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Supplemental Data 

Justification of gene selection 
The DARPP-32 gene is associated with an intracellular protein that is highly 
concentrated in striatum. When phosphorylated by D1 receptor stimulation, protein 
photophase-1 is inhibited, thereby facilitating corticostriatal synaptic plasticity 
(Stipanovich et al., 2008). Carriers of two copies of the T allele (TT carriers) show 
greater DARPP-32 mRNA expression (Meyer-Lindenberg et al., 2007), which has 
been linked to a superior ability to learn about action that lead to positive outcomes 
relative to individuals with at least one C allele (C carriers) (Doll et al., 2011; Frank 
et al., 2007, 2009). Given the anatomical evidence suggesting that the BG/DA 
feedback loop would primarily modulate phasic bursts of DA (Joel and Weiner, 
2000; Lee et al., 2004), we targeted DARPP-32 as our gene of interest.  
 
We also collected DRD2 and COMT gene labels as part of a suite we commonly 
collect for the purpose of replication. DRD2 has been associated with D2 receptor 
affinity. D2 receptors are primarily expressed by striatopallidal (indirect NoGo) 
medium spiny neurons, which are sensitive to fluctuations of DA below baseline 
levels (Hirvonen et al., 2009). Thus, genetic variation of DRD2 has been argued to 
modulate learning from negative RPEs, coded as phasic dips in DA below baseline 
levels (Doll et al., 2011; Frank et al., 2007, 2009; Shen and Flajolet, 2008). The COMT 
gene codes for an enzyme that breaks down extracellular DA in prefrontal cortex 
(Meyer-Lindenberg et al., 2005, 2007). Thus, genetic variation in COMT has been 
argued to modulate individual differences in DA levels, and D1 receptor availability 
in prefrontal cortex, which has been shown to drive individual differences in 
working memory function (Doll et al., 2011; Frank et al., 2007, 2009).  
 



 

Training phase performance 

Participants experienced an average of 5 training blocks (mean 4.7, sem 0.1), 
with no effect of DARPP-32 gene group on the number of blocks (p>0.5). We 
assessed performance during the training phase by entering training block 
(first, last), stimulus pair (      ,       ,       ) and DARPP-32 gene group (C, 

TT) as factors in a multilevel logistic regression. The omnibus ANOVA revealed a 
main effect of stimulus pair indicating differential performance among training 
pairs, a main effect of training block indicating differential performance 
between first and last blocks, and a stimulus pair by DARPP-32 gene group 
interaction indicating DARPP-32 gene groups did not perform equally across all 
stimulus pairings (main effect of stimulus pair:   ( )      , p<0.01; main 
effect of training block:   ( )      , p<0.01; stimulus pair by DARPP-32 gene 
group interaction:   ( )      , p<0.01, all other effects n.s). Follow up 
contrasts show that accuracy improved from first to last block of training 
(Beta=0.51, p<0.01). In keeping with the stochastic nature of the task, 
performance was better on        than        trials (Beta=0.40, p<0.01), and 

performance was worse on        than        trials (Beta=-0.40, p<0.01). The 

DARPP-32 TT group was significantly better on        trials (Beta=0.30, p<0.01), 

but gene group performance was not differentiable otherwise. As such, we 
included        training performance as a covariate when analyzing test 

performance to control for differential training experience between DARPP-32 
gene groups.Genetic predictors of reinforcement learning 
Previous work has linked DARPP-32 and DRD2 genotypes to individual differences 
in learning from positive and negative outcomes (Doll et al., 2011; Frank et al., 2007, 
2009). We investigate the relationship between learning and genotype by assessing 
performance on the most difficult test phase trials, where both options had expected 
values that were either positive (      ,       ,       ), or negative (      ,       , 

      ), by entering DARPP-32 gene group (C, TT), DRD2 gene group (CC, T), and 

stimulus pair valence (positive, negative) as factors in a multilevel logistic 
regression (see Error! Reference source not found.).  
 



 

 
Figure S1 related to Figures 1C and 4C: Individual differences are predicted by DARPP-32 and DRD2. The 
y-axis represent the mean residual variance in the difference between performance on positive and negative 
high conflict trials after accounting for relevant terms from the hierarchical logistic regression. Thus, positive 
values indicate better performance on rewarding relative to non-rewarding high conflict trials. Error bars 
represent standard error of the mean residual variance. (A) Residual variance after accounting for variance 
associated with DRD2. DARPP-32 TT carriers show better discrimination among rewarding options, whereas C 
carriers show better discrimination among non-rewarding options. (B) Residual variance after accounting for 
variance associated with DARPP-32. DRD2 T carriers show better discrimination among non-rewarding options, 
whereas CC carriers show better discrimination among rewarding options. (C) Residual variance after 
accounting for variance associated with the DARPP-32 by DRD2 interaction. Carriers of both DARPP-32 TT and 
DRD2 CC genotypes are disproportionately better at discriminating among rewarding options. 

This analysis revealed a significant DARPP-32 by valence interaction after DRD2 
effects were accounted for, with DARPP-32 TT carriers exhibiting better 
discrimination among positive options, and C-carriers exhibiting better 
discrimination among negative options (  ( )     , p=0.01, Error! Reference 
source not found.A). There was also a significant DRD2 by valence interaction after 
DARPP-32 effects were accounted for, with DRD2 T carriers exhibiting better 
discrimination among negative options, and DRD2 CC carriers showing better 
discrimination among positive options (  ( )     , p=0.03, Error! Reference 
source not found.B). There was also a significant three-way DARPP-32 by DRD2 by 
valence interaction, indicating that individuals carrying both the DARPP-32 TT and 
DRD2 CC alleles were disproportionately better at discriminating among positive 
stimuli (  ( )     , p=0.04, Error! Reference source not found.C). These results 
replicate previous work that linked genes associated with dopaminergic striatal 
plasticity to individual differences in learning from either positive or negative 
outcomes (Doll et al., 2011; Frank et al., 2007, 2009). Importantly, these results 
demonstrate that DARPP-32 genotype predicts differential learning in line with the 
learning rate parameter manipulations applied to the computational model. 

Behavior is consistent with derived value structure 
Figure3A of the main text depicts the value structure derived from the behavioral 
choice bias pattern. There, no-choice values take on the true expected value of each 
option (e.g.             ). Free-choice values accommodate the effects of choice 
by taking the true expected value of each option adjusted according to choice biases 
for each option (e.g.                ). Assuming that the difference between 

option values determines the reliability with which the better option will be 
selected, which is captured by the Softmax action selection mechanism, this value 



 

structure predicts not only the observed choice bias preferences, but also the degree 
to which each option should be preferred over any of the others. 
 
As noted in the main text, the discrepancy between equally rewarded options (e.g. 
                , or                 ) implies a constant value 
discrepancy among trials where those options are paired with the same alternative 
(e.g.             (          )       , and             (      
    )       ). We probed for this predicted pattern by assessing accuracy on trials 
involving either the most or the least rewarding free-choice and no-choice options. 
We begin by focusing on the most-rewarding options, entering root option 
(        ), and paired option (             ) as factors in a multilevel logistic 

regression (see Figure 3B:    , and    ). As noted in the main text, this analysis 

revealed a main effect of root option, indicating an     performance benefit; 

however, there was no evidence of a root by paired option interaction, indicating 
that     performance gains were consistent across all paired options (main effect of 

root option:   ( )       , p<0.01; main effect of paired option:   ( )        , 
p<0.01; root by paired option interaction:   ( )      , p>0.2). Furthermore, 
adjusting     trial accuracy by the behaviorally quantified choice bias (Figure 3B: 

      ) rendered performance indistinguishable from     trials, indicating that 

    performance benefits across all options pairings were consistent with the choice 

bias (main effect of root:   ( )      , p>0.6; main effect of pairing:   ( )  
      , p<0.01; root by pairing interaction:   ( )      , p>0.2).  
 
The predicted preference pattern was also observed across trials that included the 
least rewarding options. We entered root option (   ,    ), and paired option 

(             ) as factors in a multilevel logistic regression (see Figure 3C:    , and 

   ). As predicted by the insignificant    choice bias, we observe a non-significant 
root by paired option interaction (main effect of root option:   ( )      , p>0.3; 
main effect of paired option:   ( )        , p<0.01; root by paired option 
interaction:   ( )      , p>0.9). Again, adjusting     trial accuracy by the 

behaviorally quantified choice bias (Figure 3C:       ) rendered performance 

indistinguishable from     trials, indicating that any     performance discrepancies 

are consistent with the choice bias across all option pairings (main effect of root 
option:   ( )      , p>0.4; main effect of paired option:   ( )        , p<0.01; 
root by paired option interaction:   ( )      , p>0.9). 
 
A second prediction made by the derived value structure comes from the 
discrepancy among rewarding and non-rewarding options. This discrepancy is 
greater for free-choice options than it is for no-choice options, owing to the 
amplified value of rewarding free-choice options (e.g.                   
     ). However, the discrepancy among options of equal valence is roughly 
equivalent across choice conditions (                       ). Thus, the 
derived value structure implies that participants should be more accurate on trials 
where rewarding and non-rewarding free-choice options are paired. We probed for 



 

this predicted pattern by assessing performance on trials involving the most 
rewarded and least rewarded options and where both options were either free-
choice or no-choice.  
 
We first focus on trials involving the most rewarded option, entering root option 
(       ), and the alternative option’s valence (rewarding, non-rewarding) as 

factors in a multilevel logistic regression (see Figure S2A). As predicted, there was a 
significant root option by valence interaction, indicating that performance improved 
disproportionately when     was paired with a non-rewarding free-choice 

alternative (main effect of root option:   ( )      , p=0.03; main effect of 
valence:  ( )      , p<0.01; root option by valence interaction:   ( )      , 
p=0.04). Furthermore, adjusting     performance by the behaviorally quantified 

choice bias (Figure S2A:       ), where the bias effect for each paired option was 

computed as the choice bias discrepancy between both alternatives (i.e., 
           ,      ,      ), rendered performance indistinguishable from 
    trials (main effect of root option:   ( )      , p>0.75; main effect of valence: 
  ( )      , p=0.08; root option by valence interaction:   ( )      , p>0.25).  
 
The predicted preference pattern was also observed across trials that included the 
least rewarding options. We entered root option (   ,    ), and the alternative 

option’s valence (rewarding, non-rewarding) as factors in a multilevel logistic 
regression (see Figure S2B:    , and    ). As predicted, there was a significant root 

option by valence interaction, indicating that performance improved 
disproportionately when     was paired with a rewarding free-choice alternative 

(main effect of root option:   ( )       , p<0.01; main effect of valence:  ( )  
     , p<0.01; root option by valence interaction:   ( )       , p<0.01). And 
again, adjusting     performance by the behaviorally quantified choice bias (Figure 

S2B:       ), where the bias effect for each paired option was computed as the 

choice bias differences of each stimulus (i.e.,            ,      ,      ), 
rendered performance indistinguishable from     trials (main effect of root option: 
  ( )      , p>0.4); main effect of valence:   ( )      , p=0.03; root option by 
valence interaction:   ( )      , p>0.75).  
 
 



 

 
Figure S2 related to Figure 3: Choice bias predicts Choose A and Avoid B performance valence effects. (A) 
Choose A performance on free-choice (           ,       ,       ,       ) and no-choice (           ,       , 

      ,       ) trials, and free-choice performance adjusted according to the behavioraly quantified bias 
(      :        (     ),        (     ),        (     ),        (     ),). (B) Avoid B 

performance on free-choice (           ,       ,       ,       ) and no-choice (           ,       ,       , 

      ) trials, and free-choice performance adjusted according to the behavioraly quantified bias (      : 

       (     ),        (     ),        (     ),        (     ). 

Together, these results demonstrate that participant behavior corresponded with 
patterns predicted by the choice bias derived value structure in striking detail 
across a wide range of independent option pairings. These results also show that 
participants learned the relative values of both free-choice and no-choice options, 
that preferences were internally consistent across stimulus pairs, and, as predicted 
by our computational model, that choice bias effects are more pronounced across 
rewarding options. 

An alternative cortico-striatal mechanism 
We also consider an alternative mechanism, perhaps via cortico-striatal projections, 
through which the reported choice bias pattern could emerge whereby striatal 
activity is shaped via cortical projections such that it uniquely reflects gated actions. 
Indeed, previous modeling work has applied a similar architecture to the domain of 
motor action learning (Frank, 2005); however, this architecture does not generalize 
well to cognitive ‘actions’ such as the update and maintenance of working memory 
(Hazy et al., 2006; O’Reilly and Frank, 2006). 
 
Previous work has shown that a gene encoding catechol-O-methyltransferase 
(COMT) influences DA levels in PFC (Meyer-Lindenberg et al., 2005, 2007), and in 
turn, PFC-dependent cognitive function such as directed exploration (Frank et al., 
2007, 2009) and on-line maintenance of information (Doll et al., 2011). We 
reasoned that if a cortico-striatal mechanisms was involved in shaping striatal 
activity, then we should see some effect of COMT on the choice bias.  
 



 

In contrasts to the strong effects of DARPP-32 on choice bias, we found no effect of 
COMT on the choice bias when entering COMT gene grouping (Met, ValVal) and 
choice bias pair (          ) as factors in a multilevel logistic regression (main 
effect of COMT:   ( )      , p=0.64, main effect of pair:   ( )      , p<0.01, 
COMT by pair interaction:   ( )     , p=0.14). 
 
However, replicating previous results (Doll et al., 2011; Frank et al., 2007), we did 
find that COMT genotype predicted individual differences early in learning. We 
analyzed inter-trial response behavior across the first five trials of learning for each 
option pair. Participants could either stay with the same response from the previous 
trial, or switch to sample the alternate option. This analysis revealed an effect of 
COMT (Beta=0.18, p=0.03), with ValVal carriers opting to stay with the same 
response more frequently than Met carriers. Previous work has suggested that Met 
carriers follow an uncertainty based action selection strategy early in learning, in 
that they are more likely to sample in accordance with the degree of uncertainty 
regarding option reward contingencies (Frank et al., 2009). Also in accordance with 
previous findings, we found no effect of DARPP-32 on inter-trial response behavior 
(Beta=0.09, p=0.28).  
 
Although the genetic/behavioral data presented here cannot discredit the 
aforementioned cortico-striatal mechanism with certainty, we did not find any 
positive evidence to support it; and as such, we favor the choice amplified positive 
RPE hypothesis put forth in the main text. Notably, this double dissociation between 
cortical (COMT) and striatal (DARPP-32) DA function suggests that the choice bias 
pattern emerges primarily as a result of striatal processes. 

Supplemental Experimental Procedures 

Experimental Design 
The Brown University Human Research Committee approved all task procedures. 
Participants sat in front of a computer screen in a lit room and viewed pairs of visual 
stimuli that are not easily verbalized (Japanese Hiragana characters). Stimuli were 
300x300 pixels, presented in black on a white background.  
 
During the training phase, six different stimulus pairs (      ,       ,       , 

      ,       ,       ) were presented in random order, with assignment of 
Hiragana character to options         and        , counterbalanced across 

subjects. Probabilistic feedback followed option selection. Choosing option     lead 

to positive feedback 80% of the time, whereas choosing option     lead to positive 

feedback only 20% of the time. Options        and        pairs were less reliable: 

option     was rewarded 70% of the time (    was rewarded 30% of the time), and 

    was rewarded 60% of the time (    was rewarded 40% of the time). Thus, over 

the course of training participants should learn to choose options                  



 

more often than the paired alternative. Before the training phase of the task began, 
participants were given the following instructions: 
 

Your task is to learn about various symbols. Some symbols will award points 
more reliably than others, but you'll have to learn which ones those are. On 
each trial, two symbols will appear on the screen simultaneously. You can select 
either the symbol on the left using the “S” key, or the symbol on the right using 
the “K” key. The symbol you select will either award (+1) or lose a point (-1). 
There’s no absolute correct answer, but try to pick symbols that have the best 
chance of awarding points. At first this might seem difficult, but you’ll get lots 
of practice. On some trials one of the symbols will be selected for you and will 
be framed in blue. These are called “Match” trials. On “Match” trials, you must 
select the framed symbol. On other trials you will be free to choose either 
symbol. These are called “Choose” trials. Regardless of whether you Choose or 
Match on each trial, your goal is to learn which symbols are more rewarding. 
Doing so will help you later in the task. Please let the experimenter know if you 
have any questions or don’t fully understand your task. Press the space bar 
when you’re ready to begin. 

 
On free-choice trials (      ,       ,       ) participants were free to choose either 

option presented to them. No-choice trials (      ,       ,       ,) were yoked to 
free-choice trials to ensure identical sampling and reinforcement histories between 
conditions. The selected option and feedback from each free-choice trial was 
recorded and used to generate a yoked no-choice trial. For example, if     was 

selected on a        trial, and -1 was provided as feedback, a corresponding        

trial would be generated that forced the selection of     (indicated by a blue frame 
surrounding that option) and provide -1 as feedback. As such,     was sampled the 
same number of times and delivered the same feedback as    , and the same follows 

for the remaining options. Free-choice and no-choice trials were pseudo-
randomized within each training block. No-choice trials were presented no later 
than 5 trials following their yoked free-choice successor to prevent differential 
learning between conditions. 
 
After each choice, visual feedback text (‘+1’ in green or ‘-1’ in red) was provided 
(duration 1 second). Trials were aborted but repeated later if no response was made 
after three seconds, with ‘Too Slow!’ feedback text displayed in blue (duration 1 
second). Match trials were repeated if the participant did not select the pre-selected 
stimulus, with ‘You must select the framed stimulus' feedback text displayed in 
black (duration 1 second). Prior to starting the training phase of the experiment, 
participants were given 6 practice trials of both free-choice and no-choice trials 
while the experimenter was present to ensure they understood the instructions. 
 
Participants completed a minimum of 4 and maximum of 6 training block, with each 
block delivering 20 exposures to each of the 6 option pairs, for a total of 120 trials 
per block. We enforced a performance criterion evaluated at the end of each block to 



 

ensure that all participants were at approximately same performance level before 
advancing to the test phase. Due to differences in the feedback reliability across 
option pairs, we used different criteria for each pair (65% selection of    , 60% 

selection of    , 50% selection of    ).  

 
Participants could advance to the test phase of the task after completing a minimum 
of 4 blocks and exceeding the practice criterion, or after 6 blocks (720 trials). Before 
starting the test phase of the experiment, participants were given the following 
instructions: 
 

Great Job! It’s time to test what you’ve learned. Now you’ll be free to choose on 
every trial, but you’ll no longer receive any feedback. If you see new 
combinations of symbols, choose the symbol that “feels” most likely to award 
points based on what you’ve learned. If you’re not sure which one to pick, just 
go with your gut instinct. Press the space bar when you're ready to begin. 

 
Participants were subsequently tested on a full permutation of all possible option 
pairings (eight pairings of each choice bias pair, and four repetitions of all other 
pairings) in random order. Participants were free to choose either option on each 
test trial, but were no longer provided feedback. 

Statistical models 
Statistical tests were performed using hierarchical logistic regression models (lme4 
package in R), using trial response accuracy (selection of more rewarding option) as 
the dependent variable. Independent variables of interest were entered as fixed 
effects, and where appropriate, within-subject effects were entered as random by 
subject effects. We included DRD2 gene grouping, race, and        training 

performance as covariates in all analyses that included DARPP-32 gene grouping as 
a factor to control for potential effects of gene interactions, race, or training 
experience. 

Computational model specification 
We employed an extended actor-critic reinforcement learning architecture, which 
we refer to as Opponent Actor Learning (OpAL), to formally test our hypothesis that 
free-choice enhances positive RPEs. Biologically inspired neural network models of 
the BG have demonstrated the importance of considering what can be thought of as 
an opponent processes between the direct ‘Go’ and indirect ‘NoGo’ pathways of the 
striatum (Frank, 2005; Frank et al., 2004; Hazy et al., 2006). We have distilled the 
core computations of these models down to a formulaic model specification with a 
number of free parameters suitable for data driven value estimation.  
 
The classic actor-critic architecture is comprised of a critic that estimates expected 
values, and an actor that selects actions. The critic's value estimates can be thought 
of as predictions. Outcomes that turn out better or worse than predicted generate 
positive and negative RPEs respectively. These RPEs are then used to update the 



 

critic's value prediction, and to modify the actor's action weights with aspirations of 
reliably picking the most appropriate actions in the future. 
 
Like the standard actor-critic framework, OpAL computes the RPE by comparing the 
critic's expected value with the observed outcome, and uses the RPE as a learning 
signal to update the critic's future expectation: 
 
          (1) 

 
                 (2) 

 
In a slight departure from conventional notation due to the structure of the task,   
represents the current trial. In words, the RPE (  ) captures the discrepancy 
between the predicted reward (  ) and the observed reward (  ) for the current 
trial. The critic's predicted reward estimate is updated proportionally to the RPE 
according to the critic’s learning rate (  ).  
 
The OpAL actor extends the standard actor to include both Go ( ) and NoGo ( ) 
action weights, which capture the distinctions, and the functional implications 
thereof, between the direct and indirect pathways respectively. Like the standard 
actor-critic, action weights are adjusted using the same RPE signal used to update 
the critic: 

 
                         (3) 

 
                         (4) 

 
where    and    are independent Go and NoGo actor learning rates. The OpAL actor 

update differs from the standard actor update in two important ways. First, the RPE 
signal (  ) has opposite effects on   and   action weights. This is intended to mirror 
dopamine's differential effects on D1 receptor expressing Go cells in the direct 
pathway, to which dopamine is generally excitatory, and D2 receptor expressing 
NoGo cells in the indirect pathway, to which dopamine is inhibitory. Thus, positive 
RPEs increase   weights while simultaneously decreasing   weights, and vice versa 
for negative RPEs. Second, action weights are updated in proportion to not only the 
RPE, but also with respect to the action weight itself (   or   ). This incorporates 
the notion that, in addition to dopaminergic input, activity at the cell itself governs 
the rate of synaptic change that can occur. Including both the action weight and RPE 
terms in the update rule captures the notion of three-factor Hebbian learning, were 
synaptic change depends on presynaptic activation, postsynaptic activation, and 
dopamine (Reynolds et al., 2001). 
 



 

The experimental paradigm presented here always involved a choice between two 
options. We compute the probability of choosing option   , where  (  )    
 (  ), according to the Softmax action selection rule: 
 

  (  )        (  )        (  ) (5) 

 
 

 (  )   
 

    (  )  (  )
 (6) 

 
Note that  (  ) depends on a linear combination of  (  ) and  (  ) weights, where 
Go and NoGo weights for    are scaled according to independent    and    

parameters respectively. 

Generative computational model 
To explore the consequences of amplifying positive free-choice RPEs we added a 
single parameter to the core OpAL model (    ) that modulated positive free-choice 

RPEs (see Error! Reference source not found. for model parameters used to 
generate data). We then exposed the model to the experimental task, allowing the 
model to generate its own response on each trial and learn accordingly. The 
following modified update rules were applied to the actor on free-choice trials 
where      (using equations (3) and (4) otherwise): 
 

                            (7) 

 
                            (8) 

 
Figure                     

Figure 2B 
Figure 4A 

1 3 0.05 0.15 0.15 as noted 

Figure 4B 
      

1 3 0.05 0.11 0.025 1.22 

Figure 4B 
      

1 3 0.05 0.025 0.15 1.22 

Figure S4 1 3 0.05 [0.01-0.2] [0.01-0.2] as noted 
Table S1 related to Figures 2 & 4: Model parameters used to generate figures. Softmax action selection 
parameters for the Go and NoGo weights (   and   ), critic learning rate (  ), Go and NoGo weight learning 

rates (   and   ), and positive choice RPE modulation parameter (    ).  

As noted in the main text, as      increased, and learning was balanced across Go 

and NoGo weights (     ), the choice bias increased across rewarding stimuli 

(see Figure 2A). However, when      , the choice bias pattern across rewarding 

stimuli shifted dramatically. Figure 4B of the main text depicts the choice bias for 
individual       and       values; however, the pattern depicted there holds 

more generally. Each point in Figure S3 represents the regression slope of the model 
generated choice bias across positive options as a function of the       



 

asymmetry. This analysis demonstrates a strong relationship between the       

asymmetry and choice bias (r(88)=-0.8, p<0.01); when       the choice bias 

slope is positive (        ), and when       the choice bias slope is negative 

(        ). 

Model comparison and parameter estimation 
Although the choice bias patterns generated by extending the base OpAL model to 
include the      parameter mirrored behavioral data, we also considered 

alternative mechanisms formalized by additional variants of the base OpAL model. 
Each model's free parameters were optimized using the nlminb function in R to 
search for a parameter set that minimized the discrepancy between the empirical 
data and the model's predicted response on each trial, a processes that was 
repeated multiple times with random starting points to avoid local minimal. The 
search space for each parameter was unbounded (       ) so as to recover a 
normally distributed parameter set. Each model mapped the optimizer's parameter 
proposals onto a suitable range: Softmax   weights were mapped onto a non-
negative range (     , where    is the parameter proposed by the optimizer), and 

learning rates were constrained to range between 0 and 1 (  
 

      
 where    is 

the learning rate parameter proposed by the optimizer).  
 

 
Figure S3 related to Figure 4B: Choice bias as a function of       learning rate asymmetry. Each point 

represents a dataset generated by a different parameter set supplied to the OpAL +      model. Points vary 

along the x-axis according to      , and vary along the y-axis according to the slope of a regression on 

rewarding option choice biases. 



 

Model fit was assessed using AIC values, calculated for each participant’s data as: 
 

                  ( |  )  (9) 
 
where    is the number of free parameters in model  , and     ( |  ) is the 
negative log-likelihood of the parameter set   given subject     data,   . Thus, lower 
       values indicate a better fit for model   given participant  ’s data. Model fits 
were compared using Bayesian model comparison (spm_BMS function in 
SPM8)(Stephan et al., 2009), and AIC weights (Wagenmakers and Farrell, 2004). 
 
The core OpAL model served as the root of our model comparison. This model 
includes Go and NoGo Softmax parameters (   and   ), Go and NoGo actor learning 

rate parameters (   and   ), and a critic learning rate parameter (  ). We note that 

traditional actor-critic and Q-learning models were also explored; however, none of 
those models were capable of capturing the behavioral choice bias pattern. As such, 
we focus solely on variants of the OpAL model for clarity and because of the model's 
biologically motivated structure. 
 
Our hypothesis that positive free-choice RPEs are amplified was most simply 
formalized by extending the OpAL model with a single modulatory learning rate 
parameter     . This parameter was incorporated into the value update functions 

for both Go and NoGo weights: 
 

        (   
 (        

)
)⁄  (10) 

 
        (   

 (        
)
)⁄  (11) 

 
where   ,   , and      are the Go, NoGo, and free-choice learning rate modulation 

parameters proposed by the optimizer, and        and        are the effective 

parameters used by the model on free-choice trials with     . Incorporating      

into the model by adding it to    and    prior to sigmoidal transformation ensured 

that the modulated learning rates were bound between 0 and 1. 
 
We also considered the possibility that participants were simply more engaged free-
choice trials. We formalized this by adding a single parameter to the base OpAL 
model,    , which modulated both the    and    learning rates on all free-choice 

trials, irrespective of the RPE's sign. 
 
We also considered the possibility that choice modulated both positive and negative 
RPEs independently. We formalized this by extending the OpAL model to include 
both      and      free-choice learning rate modulatory parameters, which were 

applied to positive and negative free-choice RPEs respectively. 
 



 

Finally, we considered the possibility that the choice bias may not be an effect of 
learning at all, but may emerge from an action selection mechanism. To investigate 
this, we extended the OpAL model to include independent Softmax parameters for 
both free-choice (     ,      ) and no-choice options (     ,      ). 

 
Bayesian model selection strongly favored the model with both      and      

parameters, as did the AIC weights (see Table S2), suggesting that group behavior 
was best explained by modulating learning for both positive and negative free-
choice RPEs. An analysis of this model's parameter estimates revealed that      was 

significantly greater than      (paired t(73)=3.32, p=0.001, C.I=[1.8,7.0]), and that 

the majority of subjects were best fit by an           asymmetry (57 of 74 

participants, binomial test p<0.001). Additional analyses show that        

(t(73)=2.29, p=0.025, C.I=[0.67,9.68]), indicating data was best fit by amplifying the 
learning rate when positive free-choice RPEs were encountered. Conversely,      

could not be distinguished from zero (t(73)=0.33, p=0.74, C.I=[-3.9,5.4]). In sum, 
optimized parameter estimates are in accordance with our hypothesis that positive 
free-choice RPEs are preferentially amplified. 
 
A detailed inspection of non-rewarding choice biases shows some degree of inter-
participant variance, with a small subset of study participants exhibiting a choice 
bias for those options (N=16 out of 80 total). Although most participants were 
indifferent on choice bias trials involving negative options, some participants 
showed a strong preference for free-choice or no-choice options. However, these 
biases were unsystematic, with participants showing a bias for only a single 
negative option, or exhibiting a free-choice preference for one negative option and a 
no-choice preference for another. The      parameter allowed some of this variance 

to be accounted for, resulting in a better fit for the model that included it as a free 
parameter; but, we could not identify genetic or behavioral predictors of      

estimates, suggesting that individual differences in negative option choice biases 
involved mechanisms beyond the BG. We tentatively suggest that some negative 
option biases may be driven by a rule-based strategy, not the value based strategy 
depicted in Figure 3A. Further research will be required to expose the underlying 
mechanism driving choice biases in these individuals.  
 
We analyzed the best-fit model in terms of DARPP-32 groupings. This revealed a 
trending effect of DARPP-32 on       learning rate asymmetry (t(71)=1.78, 

p=0.08, C.I=[-0.02, 0.43]). To further probe these effects, we used a model 
comparison approach by comparing DARPP-32 group fit on models that were forced 
to adhere to either a       or a       learning rate asymmetry. As outlined in 

Table S3, DARPP-32 TT carriers were best fit by the       model, whereas C 

carriers were best fit by the       model. Together, these results show that the 

Go/NoGo learning rate asymmetries differ as predicted according to DARPP-32 gene 
group. 

 



 

Model   AIC AIC   Exceedance Probability 
OpAL 5 325.41 1e-9 0 
OpAL +      6 287.41 4.5e-2 0 

OpAL +     6 289.54 1.7e-2 0 

OpAL +     +      7 280.88 0.94 1 

OpAL +       +       8 294.71 1.5e-3 0 
Table S2 related to Figure 4C: Model Fit. The number of free parameters ( ), mean AIC value across all 
subjects (AIC, lower scores indicate better fit), AIC weights when all models are included for comparison (AIC  , 
values closer to 1 indicate best fit model), and the exceedance probabilities according to Bayesian model 
selection (values closer to 1 indicate best model fit) for OpAL model variants. All fit indicators point to OpAL + 
     +      as the model that explains behavioral data best. 

 
DARPP-32 Model   AIC AIC   Exceedance Probability 

TT 
      7 269.47 0.61 1 

      7 271.79 0.39 0 

C 
      7 299.09 0.42 0.34 

      7 297.88 0.58 0.66 
Table S3 related to Figure 4B & 4C: DARPP-32 gene group mode fit. DARPP-32 gene group fits were 
compared in isolation from one another, where the OpAL +      +      model was constrained to force either 

      or       asymmetries. The number of free parameters ( ), mean AIC value across all subjects (AIC, 

lower scores indicate better fit), AIC weights when both models are included for comparison (AIC  , values 
closer to 1 indicate best fit model), and the exceedance probabilities according to Bayesian model selection 
(values closer to 1 indicate best model fit) for OpAL model variants. All fit indicators show that DARPP-32 TT 
carriers are best fit by an       asymmetry, whereas C carriers are best fit by an       asymmetry. 
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