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To examine how stress affects cognitive functioning, individual differences in trait vulnerability (punishment sensitivity) and state
reactivity (negative affect) to social evaluative threat were examined during concurrent reinforcement learning. Lower trait-level
punishment sensitivity predicted better reward learning and poorer punishment learning; the opposite pattern was found in more
punishment sensitive individuals. Increasing state-level negative affect was directly related to punishment learning accuracy in
highly punishment sensitive individuals, but these measures were inversely related in less sensitive individuals. Combined elec-
trophysiological measurement, performance accuracy and computational estimations of learning parameters suggest that trait
and state vulnerability to stress alter cortico-striatal functioning during reinforcement learning, possibly mediated via
medio-frontal cortical systems.
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How do individual differences in stress reactivity affect cog-

nitive functioning? Substantial evidence exists to implicate

stress reactivity as a curvilinear determinant of prefrontal

executive and sub-cortical monoamine functioning, which

are important for goal directed engagement with the envir-

onment (Arnsten, 1998). The varying effects of stress on

performance are often described as an ‘inverted-U’, but

few studies have investigated neural responses that differen-

tiate facilitative from debilitating effects of stress. Increasing

evidence has shown that both trait vulnerability and state

emotional reactivity influence the psychobiological and

neural response to social evaluative threat (Kemeny, 2003;

Pruessner et al., 2004; Lerner et al., 2007; Cavanagh and

Allen, 2008), suggesting that these individual differences

may differentiate facilitative vs debilitating alterations in

neural functioning. In this report, emotional reactivity to

social evaluative stress is shown to facilitate punishment

learning in highly stress vulnerable individuals, yet impede

punishment learning in less vulnerable individuals.

Stress-related alteration in a medio-frontal action monitor-

ing system is identified as a possible mechanism by which

this reinforcement learning bias is instantiated.

Stress and the anterior cingulate cortex
Located within the medial prefrontal cortex (mPFC), the

anterior cingulate cortex (ACC) is consistently activated in

neuroimaging investigations of stress reactivity (Dedovic

et al., 2009). It has been proposed that the ACC evaluates

the uncontrollability of a stressor (Amat et al., 2005, 2006),

subsequently determining stress-related subcortical monoa-

minergic responses (Pascucci et al., 2007) and hormonal re-

activity (Diorio et al., 1993; Radley et al., 2009). Cavanagh

and Allen (2008) previously investigated individual differ-

ences in stress reactivity and ACC functioning as reflected

by the error-related negativity (ERN), a scalp-measured elec-

trical voltage deflection occurring �80 ms after an erroneous

response (Gehring et al., 1993). The ERN is generated by

theta band phase resetting and enhancement (Trujillo and

Allen, 2007) in the ACC and surrounding mPFC, and is

thought to reflect the functions of an action monitoring

system that uses signals of error, conflict or punishment to

adapt future behavior (Debener et al., 2005; Cavanagh et al.,

2009). Cavanagh and Allen (2008) observed that under social

evaluative threat, ERN amplitudes were altered in an

inverted-U type fashion as a joint function of trait vulner-

ability (punishment sensitivity) and state reactivity (negative

affect), with the highly punishment sensitive group addition-

ally characterized by poorer post-error accuracy. These find-

ings suggest that ERN amplitudes may index stress-related

alteration of ACC functioning, possibly predicting conse-

quences in effective behavioral adaptation.

Learning and the anterior cingulate cortex
A novel opportunity to test the interaction between altered

ACC functioning and cognitive/behavioral consequence
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exists in the field of reinforcement learning, where larger

ERN amplitudes reliably predict behavioral accuracy in pun-

ishment avoidance learning (Frank et al., 2005, 2007a;

Grundler et al., 2009). During reinforcement learning, feed-

back- and response-related ACC activities become inversely

related as learning progresses from reliance on external feed-

back (larger feedback-related activity to negative prediction

errors) towards reliance on internal representations (larger

response-related activity) (Holroyd et al., 2004; Mars et al.,

2005). This inverse temporal relationship is reflected in feed-

back- and response-locked event-related voltage potential

and theta band amplitudes, and is thought to depend on

the slow cortico-striatal computation of ‘action values’

(Holroyd and Coles, 2002; Frank et al., 2007c; Cavanagh

et al., 2010). These phasic theta band activities during re-

inforcement learning allow for a measurement of ACC and

mPFC systems involved in punishment avoidance learning.

Stress, biased learning and the anterior cingulate
cortex
We hypothesized that in addition to being an apparent de-

terminant of stress reactivity, altered processing in the ACC

could bias the cortico-striatal computation of action values.

In line with this idea, recent computational efforts have de-

tailed mechanisms by which PFC may bias striatal function-

ing during reinforcement learning, enhancing learning in the

striatum when beliefs are consistent with outcomes and dis-

counting learning when inconsistent (Doll et al., 2009; Huys

and Dayan, 2009). While learning can be ultimately assessed

by performance accuracy, different brain regions may con-

tribute to performance across different time scales.

Computational estimations based on trial-to-trial perform-

ance patterns have proposed to parse PFC and striatal con-

tributions during learning: separating the rapid, trial-to-trial

adaptive (putatively PFC) learning rate expressed during

training from the slow integrative (putatively striatal) learn-

ing rate revealed during subsequent testing (Frank et al.,

2007b). This latter, slowly integrative system is ultimately

responsible for accurate action value computation, and is

hypothesized here to be biased by stress-related ACC activ-

ities during training (akin to Doll et al., 2009; Huys and

Dayan, 2009).

In the current investigation, it was hypothesized that trait

and state vulnerability to social evaluative threat may alter

cortico-striatal functioning during reinforcement learning.

Altered estimation of reward or punishment values,

mediated by stress-altered ACC functioning, may be a mech-

anism by which stress reactivity affects cognitive functioning.

METHODS
Participants
Participants were 50 students (26 females) with a mean age

of 18.9 years (s.d.¼ 1). All participants gave informed con-

sent and the research ethics committee of the University of

Arizona approved the study. Participants were invited to a

screening session if they indicated low levels of depressive

symptomatology on the Beck Depression Inventory (BDI

score <7) during a pretest in introductory psychology

classes. The screening session was used to identify partici-

pants who fit the recruitment criterion for the electroence-

phalogram (EEG) session: (i) aged 18–25, (ii) stable low BDI

(<7) and no self-reported history of major depressive dis-

order, (iii) no current psychoactive medication use, (iv) no

history of head trauma or seizures and (v) no self-reported

symptoms indicating a possibility of an Axis I disorder, as

indicated by self-reported computerized completion of the

Electronic Mini International Neuropsychiatric Interview

(eMINI; Medical Outcome Systems, Jacksonville, FL, USA).

All experiments were run by the same male lead experiment-

er (J.F.C.) and a female assistant (varied). Additional

methodological details can be found in the Supplementary

Data.

Questionnaires
Pre-task questionnaires included questions about demo-

graphics and health, as well as the Carver and White

(1994) Behavioral Inhibition Scale/Behavioral Activation

Scale (BIS/BAS). The BIS scale was the primary measure of

trait-level punishment sensitivity (Cavanagh and Allen,

2009). Post-task questionnaires included retrospective ap-

praisals of emotional experience based on endorsement of

an emotional adjective word list rated on a scale of 0 (not the

slightest bit) to 8 (most in your life) (Gross and Levenson,

1995; Lerner et al., 2007; Cavanagh and Allen, 2008). All

negative emotionality measures were aggregated (fear, ner-

vous, anxious, afraid, anger, irritation, frustration, ashamed,

humiliated, embarrassed, self-conscious) the coefficient

alpha for the measure of aggregate negative affect was

�¼ 0.91.

Probabilistic learning task
The probabilistic learning tasks consisted of a forced choice

training phase followed by a subsequent testing phase (Frank

et al., 2004). During the training phase the participants were

presented with three stimulus pairs, where each stimulus was

associated with a different probabilistic chance of receiving

‘Correct’ or ‘Incorrect’ feedback. These stimulus pairs (and

their probabilities of reward) were termed A/B (80%/20%),

C/D (70%/30%) and E/F (60%/40%), see Figure 1. Over the

course of the training phase, a participant usually learns to

choose the optimal stimulus, solely due to adaptive respond-

ing based on the feedback. Under initial, benign conditions

(T1), participants underwent training trials (consisting of

1–6 blocks of 60 stimuli each) until they reached a minimum

criterion of choosing the probabilistically best stimulus in

each pair (AB� 65%, CD� 60% and EF� 50% correct

choices). During the stress manipulation (T2), participants

performed a fixed set of four training blocks before being

moved to the test phase.
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To test whether the participants learned more from seek-

ing reward (Go learning) or avoiding punishment (NoGo

learning), a testing phase followed the training phase.

During the testing phase all possible stimulus pairs

(i.e. AD, CF, etc.) were presented eight times (120 trials

total). Go learning was defined as the accuracy of choosing

A over C, D, E and F (i.e. seeking A), whereas NoGo learning

was defined as the accuracy of choosing C, D, E and F over B

(i.e. avoiding B). These test phase accuracies are suggested to

reflect the slow probabilistic cortico-striatal integration that

occurred during the training phase, where effective estima-

tion of stimulus-action value is particularly needed to resolve

the difference between stimuli with similar reinforcement

values. Accordingly, high conflict trials were defined based

on the reinforcement value difference between stimuli (a

difficult choice relates to a small difference in reinforcement

value) for high conflict Go (AC, AE and CE) and high con-

flict NoGo (BD, BF and DF), similar to previous research

(Frank et al., 2005, 2007b).

Stress manipulation
The stress manipulation was initiated between the T1

(benign) and T2 (stress) tasks. The social stress manipulation

was designed to follow the criterion of Dickerson and

Kemeny (2004) to create a socially evaluative environment

with overt displays of exposed failure while maximizing

motivated performance. Similar to the Trier Social Stress

Task, this situation was uncontrollable in that the participant

could not alleviate the evaluative tone. Probabilistic tasks are

often opaque and non-memorizable, facilitating the environ-

ment of uncontrollability. Following the T1 (benign) task,

participants were informed that they were going to ‘need to

do this task again’ and that ‘it is important that they try

harder’. The assistant set up a video camera on top of the

monitor, and the participants were told that the experiment-

ers would be directly monitoring their performance this

time. Both experimenters directly watched the participant

and the video feed during the T2 (stress) task (Figure 2),

the lead experimenter additionally made a check mark every

Fig. 1 Probabilistic learning task. During training, each pair is presented separately. Participants have to select one of the two stimuli, slowly integrating ‘Correct’ and ‘Incorrect’
feedback (each stimulus has a unique probabilistic chance of being ‘Correct’) in order to maximize their accuracy. During the testing phase, each stimulus is paired with all other
stimuli and participants must choose the best one, without the aid of feedback. Note that the letter and percentage are not presented to the participant, nor are the green boxes
surrounding the choice. During the training phase, participants must choose which stimulus they feel is correct, without the aid of feedback. Measures of reward and punishment
learning are taken from the test phase, hypothesized to reflect the operations of a slow, probabilistic integrative system during training.
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time the participant received incorrect feedback. Additional

standardized prompts were used to pressure the participant:

‘Please keep your attention on the monitor’, ‘Just try to keep

up with the pace’, etc.

Abstract computational modeling of performance data
The trial-by-trial sequence of choices for each subject, for

each task (T1 or T2) was fit by a Q-learning reinforcement

learning model (Watkins, 1992; Sutton and Barto, 1998). As

in Frank et al. (2007c), this model includes separate learning

rate parameters for gain and loss (correct and incorrect feed-

back trials) in the training phase of the task. These separate

gain/loss learning rates (�G/�L) scaled the updating of the

stimulus-action values separately for rewards and punish-

ments. The expected value (Q) of any stimulus (i) at time

(t) was computed after each re-inforcer (R¼ 1 for Correct,

R¼ 0 for Incorrect): where �G and �L were learning rates

from gains and losses, respectively, and which were multi-

plied by prediction errors to update Q-values. These Q-

values were entered into a softmax logistic function to pro-

duce probabilities of responses for each trial. These probabil-

ities were then used to compute the log likelihood estimate

of the subject having chosen that set of responses. The best-

fitting parameters were found with a standard hill-climbing

search algorithm (simplex method) by maximizing this log

likelihood estimate.

It has been hypothesized that PFC and striatal systems

learn separate estimates of state-action values in parallel,

with different effective learning rates (Frank et al., 2007c).

To address the issue of the hypothesized cortico-striatal

system which slowly integrates reinforcement information

during training, but expresses these learned probabilities

during the test phase, a parallel Q learning model was used

to estimate end-of-training Q-values that correspond to test

phase choices [see Supplementary Data and Frank et al.

(2007c) for details]. Hereafter, these different types of

learning rates are referred to by the phase they modeled to

differentiate the putative functions of the rapidly adaptive

system of the PFC reflected in ‘fit-to-train’ learning rates and

the slow implicit cortico-striatal integrating system reflected

in ‘fit-to-test’ learning rates.

Electrophysiological recording and processing
Scalp voltage was measured using 64 Ag/AgCl electrodes

referenced to a site immediately posterior to Cz using a

Synamps2 system (bandpass filter 0.5–100 Hz, 500 Hz sam-

pling rate, impedances <10 k�). Eyeblinks were removed

with independent components analysis (Delorme and

Makeig, 2004). Epochs were then transformed to Current

Source Density (CSD) using the methods of Kayser and

Tenke (2006). CSD computes the second spatial derivative

of voltage between nearby electrode sites, acting as a

reference-free spatial filter. Time-frequency calculations

were computed using custom-written Matlab routines

(Cohen et al., 2008; Cavanagh et al., 2009). The CSD-EEG

time series in each epoch was convolved with a set of com-

plex Morlet wavelets, defined as a Gaussian-windowed com-

plex sine wave: e�i2�tfe�t
2=ð2��2Þ. Power was normalized by

decibel (dB) conversion. Epochs were baseline corrected for

each frequency by the average power from �300 to �200 ms

prior to the onset of the time-locking event. Values for stat-

istical analysis were averaged over time and frequency in

windows defined by the grand average wavelet plots in

Figure 4 (over the broadly ranged theta band of 3–9 Hz:

0–100 ms for response locked, 250–450 ms for feedback

locked). The electrocardiogram (ECG) was recorded from

a bipolar clavicle lead with the Synamps2 system and pro-

cessed using QRSTool and CMET software (Allen et al.,

2007). Reactivity scores were computed as the difference be-

tween the average heart rate during the stress and the base-

line tasks, computed separately for training and test phases

of the tasks (T2–T1 for training, T2–T1 for testing), to high-

light stress-specific heart rate change during task

performance.

Reinforcement terminology
Hereafter, the terms reward and punishment are used as

general terms for phenomena which either increase the prob-

ability of behavior (reward) or decrease the probability of

behavior (punishment). While more precise and historically

accurate terms would be positive reinforcement or positive

punishment, the field of ‘reinforcement learning’ is con-

strued to reflect both reinforcers (rewards) and punishers.

Thus, reward learning was measured by the phenomena

involved in processing feedback indicating a response was

‘correct’, test phase ‘Go’ accuracy, and learning rates for

‘gain’. Punishment learning was measured by phenomena

involved in processing feedback indicating a response was

‘incorrect’, test phase ‘NoGo’ accuracy and learning rates

for ‘loss’.

Fig. 2 Depiction of the social evaluative threat stress manipulation during the second
performance of the task (T2).
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Statistical analysis
Data from each task were only analyzed if participants se-

lected the most rewarding stimulus (A) over the most pun-

ishing stimulus (B) >50% of the time during the testing

phase, since data from participants who fail this basic criter-

ion are not interpretable (Frank et al., 2005, 2007a; Gründler

et al., 2009; Cavanagh et al., 2010). This criterion removed 8

participants from T1 analyses, 5 participants from T2 ana-

lysis and 12 participants from joint T1 and T2 analyses. For

simplicity, Low and High BIS groups were created from a

median split (median and mean rounded BIS score was 19).

General Linear Models (GLMs) were used to examine change

over time (T2–T1) of high conflict accuracies and learning

rates. To investigate the role of state-dependent affect, nega-

tive affect was used as a continuous moderator in ANOVAs

for the T2 period specifically. For simplicity, bivariate cor-

relations were displayed for significant relationships between

variables and Fisher’s z-tests were used to test for significant

differences between correlations. Multiple regression was

used to predict test-phase punishment learning accuracy

based on frontal theta during training (values were centered

and multiplied to test for interactive effects), additionally,

BIS group differences in this brain–behavior relationship

were tested.

RESULTS
Demographics and performance
Table 1 presents performance means and s.ds on each task.

There were no between-BIS group differences in T1 or T2

measures of performance (all t-values <2), with the excep-

tion of T1 fit-to-test learning rate for gain, where the low BIS

group had a higher learning rate [low BIS M¼ 0.55; high BIS

M¼ 0.29; t(42)¼ 2.18, P < 0.05]. Instead, stress-related effects

relied on the moderating influence of within-subject vari-

ables, as detailed below.

Combined psychobiological stress response
There was no difference in the mean heart rate reactivity in

the stress vs benign condition for training or test phases.

There were no between-BIS group differences in mean

heart rate reactivity or negative affect due to the stress ma-

nipulation, yet significant variance in test phase heart rate

reactivity was accounted for in a regression by the inter-

action of BIS group and negative affect (�¼ 0.26, t¼ 3.19,

P < 0.01). Heart rate reactivity significantly correlated with

negative affect in the High BIS group only [r(20)¼ 0.61,

P < 0.01], which was significantly different than the null

relationship in the Low BIS group [r(27)¼�0.13, P > 0.50;

Fisher’s z¼ 2.63, P < 0.01]. This relationship between

state-dependent emotionality and physiological reactivity

demonstrates a combined psychobiological stress response

in the high BIS group.

Stress effects on reinforcement learning
A 2 (valence: reward, punishment) * 2 (group: Low BIS, High

BIS) GLM for the difference measure (T2–T1) of

high-conflict accuracy revealed a significant interaction

[F(1,36)¼ 4.06, P < 0.05] with a significant simple contrast

for the Low BIS group (P < 0.05), absent any main effects.

Figure 3A shows how the Low BIS group was characterized

by both change towards higher high-conflict Go accuracy

and lower high-conflict NoGo accuracy under stress; a

non-significant trend in the opposite direction was found

in the High BIS group. A similar 2 (valence: reward,

punishment) * 2 (group: Low BIS, High BIS) GLM for

the difference measure (T2–T1) of fit-to-test learning

rates revealed a significant interaction [F(1,36)¼ 4.72,

P < 0.05] and no main effects. Decomposing the interaction

found no significant simple contrasts, but the pattern de-

picted in the interaction is shown in Figure 3A, which

shows how the Low BIS group was characterized by both

change towards lower gain and higher loss learning rates

under stress, the opposite pattern was found in the High

BIS group. This pattern is consistent with the idea that

lower learning rates are required to integrate probabilities

over trials and to successfully discriminate between subtle

differences in probability, as required in high conflict trials.

Similar GLMs for high conflict reaction times, low conflict

accuracies and fit-to-train learning rates were

non-significant (F ’s < 1), demonstrating the specificity of

these findings.

In summary, under stress, the Low BIS group was

characterized by higher accuracy on reward trials and

lower accuracy on punishment trials, the opposite pattern

of results was found in the High BIS group (although only

significant in learning rate). These patterns were specific to

difficult valenced choices (high conflict, requiring a slow

learning rate), fitting with the hypothesized long-term inte-

grative process of the cortico-striatal system.

Table 1 Task performance and learning rates (means and s.d.) for T1 and
T2 conditions

Task

Measure T1 (Benign) T2 (Stress)

Training blocks 3.36 (1.82) 4
Training RT (ms) 1083 (310) 1219 (380)
Test RT (ms) 1167 (420) 1517 (510)
Train accuracy (%) 68 (10) 72 (12)
Test accuracy (%) 68 (10) 74 (10)
Test Go accuracy (%) 68 (23) 75 (22)
Test NoGo accuracy (%) 69 (23) 73 (21)
Test Hi Conflict Go accuracy (%) 56 (23) 66 (20)
Test Hi Conflict NoGo accuracy (%) 60 (18) 62 (23)
Training loss learning rate 0.16 (0.22) 0.14 (0.24)
Training gain learning rate 0.29 (0.31) 0.31 (0.30)
Test loss learning rate 0.30 (0.38) 0.27 (0.32)
Test gain learning rate 0.43 (0.40) 0.44 (0.36)
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Negative affect moderates stress effects on
reinforcement learning
Under stress conditions (T2) specifically, similar 2 (valence:

reward, punishment) * 2 (group: Low BIS, High BIS) GLMs

were run with negative affect as a continuous moderator to

investigate the interactive role of trait and state stress

vulnerability. A three-way interaction was found for

high-conflict accuracy [F(1,41)¼ 5.01, P < 0.05], yet the

three-way interaction for fit-to-test learning rate was only

a trend [F(1,41)¼ 2.86, P¼ 0.10]. A follow-up ANOVA for

accuracy was split by valence (see Supplementary Data for

learning rate analyses). No effects were found for high con-

flict Go accuracy, whereas there was a significant trait (BIS

group) * state (negative affect) interaction for high-conflict

NoGo accuracy [F(1,41)¼ 6.02, P <0.05], absent any signifi-

cant main effects. Figure 3B shows how increasing negative

affect was related to poorer high-conflict NoGo accuracy in

the Low BIS group [r(27)¼�0.32, P¼ 0.10] but better

high-conflict NoGo accuracy in the High BIS group

[r(18)¼ 0.40, P¼ 0.10; Fisher’s z¼ –2.29, P < 0.05]. In sum-

mary, increasing negative affect moderated the diminish-

ment in punishment accuracy in the Low BIS group yet

the enhancement of punishment accuracy in the High BIS

group.

Negative affect facilitates internalization of
punishment
To identify neural systems hypothesized to be altered by

stress reactivity, theta-band power metrics locked to the

response and negative feedback during the training phase

(Figure 4) were investigated within the context of trait and

state stress reactivity. Negative affect was included as a con-

tinuous moderator in a 2 (locus: response, negative feed-

back) * 2 (group: Low BIS, High BIS) GLM for theta

power. There was a significant negative affect * locus inter-

action, F(1,41)¼ 4.64, P < 0.05, absent any other interactive or

main effects. Figure 5 demonstrates how increasing negative

affect was related to increasing response-locked theta power

[r(45)¼ 0.32, P < 0.05], yet decreasing negative feedback-

locked theta power [r(45)¼�0.21, P¼ 0.17; Fisher’s

z¼ 2.5, P < 0.01], demonstrating greater state-dependent in-

ternalization of value across all participants (no group ef-

fects). Importantly, negative affect did not correlate with T2

accuracy during the training phase (P > 0.47).

Internalization of punishment differentially predicts
punishment learning
Multiple regression was used to investigate if T2 high conflict

NoGo accuracy was predicted by response-locked and

feedback-locked theta power (here, the difference score be-

tween feedbacks was used: incorrect-correct), and if this re-

lationship differed between groups. The three-way

interaction was significant (�¼ 0.20, t¼ 2.03, P < 0.05).

Separate between-group regressions for each theta measure

were non-significant, yet within-group regressions were re-

vealing. In the Low BIS group, feedback-locked theta power

alone predicted punishment learning (main effect: �¼ 0.06,

t¼ 2.11, P < 0.05), the other main and interaction effects

Fig. 3 Performance and learning rate changes due to stress reactivity. (A) Under stress, the Low BIS group was characterized by the tendency for more accurate reward learning
and less accurate punishment learning; this pattern trended towards the opposite direction High BIS group. These same patterns are reflected more strongly in test phase learning
rate changes, where lower learning rates are hypothesized to reflect more effective slow probabilistic integration. (B) The degree of negative affect during stress also differentially
altered punishment learning: relating to poorer punishment learning in the Low BIS group yet better punishment learning in the High BIS group.
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were non-significant (t’s < 1). In the High BIS group, there

was a significant interaction (�¼ 0.21, t¼ 2.50, P < 0.05)

where greater interactive feedback- and response-locked

theta power predicted punishment learning, absent any

main effects (t’s < 1). Figure 6 summarizes this interaction

with median split values (� s.e.). In the Low BIS group, only

theta power to negative feedback predicted punishment

learning. In the High BIS group, an inverted-U effect of

interactive response and feedback processing predicted pun-

ishment learning, where high total theta activities or low

total theta activities predicted better learning.

DISCUSSION
This investigation revealed that trait level punishment sen-

sitivity and state-related negative affect moderate the ability

to learn to seek reward and avoid punishment during social

stress. Low trait-level punishment sensitivity was related to a

tendency towards better reward learning and poorer punish-

ment learning; the opposite pattern was found in highly

punishment sensitive individuals (at least in learning rate).

These inverted-U effects were further bolstered by the find-

ing that negative affect was inversely related to effective pun-

ishment learning in low punishment sensitive individuals,

but these measures were directly related in more sensitive

individuals. These reinforcement-related learning alterations

were specific to high conflict choices and fit-to-test learning

rates, suggesting an alteration in the slow integrative process

of the cortico-striatal system.

Cortical bias of reinforcement
One candidate mechanism by which individual differences in

stress reactivity affect reinforcement learning may be due to

Fig. 4 Time-frequency representations of EEG power at the FCz electrode. EEG plots are shown for response- and feedback-locked events during training (T1 and T2).

Fig. 5 Increasing negative affect was related to a general pattern of greater internalization of punishment during training, as reflected by an increase in response-locked theta
power and a concurrent decrease in negative feedback-locked theta power.
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altered internalization of error, conflict and punishment in

cortico-striatal action monitoring systems. Mediofrontal

EEG theta power demonstrated a negative affect-dependent

shift towards diminished processing of external punishment

cues and heightened internal processing of error and conflict

during training. While this shift was present in all partici-

pants regardless of trait-level punishment sensitivity, only

feedback-locked theta power predicted punishment learning

in the Low BIS group; the interaction of these theta metrics

predicted punishment learning in the High BIS group.

In the Low BIS group, increasing negative affect may have

led to poorer punishment learning due to diminished util-

ization of external punishment feedback. In the High BIS

group, increased sensitivity to internal indicators of per-

formance in conjunction with continued attention to exter-

nal punishment cues led to better punishment learning.

Curiously, the exact opposite pattern of theta response (sug-

gesting both lower internal and external salience) was also

shown to predict better punishment learning in High BIS

participants, possibly indicating that stress-related PFC

activities at both ends of the inverted-U facilitate integration

of action values.

Reinforcement and sub-cortical activity
An acute stress-related increase in mesolimbic dopamine

(DA) tone has been previously described in human neuroi-

maging experiments (Pruessner et al., 2004; Soliman et al.,

2008). Here, an enhanced reward learning bias in the Low

BIS group and decreased reward learning bias in the High

BIS group could also be related to tonic dopaminergic mech-

anisms. A computational model of cortico-striatal function-

ing during this same learning task suggests that phasic DA

bursts to reward are heightened by increased DA tone,

increasing ‘Go’ learning via D1 receptor activities and facil-

itating motor execution to seek rewards (Frank et al., 2004).

Conversely, phasic DA dips to punishment are exacerbated

by decreased DA tone, supporting ‘NoGo’ learning via D2

autoreceptor activity and inhibiting motor execution for

punishment avoidance.

Increased DA tone is suggested to reflect coping with a

controllable stressor, whereas decreased tonic DA is sug-

gested to reflect reaction to an uncontrollable stressor

(Cabib and Puglisi-Allegra, 1994). Critically, both the ap-

praisal of controllability and subsequent regulation of DA

tone may be determined by mPFC (Amat et al., 2005;

Fig. 6 Response and negative-feedback locked theta in relation to performance (values for interaction plots are median splits �SE). In the Low BIS group (left column), theta
power to feedback alone predicted subsequent high conflict NoGo learning (asterisk indicates main effect p < .05). In the High BIS group (right column), an inverted-U type
interaction between response- and feedback-locked theta predicted subsequent accuracy in high conflict NoGo learning, where high total theta activities or low total theta
activities predicted better learning (asterisk indicates interaction effect p < .05).
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Amat et al., 2006; Pascucci et al., 2007). The ACC has been

shown to appraise environmental uncertainty and subse-

quently alter learning rates (Behrens et al., 2007), and the

PFC may even directly bias subcortical functioning to en-

hance belief-specific learning (Doll et al., 2009; Huys and

Dayan, 2009). Here, an appraisal of stressor uncontrollability

or a general expectation of failure in highly punishment sen-

sitive participants may have lead to the bias towards pun-

ishment learning (and away from reward learning), partially

mediated by a diminishment of mesolimbic DA tone and/or

effective learning rate.

Limitations and future directions
Manipulations of stress controllability are difficult to

manage with human participants, especially when the task

requires veritable interaction. Here, we regretfully did not

measure an appraisal of perceived controllability. Future in-

vestigations could gather appraisals of stress controllability

as well as manipulate the veracity or intensity of task feed-

back. While we did demonstrate an important role of emo-

tionality in mediofrontal systems during reinforcement

learning, some aspects of hypothesized striatal and dopamin-

ergic functions remain difficult or impossible to assess with

human neuroimaging. Social, cognitive and behavioral

neuroscientists should continue to strive towards hypotheses

that are able to be cross-validated and translated between

methodologies and species.

SUMMARY
An integrative explanation of the findings and possible

mechanisms here revolves around the fact that the mPFC

is intimately involved in appraising stressor controllability

and environmental uncertainty, as well as adapting behavior

to reinforcement. The combined activities of this particular

cortico-striatal system identify it as a focal node by which

stress may be internalized to affect cognitive, emotional and

behavioral functioning. Dysfunctional stress reactivity may

be a risk factor for prolonged affective distress, yet mechan-

isms underlying this process remain under-explained.

Stress-related alteration of reward and punishment learning

systems�particularly the ACC�is a viable candidate for how

dysfunctional stress reactive responses are translated into

ongoing cognitive and affective distress in mental illness

and addiction.
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