial relationships as revealed by mixed model statistical tests. Note that prediction error is coded as an absolute measure
for display purposes. (A) The magnitude of prediction error is related to immediate reaction time slowing following incorrect feedback and speeding following correct feedback. (B)
mPFC theta power is related to themagnitude of prediction error, andmPFC power predicts immediate reaction time slowing on the next trial. (C) Bilateral synchrony betweenmPFC
and lPFC sites is related to the magnitude of prediction error. (D) Right lPFC power is related to the magnitude of prediction error, and bilateral PFC power predicts reaction time
speeding on the next trial of the same type (working memory-related speeding).
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of correct feedback (SD=48.6) and 103 epochs of incorrect feedback
(SD=45.7) per participant. The average RT on trials with incorrect
feedback was 1145 ms (SD=364). RT on trials with correct feedback
was 1132ms (SD=353); there was no difference in RT between these
conditions (tb1). The average learning rate for correct trials (αG) was
.41 (SD=.35), for incorrect trials (αL) was .19 (SD=.25), and the
average inverse gain (β) parameter was .38 (SD=.31). Average log
likelihood for the training fit was−144 (SD=73), average pseudo-R2

was .18 (SD=.15).

Immediate and delayed behavioral adaptation following feedback

Following positive reinforcement (“correct”), participants chose
the same stimulus again the next time it appeared 74% (SD=11%) of
the time (a “win–stay” strategy). Following punishment (“incorrect”),
participants were nearly evenly split in their choice during the next
stimulus pairs, switching only 45% (SD=8%) of the time (“lose–
switch”). In contrast to the design of Cohen and Ranganath (2007),
this more complex reinforcement learning task required the slow
integration of negative feedback (where punishment cues are only
partially reflective of the true stimulus value); a strong lose–switch
strategy throughout the entire task would ultimately be counterpro-
ductive. This pattern was evident in participant behavior, where
switches following negative feedback occurred less than half of the
time.

There were no aggregate effects of behavioral adaptation in
immediate RT change initially following negative feedback (post-
incorrect mean=0.2 ms, SD=89; pN .9), nor was there a notable
RT change initially following positive feedback (post-correct
mean=16 ms, SD=67; p=.10). By contrast, for the next repetition
of a given stimulus after a variable number of intervening items (delay
RT), there was a general effect of post-error slowing and post-correct
speeding for delay RT change (post-incorrect mean=26.89 ms,
SD=52.89; post-correct mean=−23.81, SD=37.50; each was
significantly different than 0, and significantly different from each
other, p valuesb .01), indicating an aggregate effect of post-error
slowing and post-correct speeding for repeated stimulus pairs of the
same type.



Fig. 5.Qualitative relationships between predictor variables (abscissa: median split) and the value of dependent variable (ordinate). (A) Following incorrect feedback, themagnitude
of negative prediction error and the amplitude of mPFC theta were directly related to each other. Both the magnitude of negative prediction error and the amplitude of mPFC theta
predicted the degree of immediate reaction time slowing. Medial PFC theta powermay be a reflection of a system that uses negative prediction errors to immediately adapt behavior.
(B) Following correct feedback, the magnitude of positive prediction error was directly related to the amplitude of lPFC theta power. Lateral PFC theta power predicted reaction time
speeding for the same trial type the next time it was encountered (after a delay). Lateral PFC theta power may be a reflection of a system that updates working memory for stimulus
value in the service of future behavioral adaptation.
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Delay RT changes occurred both in conjunction with the utilization
of feedback and in the decision to switch or stay. Delay RT was
slower for switches after both types of feedback (correct-switch
mean=25 ms, SD=169; incorrect-switch mean=15 ms, SD=12),
but there was dissociation between accuracy conditions where
speeding occurred on correct–stay trials (mean=−35 ms, SD=54)
yet slowing occurred on incorrect–stay trials (mean=32 ms,
SD=90). Although the 2-way interaction for these accuracy–behavior
combinations did not reach the standard threshold for statistical
significance (F(1,49)=3.59, p=.06), the general trend of RT slowing
for delay RT effects with the exception of RT speeding following
correct–stay trials helps to interpret dissociation between accuracy
conditions in single-trial brain behavior relationships.

Grand average theta to feedback

As expected, incorrect feedback trials had significantly greater
mPFC theta power (FCz: t(49)=6.47, pb .01) and mPFC theta phase
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coherence (FCz: t(49)=2.8, pb .01) than did correct trials (see Fig. 2).1

A 2 (Accuracy: Correct, Incorrect)× 2 (Hemisphere: F5, F6) ANOVA
for mPFC–lPFC theta synchrony revealed that theta synchrony was
greater following incorrect compared to correct feedback (Accuracy:
F(1,49)=7.74, pb .01) especially over right hemisphere (Interaction:
F(1,49)=8.84, pb .01; absent main effect for Hemisphere pN .47), see
Fig. 2. A similar 2× 2 ANOVA for power between left and right lPFC
revealed main effects for hemisphere and accuracy without an inter-
action effect (Accuracy: F(1,49)=6.0, pb .05; Hemisphere: F(1,49)=
5.0, pb .05, Interaction: F(1,49)=3.23, p=.08), where power was
greater after incorrect feedback in the presence of an overall right
hemispheric bias. There were no significant accuracy or hemispheric
effects for theta band phase coherence in lPFC sites (pN .16).
Averaged theta activities did not predict averaged future behavior
when switching or staying with the same stimulus choice the next
time it was shown following incorrect or correct feedback (neither
power at FCz, F6, or F5 nor synchrony between F6–FCz and F5–FCz,
all p valuesN .11). In sum, mPFC (power and phase coherence) and
right lPFC (power and phase synchrony with mPFC) demonstrated
greater theta band activities following incorrect feedback, but neither
of these effects related to averaged trends in behavioral adaptation.

Single-trial theta, behavior, and model-derived prediction errors

As detailed in the Methods section, mixed linear models (MLMs)
were used to assess the single-trial bivariate relationships between
pairings of PFC activities, prediction error, and reaction time change as
a function of accuracy (and in the case of lPFC analyses, hemisphere).
Quantitative depictions of theta power, prediction error, and reaction
time change relationships are shown in Fig. 4, as standardized beta
weights, qualitative depictions, and raw data values are shown in Fig.
5.

Prediction error predicts immediate RT change

In a model predicting immediate RT change [RT=PE×Accuracy],
the magnitude of prediction error was a significant predictor
(β=164, SE=56, t=2.9, pb .01), whereas accuracy was not
(pN .13), with a significant interactive effect (β=−355, SE=68,
t=−5.23, pb .01) whereby reaction time was slower following
increasingly negative prediction errors and was faster following
increasingly positive prediction errors (Fig. 4A). Note these RT effects
were found in relation to PE despite the fact that only choices, and not
RTs, were fit by the computational model. Delay RT change was not
related to prediction error (all p valuesN .21).

mPFC theta scales with negative prediction error

In a model predicting mPFC theta power [mPFC=PE×Accuracy],
theta power over the mPFC was greater with higher absolute
magnitude prediction error (β=1.38, SE=.49, t=2.84, pb .01) and
greater on incorrect trials (β=−2.28, SE=.11, t=−20.44, pb .01),
with an interaction indicating that incorrect trials had the largest
relationship between prediction error and mPFC theta power (β=
−1.46, SE=.61, t=−2.38, pb .05). Negative prediction error directly
scaled with mPFC theta power (β=1.48, SE=.50, t=2.96, pb .01),
but positive prediction error did not (pN .8) (Fig. 4B).
1 However, neither mPFC theta power nor lPFC–mPFC theta synchrony predicted the
degree that a participant learned to avoid decisions associated with negative outcomes
or to choose decisions associated with positive outcomes as assessed during the test
phase (a NoGo or Go learning bias; p values N .24), see Frank et al. (2004). Thus, these
frontal theta activities appear to reflect the rapid trial-to-trial adaptation following
feedback presumed to be computed by PFC, not the slow, incremental, integrative, and
potentially implicit, reinforcement learning processes of the basal ganglia (Frank et al.,
2007b).
mPFC theta predicts immediate RT change

In a model predicting immediate RT change [RT=mPFC× Accu-
racy], RT slowing was predicted by greater medial PFC theta power
(β=4.17, SE=1.64, t=2.55, pb .01), with no accuracy or interaction
effects (p valuesN .16) (Fig. 4B). Immediate RT change was not
predicted by mPFC–lPFC synchrony (p valuesN . 11). Delay RT change
was not related to mPFC theta power or mPFC–lPFC synchrony (all p
valuesN .21).

Negative prediction error does not predict immediate RT change in the
absence of mPFC theta

To test whether the relationship between negative prediction
error and immediate RT slowing [RT=−PE] was related to mPFC
theta power, we additionally accounted for the variance in immediate
RT slowing due to mPFC theta before inclusion in an MLM with
negative prediction error [RT_residual=−PE]. Negative prediction
error directly predicted immediate RT slowing (β=147, SE=50,
t=2.92, pb .01) but negative prediction error no longer significantly
predicted immediate RT slowing after accounting for variance inmPFC
theta (β=.22, SE=.13, t=1.7, pN .05) (Fig. 5A).

lPFC theta scales with absolute prediction error

In a model predicting lPFC theta power [lPFC=PE×Accuracy×-
Hemisphere], theta power over the lPFC was greater in the right
hemisphere following feedback, as revealed by a PE×hemisphere
interaction (β=.97, SE=.42, t=2.32, pb .05), absent main effect
for accuracy (pN .14) (Fig. 4D). Theta synchrony between mPFC and
lPFC was also related to the magnitude of prediction error (β=.038,
SE=.02, t=1.99, pb .05) and was larger following incorrect
feedback (β=− .01, SE=.005, t=−1.91, p=.05), but there was
no PE×accuracy interaction (pN .13) or hemispheric specificity
(pN .55) (Fig. 4C).

lPFC theta predicts delay RT Change

In a model predicting delay RT [RT=lPFC×Accuracy×Hemi-
sphere], lPFC power predicted delay RT following correct trials
specifically, where the RT for the same stimulus pair was faster
(lPFC×Accuracy interaction: β=−6.24, SE=3.03, t=−2.06,
pb .05) without a main effect of lPFC power (pN .34) and without
hemispheric specificity (pN .67) (Fig. 4D). There were no relationships
between lPFC power and immediate RT slowing (p valuesN .22).

These single-trial effects were robust across frontal regions.
Alternative electrodes were investigated based on the scalp
topographies in Fig. 2: more ventral (F7/8) and more dorsal
(AF3/4). The pattern of theta band relationships with prediction
error and reaction time at these electrode sites was similar to F5/6.
Although theta power on correct trials appears to peak earlier than
incorrect trials (see Fig. 3), no new findings were revealed using a
100–300 ms time window for single-trial analysis. Whereas
previous investigations have noted beta band (17–25 Hz or 20–
30 Hz) relationships to increasingly positive feedback (Cohen et al.,
2007; Marco-Pallares et al., 2008), we did not find any relationships
between beta activity (15–30 Hz) and prediction error or reaction
time adaptation.

Discussion

This investigation revealed that theta band activities following
reinforcement cues are related to both the magnitude of prediction
violation and the degree of future trial-to-trial behavioral adaptation.
This finding suggests that theta band activities in the frontal cortex are
involved in the evaluation of positive and negative feedback in the
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service of learning and/or strategic adjustment. Moreover, these theta
band activities are reflective of presumed functions of the underlying,
presumably generative, cortices: evaluation of punishment and
immediate behavioral adaptation in the medial PFC and working
memory in the dorsal areas of the lateral PFC. These findings may help
clarify hypotheses advanced in the ERP literature that suggest a
number of different, and sometimes contradictory accounts of the
voltage deflection to negative feedback, the FRN.

Event-related theta band power and oscillatory perturbation occur
with the same topography and time range as the FRN and exhibit
similar modulation to punishment cues (Bernat et al., 2008; Cohen et
al., 2007; Marco-Pallares et al., 2008). This perspective fits with other
accounts suggesting that frontal midline theta activities underlie the
ERN and predict subsequent behavioral adaptation following errors
(Cavanagh et al., 2009; Debener et al., 2005; Luu et al., 2003, 2004;
Trujillo and Allen, 2007). The oscillatory perspective would further
imply that these distinct neuroelectric phenomena of the ERN and the
FRN may reflect a similar underlying neural mechanism. Theta band
activities may reflect general mechanism of computation in the mPFC,
which is modulated in response to punishment, error, and immediate
behavioral adaptation.

Worse than expected

Theta activity in different cortical areas may reflect the utilization
of prediction error in the service of behavioral adaptation. The
magnitude of prediction error was linearly related to the degree of
immediate reaction time adjustments: slower following increasingly
negative prediction errors and faster following increasingly positive
prediction errors. Medial PFC theta power covaried with both the
degree of prediction error and immediate reaction time slowing
following errors, fitting with the proposed function of the mPFC and
anterior cingulate cortex (ACC) in reacting to punishment and
immediate behavioral adaptation (Blair et al., 2006; Bush et al.,
2002; Shima and Tanji, 1998; Wrase et al., 2007). Synchrony between
mPFC and lPFC sites was also related to the degree of prediction error
and was greater following incorrect feedback, although this measure-
ment did not specifically relate to reaction time adjustments. Medial
PFC theta power may reflect the processes underlying the translation
of prediction error for immediate behavioral slowing, especially
following errors.

Varying accounts suggest that the FRN is reflective of the degree of
negative reward prediction error (Holroyd and Coles, 2002) and of the
utilization of information for future behavioral adaptation (Cohen and
Ranganath, 2007; Holroyd et al., 2009). This current investigation
supports these basic propositions about the FRN as indexed by theta
band power. Bartholow et al. (2005) have additionally shown that
between-condition alteration of expectancy can alter the amplitude of
both the N2 and the ERN, suggesting that varied stimulus and
response-related mPFC activities are also modulated by expectation.
Although two previous studies have failed to show modulation of
theta band power to error feedback in conditions that might result in
increasingly negative prediction errors (Cohen et al., 2007; Marco-
Pallares et al., 2008), these investigations may have been similarly
hindered as previous studies of the FRN due to the lack of a
quantitative estimation of prediction expectation and the lack of
behavioral dependency (see Holroyd et al., 2009).

EEG source estimation of the FRN has implicated both the anterior
and posterior cingulate cortices, as well as pre-supplemental motor
areas (Cohen and Ranganath, 2007; Luu et al., 2003; Miltner et al.,
1997; van Schie et al., 2004). The ACC has been proposed to encode
reward prediction errors after feedback in order to update predictions
for use in guiding future behaviors (Cohen, 2007; Holroyd and Coles,
2002). ACC activity has been shown to be reflective of prediction error
in fMRI (Cohen, 2007), primate electrophysiology (Matsumoto et al.,
2007; Shima and Tanji, 1998), and intracranial human EEG (Oya et al.,
2005). The ACC and surrounding mPFCmay play a role in determining
the value of exercised options based on environmental feedback
(Glascher et al., 2009), which may be used to drive changes in
behavior when external cues indicate that new strategies are required
(Paus, 2001). In experimental settings, the lose–switch strategy has
been highlighted as a specific reaction in ACC to positive punishment
in both fMRI (Wrase et al., 2007) and single-cell recordings (Shima
and Tanji, 1998).

The sensitivity of the ACC to punishers may be an inherent feature
of the process of integrating internal and external cues in the service
of future behavioral adaptation. These functions are thought to occur
in parallel with the more incremental, integrative, and potentially
implicit, reinforcement learning processes of the basal ganglia (Frank
et al., 2007b). Punishers may indicate that behavior needs to be
adapted in the future, whereas rewards may indicate that behavior is
adequate—at least until the need for exploration of other rewards
arises. A parsimonious account of the mechanisms that generate the
FRN, and theta power as described here, may summarize these
operations as being common to the processing demands of the ACC,
which is particularly sensitive to errors, behavioral selection, and the
conjunction of the two.

Wang et al. (2005) have shown that theta activity is generated in
area 24 of the dorsal ACC, where extremely local areas respond to
error, conflict, novelty, familiarity, and stimulus–response associa-
tions in the time range of the FRN and ERN. ACC-generated theta
activity has been shown in monkeys, being responsive to movement,
reward, and lack of reward (Tsujimoto et al., 2006). Event-related
theta power change and oscillatory perturbation may reflect the
operations of the ACC and surrounding mPFC during outcome
evaluation and action selection, especially when changing behavior
following errors.

Better than expected

Participants tended to slow down following incorrect feedback and
speed up following correct feedback when they were presented with
the next stimulus pair of the same type. This delay RT effect was not
seen on the stimulus pair immediately following feedback but on the
next appearance of the same stimulus following some delay, so we
interpret these effects as being partially reflective of workingmemory
for the outcome specific to the stimulus chosen (Frank et al., 2007b).
Reaction time speeding was specifically associated with correct–stay
choices andmay reflect the tendency to encode the positive stimulus–
action–outcome association in working memory so as to repeat the
selection in the future. Although prediction error did not relate to the
degree of delay RT change, both of these processes were associated
with right lPFC power increases. Right lPFC theta power covaried with
the degree of prediction error after both correct and incorrect
feedbacks, indicating that this area might be involved in calculating
the degree to which events are different than expected regardless of
the valence of prediction error. Lateral PFC activities would thus be
ideally suited for holding the value of the prediction over the delay for
future behavioral adaptation, fitting with the presumed role of the
lPFC in working memory (Braver et al., 1997).

This investigation did not find a unique signal over the mPFCwhen
events were better than expected. Increasingly positive prediction
errors and increased magnitude of reward have been associated with
greater power and phase coherence in the beta band in the mPFC
(Cohen et al., 2007; Marco-Pallares et al., 2008). We did not find any
effects in the beta band in relation to prediction error or behavioral
adjustment in this study. Holroyd et al. (2008) suggest that a
positivity on correct trials occurs instead of an FRN/N2 and that this
positivity is reflective of reinforcement contingencies. While we did
not observe any time–frequency activities at the FCz electrode that
were greater on correct than incorrect trials, we did not investigate
ERP effects that could be due to slow, non-oscillatory potentials or to
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component overlap. In fact, our approach sought to diminish any
possible component overlap: the CSD transform and theta band filter
act as spatial and temporal filters, as demonstrated in the Supple-
mental materials. Previous application of the CSD transform has
indicated that response-locked positivities preceding errors (Ridder-
inkhof et al., 2003) may actually be reflective of a stimulus-locked
positivity that is volume conducted over diminished response-locked
negativities (Cavanagh et al., 2009; Vidal et al., 2003). While a similar
volume conduction effect could be occurring during correct-related
positivities, the present investigation is not suited to probing this
effect and we remain agnostic about the relevance this ERP
component. Future investigations may wish to directly identify a
better-than-expected voltage component and then seek to determine
the oscillatory characteristics and topography of the underlying
event-related EEG.

Mismatch and prediction error

Technically, a system that responds to the magnitude of negative
and positive prediction error in the same direction (such as lPFC
theta) does not compute a “reward prediction error,” which by
definition requires a valenced signal (e.g., see axiomatic description
by Caplin and Dean, 2008). The absolute value of a prediction error,
which seems to be reflected in lPFC theta, may reflect something akin
to salience of expectation violation. ACC activity has been shown to be
reflective of both positive and negative prediction error (Matsumoto
et al., 2007), although sensitivity to punishment and uncertainty may
particularly characterize ACC function (Blair et al., 2006; Bush et al.,
2002; Shima and Tanji, 1998;Wrase et al., 2007). It remains to be seen
if mPFC theta (or the FRN) is the actual reflection of mesolimbic
dopamine-driven negative reward prediction computation or if this
signal is simply reflective of a general tendency of late ERPs and the
underlying oscillatory perturbations to reflect mismatch (Friston,
2005), which is generated by cortex that is particularly sensitive to
punishment and error. This perspective suggests that the cortical
activities underlying the FRN/mPFC theta could occur separate or
prior to midbrain dopamine nuclei activities (Frank et al., 2005), as
opposed to being generated by them (Holroyd and Coles, 2002).

Parallels between the FRN and the mismatch N2 have been
frequently noted in the literature, particularly due to the spatiotem-
poral pattern of these ERPs and the similarmodulating factors. As with
the FRN, infrequency and degree of mismatch also modulate the N2,
however, it is unknown if these eliciting events reflect alterations of
different underlying neural processes (Donkers et al., 2005; Donkers
and van Boxtel, 2004; Holroyd, 2002). Holroyd et al. (2008) suggest
that the FRN is simply an N2 that occurs to unexpected negative
feedback and that difference wave ERP variance depends more on
positive than negative prediction errors.We suggest that both the FRN
and the N2 are partial reflections of mPFC theta oscillatory perturba-
tions. Here, we demonstrate that mPFC theta power following
incorrect feedback is a reflection of a system that uses negative
reward prediction errors to adapt future behavior (in line with the
predictions of Holroyd and Coles, 2002).

All of the frontocentral negativities peaking ∼250 ms after stimuli
appear to be sensitive to a form of expectation mismatch, although
this type of prediction error may differ in terms of action selection
(control N2), attention (mismatch N2), and negative reward
prediction (FRN) (see Folstein and Van Petten (2008) for a review
of control and mismatch N2). While these mismatch signals may
reflect disparate processes in unique cognitive circumstances, all of
these aforementioned processes have been specifically associated
with ACC function, and these mismatch signals may be similarly
reflected by mPFC theta oscillations. A parsimonious account may
surmise that mechanisms generating scalp-recorded frontocentral
voltage negativities are common to the processing demands of the
mPFC, especially the ACC, which are varied across systems related to
cognitive and motor control, attention, and reinforcement learning,
but are especially active when using punishment and error signals to
adapt future behavior.

Conclusion

This investigation supports the theory that the mediofrontal theta
band activities, which presumably underlie the FRN component, are
reflective of the degree of negative prediction error and subsequent
behavioral adaptation. Moreover, multiple neural systems may be
involved in the computation of different types of prediction error and
the utilization of feedback for different behavioral adaptations. Theta
band oscillations may be reflective of these prediction error calcula-
tions in the medial PFC for immediate behavioral adaptation and in
lateral PFC for delayed behavioral adaptation.
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