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Behavioral/Cognitive

Working Memory Contributions to Reinforcement Learning
Impairments in Schizophrenia

Anne G.E. Collins,! Jaime K. Brown,? James M. Gold,? James A. Waltz,2 and ®“Michael J. Frank!
Department of Cognitive, Linguistics, and Psychological Sciences, Brown University, Providence, Rhode Island 02912, and 2Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201

Previous research has shown that patients with schizophrenia are impaired in reinforcement learning tasks. However, behavioral learn-
ing curves in such tasks originate from the interaction of multiple neural processes, including the basal ganglia- and dopamine-
dependent reinforcement learning (RL) system, but also prefrontal cortex-dependent cognitive strategies involving working memory
(WM). Thus, it is unclear which specific system induces impairments in schizophrenia. We recently developed a task and computational
model allowing us to separately assess the roles of RL (slow, cumulative learning) mechanisms versus WM (fast but capacity-limited)
mechanisms in healthy adult human subjects. Here, we used this task to assess patients’ specific sources of impairments in learning. In 15
separate blocks, subjects learned to pick one of three actions for stimuli. The number of stimuli to learn in each block varied from two to
six, allowing us to separate influences of capacity-limited WM from the incremental RL system. As expected, both patients (n = 49) and
healthy controls (n = 36) showed effects of set size and delay between stimulus repetitions, confirming the presence of working memory
effects. Patients performed significantly worse than controls overall, but computational model fits and behavioral analyses indicate that
these deficits could be entirely accounted for by changes in WM parameters (capacity and reliability), whereas RL processes were spared.

These results suggest that the working memory system contributes strongly to learning impairments in schizophrenia.
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Introduction
Patients with schizophrenia (SZ) demonstrate deficits across a
wide range of measures of executive control/working memory
(WM; Barch and Ceaser, 2012) and reinforcement learning (RL;
Gold et al., 2008; Deserno et al., 2013) paradigms, including the
Iowa Gambling Task (Shurman et al., 2005), the Wisconsin Card
Sorting Test (Prentice et al., 2008), probabilistic reinforcement,
and reversal learning (Waltz and Gold, 2007; Waltz et al., 2007,
2011; Schlagenhauf et al., 2013). However, the specific underly-
ing cognitive and neural mechanisms remain uncertain: most
tasks involve multiple cognitive and neural processes, including
the striatal dopamine system, which is involved in signaling pre-
diction errors and integrating them over trials (Frank et al., 2004;
Dayan and Daw, 2008), and the prefrontal cortex, which is in-
volved in using WM to test hypotheses and represent values of
prospective outcomes to guide choice.

Patients with SZ consistently exhibit deficits in tasks involving
learning (Paulus et al., 2003; Kim et al., 2007), but a better under-
standing of these deficits necessitates parsing the contribution of
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different neurocognitive processes. Since most learning para-
digms confound contributions of two separable cognitive pro-
cesses, WM and RL, it remains unclear whether patient
impairments arise from core changes in the RL process per se
(where “RL” is used to signify the incremental accumulation of
values based on reward prediction errors).

Computational models of RL afford trial-by-trial quantifica-
tion of choices (O’Doherty et al., 2007; Daw, 2011) and are
thought to reflect dopamine-mediated corticostriatal synaptic
plasticity (Frank et al., 2007). However, computational modeling
by itself does not solve the problem of task impurity: other cog-
nitive functions involved in RL tasks (such as working memory)
may contaminate the inferred RL processes.

Collins and Frank (2012) developed a task to disentangle WM
and RL contributions to learning by explicitly manipulating
potential WM load. They also presented a hybrid model that
included a model-free RL process, reflecting the striatum-
dopaminergic system; and a capacity-limited, decay-sensitive
WM process. They showed that classical RL models overesti-
mated learning rates but that the hybrid model was able to sepa-
rately estimate the contribution of WM from RL. Furthermore,
once WM processes were controlled, individual differences in the
RL learning rate were related to genetic variants in GPR6, a pro-
tein selectively expressed in the striatum (Lobo et al., 2007). Con-
versely, WM capacity estimates were related to COMT, a gene
that preferentially affects prefrontal function (Gogos et al., 1998;
Huotari et al., 2002; Matsumoto et al., 2003; Frank et al., 2007;
Slifstein et al., 2008).
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Table 1. Demographics and clinical characteristics of patients with schizophrenia and healthy control comparison participants

Schizophrenia (n = 49)

Healthy control (n = 36)

Mean (SD) Mean (SD) Group comparison
Demographics
Age 39.46 (10.66) 41.36 (9.85) F=0.7,p =040
Gender (% males) 71 69 X (1,0 =85)=0.0;p = 0.84
Race and ethnicity (% Cauc:% AA:% other) 53:35:12 61:31:8 XZ (5,n =285 =20;p=1085
Personal education 12.73 (2.16) 15.17 (2.01) F=127.9;p <0.001
Mother’s education 14.00 (2.79) 13.83 (2.55) F=10.1;p=078
Father's education 14.86° (3.11) 1441 (3.19) F=04;p =054
Neuropsychology measures
WASI 101.20 (14.72) 118.26 (11.53) F=34.1;p<0.001
WRAT4 95.47 (14.63) 111.03 (11.50) F=2438;p<0.001
WTAR 97.51 (17.26) 111.67 (10.90) F=18.7,p<0.001
MCCB 32.94 (13.76) 54.14 (10.47) F=59.8; p < 0.001
Clinical variables
SANS total 2591 (13.47)
BNSS total 2133 (14.17)
BPRS total 32.20 (6.21)
LOF total 21.9 (5.81)
IlIness duration (years) 19.6 (11.4)
Cauc, Caucasian; AA, African American; WASI, Wechsler Abbreviated Scale of Intelligence; WRAT, Wide Range Achievement Test Reading; WTAR, Wechsler Test of Adult Reading; LOF: Level of Function.
=43,
b =34,

We apply a similar experimental and modeling strategy to
investigate whether learning impairments in SZ patients are more
closely related to WM processes or to core aspects of the RL
system. Based on recent studies (Waltz and Gold, 2007; Strauss et
al., 2011; Gold et al., 2012; Doll et al., 2014), we hypothesized that
patients would exhibit deficits in WM processes with relative
sparing of incremental, model-free RL processes (Waltz et al.,
2009; Dowd and Barch, 2012).

Materials and Methods

Patient-related methods

A total of 49 people (35 males and 14 females) with a DSM-IV (American
Psychiatric Association, 2000) diagnosis of schizophrenia (n = 44) or
schizoaffective disorder (n = 5) participated. All were clinically stable
outpatients recruited from the MPRC Outpatient Research Program or
from other nearby outpatient clinics. Diagnosis was determined by the
Structured Clinical Interview for DSM-IV Axis I Disorders (SCID; First
et al., 1997), past medical records, and clinician reports. At the time of
testing, all participants had been on stable medications (same type and
dose) for a minimum of 4 weeks. Duration of illness was also recorded.

A total of 36 healthy volunteers (25 males and 11 females), matched to
the patient group in terms of important demographic variables (Table 1),
were recruited through a combination of random telephone number
dialing, Internet advertisements, and word of mouth among recruited
controls. All were screened with the SCID and the Structured Clinical
Interview for DSM-IV Personality Disorders (First et al., 1997; Pfohl et
al., 1997) and were free of a lifetime history of psychosis, current Axis I
disorder, and Axis II schizophrenia spectrum disorders. All denied a
family history of psychosis in first-degree relatives. All control partici-
pants denied a history of medical or neurological disease, including cur-
rent or recent substance abuse or dependence that would likely impact
cognitive performance.

All participants received the Wechsler Abbreviated Scale of Intelli-
gence (Wechsler, 1999) and the MATRICS Consensus Cognitive Battery
(MCCB; Nuechterlein and Green, 2006) to assess the overall level of
cognitive ability, as well as a measure of working memory performance
that we used in correlational analyses with model-based estimates of
WM. Participants with SZ also received the Scale for the Assessment of
Negative Symptoms (SANS; Andreasen, 1983), the Brief Negative Symp-
tom Rating Scale (BNSS; Kirkpatrick et al., 2011), and the Brief Psychi-
atric Rating Scale (BPRS; Overall and Gorham, 1962) to assess symptom
severity. The patients were mild-moderately symptomatic as seen on the

clinical rating scales. The healthy controls scored significantly higher on
measures of word reading, estimated IQ, and general neuropsychological
ability as is typical in the literature.

Experimental design

The task was modified from a classic conditional associative learning
paradigm (Petrides, 1985; Fig. 1) in which, on each trial, a single stimulus
was presented to which subjects could respond with one of three re-
sponses (button presses on a response pad). Subjects had to learn over
time which of those responses was the correct one to select for each
stimulus, based on the binary deterministic feedback they received (Col-
lins and Frank, 2012).

To manipulate working memory demands separately from RL com-
ponents, we systematically varied the number of stimuli (denoted as set
size n,) for which subjects had to learn the correct actions within a block.
There were four blocks with ng = 2, two blocks each with ng = 3 or ng =
4, three blocks with ng = 5, and two blocks with ng = 6 for a total of 13
blocks, requiring ~35 min to complete. The number of blocks per set size
was determined by a trade-off between three constraints: equating the
overall number of stimuli per set size, obtaining sufficient blocks of
higher set size to ensure taxing of the RL system, and the overall
experiment length. Each block corresponded to a different category of
visual stimulus (such as sports, fruits, places, etc.), with stimulus
category assignment to block set size counterbalanced across subjects.
Block ordering was also counterbalanced within subjects to ensure an
even distribution of high/low load blocks across the duration of the
experiment.

At the beginning of each block, subjects were shown the entire set of
stimuli for that block and encouraged to familiarize themselves with
them. They were then asked to answer as quickly and accurately as pos-
sible after each individual stimulus presentation. Within each block,
stimuli were presented in a pseudo-randomly intermixed order, with a
minimum of 9 and a maximum of 15 presentations of each stimulus, up
to a performance criterion of at least four correct responses of the five last
presentations of each stimulus.

Stimuli were presented in the center of the screen for up to 3.5 s, during
which time subjects could press one of three keys. Binary deterministic
auditory feedback ensued (high tone for correct and low tone for incor-
rect, as well as the words “correct” or “incorrect,” presented for 1 s). A
0.75 s dark screen followed this, before the next stimulus.

Subjects were instructed that finding the correct action for one stim-
ulus was not informative about the correct action for another stimulus.
This was enforced in the choice of correct actions, such that, in a block
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several other models that include or leave out

Set Size # blocks various properties of the RLWM model.

nS=2 4 Learning model details

nS=3 2 Reinforcement learning model. All models in-

NS =4 D) clude a standard RL module with simple 6 rule
learning. For each stimulus s and action g, the

nS =5 3 expected reward Q(s,a) is learned as a function

nS=6 2 of reinforcement history. Specifically, the Q

Feedback(t)

Figure 1.

was randomized across subjects.

with ng = 3, for example, the correct actions for the three stimuli were not
necessarily three distinct keys. This procedure was implemented to en-
sure independent learning of all stimuli (i.e., to prevent subjects from
inferring the correct actions to stimuli based on knowing the actions for
other stimuli).

Computational modeling

RLWM model

To better account for subjects’ behavior and disentangle roles of working
memory and reinforcement learning, we fitted subjects’ choices with our
RLWM computational model. Previous research showed that a model
allowing choice to be a mixture between a classic 6 rule reinforcement
learning process and a fast capacity-limited working memory process
accounted best for learning (Collins and Frank, 2012). The model used
here is a variant of the previously published model. We first summarize
its key properties.

(1) RLWM includes two modules, a classic incremental RL module
with learning rate « and a WM module that can learn in a single
trial (learning rate 1) but is capacity limited (with capacity K).

(2) Both RLand WM modules are subject to forgetting [decay param-
eters ¢y, and ¢y and noise in the choice policy (directed:
softmaxf, undirected: &)]. We also include a perseveration pa-
rameter pers to account for potential tendencies to repeat actions
in the face of negative feedback.

(3) The final action choice is controlled by weighing the contributions
of the RLand WM modules’ policies. How much weight is given to
WM relative to RL (the mixture parameter) depends on two fac-
tors. First, it depends on what the probability is that a stimulus is
stored in WM of capacity K. If there are fewer stimuli than WM
can hold (ng = K), then that probability is 1. Otherwise, only K
out of ng can be stored. Second, the overall reliance of WM versus
RL is scaled by factor 0 < p < 1, with higher values reflecting
relative greater confidence in WM function. Thus, the weight
given to the WM policy relative to the RL policy is w = p X min(1,
King).

We conducted extensive comparisons of multiple models to deter-
mine which fit the data best (penalizing for complexity) so as to validate
the use of this model in interpreting subjects’ data. In particular, we fit

value for the selected action given the stimulus
is updated after observing each trial’s reward out-
come r, (1 for correct, 0 for incorrect) as a func-
tion of the prediction error between expected and
observed reward at trial ¢, as follows:

Q.+ 1(sa) = Qus,a) + a X 8, (1)

where 8, = r, — Q,(s,a) is the prediction error
and « is the learning rate. Choices are gener-
ated probabilistically with greater likelihood of
selecting actions that have higher Q values, us-
ing the following softmax choice rule:

plals) = exp(BQ(s,a))/%;(exp(BQ(s,a,))).

Experimental protocol. At the beginning of each block, subjects were presented the set of stimuli they would have to 2)
learn the correct actions for in that block. Each trial included a 3.5 s presentation of a stimulus during which time subjects pressed
one of three responses. Feedback indicating correct orincorrect followed. Block set sizes varied between two and six, and the order

Here, B is an inverse temperature determin-
ing the degree with which differences in Q
values are translated into a more determinis-
tic choice and the sum is over the three pos-
sible actions a;.

Undirected noise. The softmax temperature allows for stochasticity in
choice in an oriented way, by making more valuable actions more likely.
We also allow for “slips” of action (“irreducible noise,” i.e., even when Q
value differences are large). Given a model’s policy 7 = p(als), adding
undirected noise consists of defining the new mixture policy as follows:

7 =(1—¢g)m+ el (3)

where U is the uniform random policy (U(a) = 1/n,, n, = 3) and the
parameter 0 < & < 1 controls the amount of noise (Collins and Koechlin,
2012; Guitart-Masip et al., 2012; Collins and Frank, 2013).

Forgetting. We allow for potential decay or forgetting in Q values on
each trial, additionally updating all Q values at each trial, according to the
following:

Q—=Q+ ¢d(Q~ Q) (4)

where 0 < ¢ < 1isa decay parameter pulling at each trial the estimates of
values toward initial value Q, = 1/n,.

Perseveration. Previous studies have shown differential treatment of
positive and negative outcomes in patients in probabilistic learning tasks,
as well as perseveration (neglect of negative outcomes) in adaptive cog-
nitive tasks such as the Wisconsin Card Sorting Test (Kim et al., 2007;
Prentice et al., 2008). To allow for potential neglect of negative, as op-
posed to positive, feedback, we estimate a perseveration parameter pers
such that for negative prediction errors (6 < 0), the learning rate « is
reduced by a = (1 — pers) X a. Thus, values of pers near 1 indicate
perseveration with complete neglect of negative feedback, whereas values
near 0 indicate equal learning from negative and positive feedback. Note
that this notion of perseveration is focused on the failure to use negative
feedback to avoid repeating an error, rather than to shift away from a
previously reinforced option, as is often implied in the Wisconsin Card
Sorting Test (Kim et al., 2007; Prentice et al., 2008).

Working memory. To implement an approximation of a rapid updat-
ing but capacity-limited WM, this feature assumes a learning rate o« = 1
but includes capacity limitation such that only, at most, K stimuli can be
remembered. At any time, the probability of a given stimulus being in
working memory is py,, = p X min(1,K/ng). As such, the overall policy
is as follows:
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T = pwmTwm T (1= Pwn) Tother (5)

where 1y, is the WM softmax policy and .., is another module’s
policy. In the WM-only model, this is the random uniform policy: 7.,
= U. In the RLWM model, this is 77, = g, : the softmax policy from
the RL module without capacity limitation. Note that this implementa-
tion assumes that information stored for each stimulus in working mem-
ory pertains to action—outcome associations. Furthermore, this
implementation is an approximation of a capacity-/resource-limited no-
tion of working memory. It captures key aspects of working memory
such as (1) rapid and accurate encoding of information when a low
amount of information is to be stored and (2) decrease in the likelihood
of storing or maintaining items when more information is presented or
when distractors are presented during the maintenance period. Because
it is a probabilistic model of WM, it cannot capture specifically which
items are stored, but it can provide the likelihood of storing and main-
taining items given task structure (set size, delay, etc.).

Models considered
We combined the previously described features into different learning
models and investigated which ones provided the best fit of subjects’
data. For all models we considered, adding undirected noise, forgetting,
and perseveration features significantly improved the fit, accounting for
added model complexity (see model comparisons).

This left three interesting classes of models to consider.

(1) RL: This model combines simple & rule RL, with forgetting, per-
severation, and undirected noise features. It assumes a single sys-
tem that is sensitive to delay and asymmetry in feedback
processing. This is a five-parameter model (learning rate «, sof-
max inverse temperature 8, undirected noise &, decay ¢y, and
pers parameter).

(2) RLWM: This is the main model, consisting of a mixture of RL and
working memory. RL and WM modules have shared softmax 3
and pers parameters but separate decay parameters, ¢p; and by,
Working memory capacity is 0 < K < 6, with reliance 0 < p <1
on working memory for items potentially stored in working mem-
ory. Undirected noise is added to the RLWM mixture policy. This
is an eight-parameter model (capacity K, WM reliance p, WM
decay ¢y RL learning rate o, RL decay ¢y, , perseveration pers,
sofmax inverse temperature 3, undirected noise ).

(3) WM: This is the WM-only model. It is equivalent to the previous
one with RL learning rate « = 0, RL decay ¢, = 0. It assumes that
any choice not made by working memory is made randomly (uni-
form). It is a six-parameter model.

RLWM fitting procedure

Parameters were fit using Matlab optimization under the constraint
function fmincon. This was iterated with 50 randomly chosen starting
points to increase the likelihood of finding a global rather than local
optimum. For models including the discrete capacity parameter, this
fitting was performed iteratively for capacities n = {0,1,2,3,4,5,6}, then
inferring capacity and other parameters that gave the best fit.

Softmax 3 temperature was fit with constraints [0 500]. All other
parameters were fit with constraints [0 1]. We considered sigmoid-
transforming the parameters to avoid constraints in optimization and
obtain normal distributions, but whereas fit results were similar, distri-
butions obtained were actually not normal. Thus, all statistical tests on
parameters were nonparametric.

Model comparison

We used the Akaike Information Criterion (AIC) to penalize model com-
plexity (Burnham and Anderson, 2002). Indeed, we previously showed
that AIC was a better approximation than the Bayesian Information
Criterion (Schwarz, 1978) at recovering the true model from generative
simulations of the WMRL model and variants (Collins and Frank, 2012).
We used the Matlab spm_bms function to compute Bayesian model
evidence over AIC (Stephan et al., 2009) for Bayesian model selection
over the group. Models WM-only and RL-only were strongly nonfa-
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vored, with probability 0 over the whole group. This was also true when
investigating separately each group, with evidence in favor of RLWM >
0.97.

Results

Data were successfully collected for 49 patients (SZ) and 36
healthy controls (HCs). All subjects reached asymptotic perfor-
mance above chance in set sizes of two to three. Although three
patients did not show improvement for higher set sizes, we chose
to not remove any subjects from the analysis as they did learn in
lower set sizes. Exclusion of these three subjects did not change
the effects of interests, however.

We first investigated learning curves per stimulus in different
set sizes. These analyses (Fig. 2, top) revealed that both healthy
controls and patients learned to select the correct action for each
stimulus in all set sizes and that both groups showed an effect of
set size. Importantly, learning slowed when there were more
stimuli to be learned in parallel, with healthy controls reaching
asymptotic performance by iteration 3 in set size two (corre-
sponding to “perfect memory” performance).

To compare learning performance across groups and condi-
tions, we first entered average performance in a multiple regres-
sion analysis, with factors set size (two to six), group (SZ vs HC),
and time (early vs asymptotic trials; Fig. 2, top). Results showed
main effects of all three factors (all p values <10 ~*) and interac-
tions of set size with group and with time (p = 0.005 and p =
0.04, respectively) but no interaction of group with time (p =
0.95) or three-way interaction. We thus performed a separate
analysis within early trials and within asymptotic trials. In early
trials, we observed main effects of group and set size (both p
values <10 ~*), indicating lower performance for patients and
higher set sizes, but no interaction. In contrast, in late trials, both
main effects (p values <10 ~*) were qualified by interactions
(p = 0.01), indicating that the effect of set size was larger for the
SZ group.

We also investigated reaction times across the same factors
(figure 2, bottom). There was a main effect of set size, indicating
slower reaction times for higher set sizes (p < 10™*); a main
effect of time, indicating slower reaction times at the beginning of
a learning block (p < 10 ~*); but no main effect of group, indi-
cating that controls and patients were, on average, as fast to re-
spond (p = 0.11). However, there was an interaction of group
with set size, indicating a stronger effect of set size on healthy
controls (p = 0.006), and an interaction of group with time,
indicating a stronger effect of learning on healthy controls (p =
0.002). Specifically, patients’ reaction times were less sensitive to
difficulty or learning. However, restricting the analysis to the SZ
group, we found a main effect of set size and time (both p values
<1073, indicating that their reaction times were sensitive to
those factors, even ifless so than controls and without interaction
(p = 0.5). In contrast, within the HC group, we observed both
main effects (both p values <10 ~*), as well as an interaction (p =
0.02), showing that the effect of set size decreased with time.

In these analyses, set size is confounded with delay effects:
indeed, each stimulus is seen, on average, every 1/ng trials so that
time-dependent forgetting could cause slower learning in higher
set sizes, independently of load effects. However, on a trial-by-
trial basis, these effects are dissociable: since stimulus order
within each block was randomized, we can make use of the vari-
ability of delay between repetitions of a single stimulus to disen-
tangle set-size and delay effects. We thus performed for each
subject a logistic regression including three factors (inverse of set
size, number of trials since last correct choice for the current
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Figure 2.

Learning effects. Top, Learning curves per set size and group (SZ, patients; HC, healthy controls, dashed lines). Learning curves indicate the probability of a correct response at the nth

presentation of a single stimulus (stim). Middle, Average performance for early trials (presentations 2 and 3 of each stimulus), for asymptotic trials (last 2 presentations of each stimulus), and over
the whole block. Bottom, Reaction times (RT) for early trials, asymptotic trials, and the whole block. Error bars indicate SEM.

stimulus, and number of previous correct choices for current
stimulus) and analyzed regression weights across subjects. We
hypothesized that set-size and delay factors should be indicative
of a capacity-limited working memory process, whereas iteration
should be representative of a RL-like slow, cumulative learning
process.

Regression weights across the whole group were significantly
nonzero for all three main effects (binomial test, all p values
<10 ~*), as well as set-size interaction with delay (p < 10 ~*) and
with correct iterations (p = 0.002) and delay interaction with
correct iterations (p < 0.05). Although set-size and iteration ef-
fects confirmed previous analysis indicating worse performance
for higher set sizes and learning effects, delay effect showed that
subjects were more likely to make an error when more trials
intervened before a stimulus from a successful trial was presented

again. Positive interaction of set size with delay indicated that this
was more pronounced in higher load conditions, whereas nega-
tive interaction of delay with iterations indicated that the effect of
delay decreased over time.

The previous effects all remained true when considering only
the SZ group (all p values <0.05), indicating that similarly to
controls, patients’ learning was determined not exclusively by
feedback accumulation over time (as predicted by a single RL
process), but also by set size and delay, hinting at their concurrent
use of capacity-working memory to learn the associations. Logis-
tic regression weights differed significantly between control and
patients groups only for the fixed-effect B weight (t4;) = 4.7;p <
10 ~*) and the set-size B weight (#g3) = 2.7; p = 0.008), indicating
a stronger effect of set size in SZ. No other weights differed (p
values > 0.12), and in particular, there was no difference between
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Figure3. RLWMmodelfit parameters. Parameters fit on subjects’ behavior with the RLWM model, for the HC group and patients (SZ). Red indicates a significant difference between groups. Error

bars indicate SEM. A, WM-specific parameter rates show less robust WM for patients (lower capacity N and faster decay rate ¢y,,). B, RL-specific parameters (learning rate o and decay ¢bg, ) show
no difference. C, Patients rely a priori less on WM (py,,, ) and perseverate more than controls. D, Despite worse performance in patients, noise parameters show no difference between groups,
indicating that this is attributable to deficit in learning more than deficit in choice. E, Absolute value of the weights on model parameters for the first two principal components. Blue bars indicate
a positive weight and red bars a negative weight. The first component loads strongly on the two RL parameters, whereas the second component loads strongly on the four WM parameters. pers.,
Perseverate. F, The second component is correlated with an independent classic measure of working memory across all subjects (black regression line) and within each group.

the groups in the effect of iteration number. These results are
consistent with previous evidence suggestive of a role for WM in RL
deficits in SZ. To separate more explicitly the effects of working
memory, we fit subjects’ data with reinforcement learning models.

Model fitting and model comparisons (see Materials and
Methods) confirmed that subjects’ learning was best represented
by a mixture of two separate processes, one learning slowly and
incrementally for all stimuli and the other storing information
rapidly but with capacity limitations.

We next investigated the values of parameters obtained to
confirm that they produced values for which the model was valid.
First, the model fitting was successful in recovering two distinct
processes. Indeed, across all subjects, the mean fit learning rate
for the RL process was 0.084 (SD, 0.25) compared with the fixed
learning rate of 1 for the WM memory process (Fig. 3). The mean
fit decay rate for the RL process was 0.096 (SD, 0.21) compared
with 0.37 (SD, 0.21) for the WM process (binomial test, p =
10~'"). This shows that the two modules had distinct learning
dynamics, slow accumulation and nearly no forgetting for RL and
fast learning but stronger forgetting for WM. Furthermore, both
processes were indeed used: average WM reliability was ~0.83
+/— 0.24, showing that it was efficiently used when a stimulus
was stored, but capacity was found mostly within the two to four
range (consistent with the WM literature), showing that RL was
increasingly used to compensate for increasing failure of WM
in higher set sizes when capacity was exceeded. Second, it is
interesting to note that negative feedback was strongly ne-
glected, as indicated by the high value of the perseveration
parameter. Figure 4 shows simulation of the RLWM model
with fitted parameters, as well as with the best-fitting pure RL
models (see Material and Methods). This indicates that al-
though both models can account for the qualitative effect of
slower learning curves for higher set sizes, RLWM captures
much better the learning dynamics exhibited in different ses-
sions for each group.

We have shown that the recovered parameters are reasonable
within the model hypothesis and that the fit model can ade-
quately account for observed behavior. This allowed us next to
use the model to better understand subjects’ individual behaviors
by summarizing individual differences into meaningful model
parameters and comparing them across groups. Since most fit
parameter distributions were non-normally distributed (see Ma-
terials and Methods), we compared results across groups with a
nonparametric unpaired test (Wilcoxon rank sum test). We
found (Fig. 3A) that both working memory-specific parameters
were impaired in SZ compared with HC: patients showed lower
working memory capacity (median of two vs three for controls;
p < 10™*) and more forgetting in WM (¢, p = 0.005). Fur-
thermore, the reliance on WM use was lower in SZ (Fig. 3C; pyw»
p = 0.04). The parameter accounting for neglect of error infor-
mation (or perseveration) in both WM and RL was significantly
stronger in patients than controls (Fig. 3C; pers, p = 0.001). In
contrast, RL-specific parameters showed no difference between
groups (Fig. 4B; a, ¢y, p > 0.3). The same was true of the noise
parameter, B (Fig. 3D; p = 0.25), though undirected noise was
marginally higher for patients (e, p = 0.06).

To investigate further the role of the different processes sum-
marized by the fit model parameters, we performed a principal
component analysis (PCA) on the z-scored fit parameters. We
investigated the first two components, which accounted for 52%
of the variance, and compared them to the MCCB working mem-
ory domain measure as an established measure of working mem-
ory performance. The first component loaded only on RL
parameters (Fig. 3E) and undirected noise, did not differ signifi-
cantly between groups (p = 0.49; t = 0.69), and did not relate to
a direct measure of WM (see Materials and Methods; p = 0.13;
p = 0.21). On the contrary, the second component loaded on all
WM parameters (Fig. 3E) and noise parameters, with higher
value corresponding to lower capacity, higher forgetting, less
WM use, and more perseveration. This encompasses all aspects of
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Learning curves and model simulations. Left, Empirical data per group (SZ, patients; HC, healthy controls, dashed lines). Middle, RLWM model simulation. Right, RL model simulation

(& rule learning model including undirected noise, forgetting, and perseveration mechanisms). Learning curves indicate the probability of a correct response at the nth presentation of a single
stimulus (stim). For each subject’s fitted parameters, one set of learning curves was obtained by averaging over 100 simulations of the model with those parameters. Overall learning curves were

then obtained by averaging across subjects.

the WM process, and thus, as expected, SZ subjects had a signif-
icantly higher score than controls (Fig. 3F; t = 3.8; p = 0.0003).
Notably, this score was significantly negatively correlated with
the direct WM measure (p = —0.52; p < 10 ~°), and this re-
mained true within each group (both p values <0.05; p < —0.29).

These results confirmed our hypothesis that the observed
learning impairment in patients was related to a deficit in the
working memory component of the model, rather than in rein-
forcement learning or in choice selection. We next investigated
whether positive or negative symptoms of schizophrenia im-
pacted any aspect of behavior. Based on prior work (Waltz et al.,
2007,2011), we had hypothesized that negative symptom severity
might be related to the WM parameters. Correlations between
symptoms and fit model parameters, as well as PCA components
or the MCCB working memory measure, yielded no significant
associations (BPRS, BNSS, and SANS scales; all p values > 0.1;
Spearman p < 0.24). This lack of association with negative symp-
toms might reflect the fact that the current task more closely
relates to the sort of rule-based working memory process that
would involve lateral prefrontal cortex, whereas prior associa-
tions with negative symptoms involved representing specific re-
ward values for each stimulus or action, functions attributed to
more limbic portions of prefrontal cortex hypothesized to be
related to negative symptoms, such as orbitofrontal cortex (Gold
et al., 2012).

We also investigated the effects of drug dose on performance.
We found a significant correlation between a Haloperidol equiv-
alent dose and RL learning rate parameter oy, (Spearman p = —
0.37; p = 0.009) as well as error neglect parameter pers (Spearman
p = 0.46; p = 0.001), indicating more error neglect and slower
learning for higher antipsychotic doses. Importantly, there was
no effect on the working memory capacity parameter (p = 0.97)

or any other parameter (all p values > 0.11). Finally, we found no
effect of duration of illness on any parameters.

Discussion

These behavioral and modeling analyses provide a new perspec-
tive on the genesis of reinforcement learning deficits in people
with schizophrenia. Our basic behavioral result that patients are
overall less able than controls to use feedback to guide optimal
response selection is consistent with many other reports in the
literature (Waltz and Gold, 2007; Polli et al., 2008; Murray et al.,
2008b; Somlai et al., 2011). Indeed, this body of behavioral work,
combined with functional neuroimaging evidence suggesting ab-
normalities in the signaling of prediction errors in both cortical
(Corlettetal., 2007) and striatal (Murray et al., 2008a; Koch et al.,
2010) regions and abnormal striatal dopamine (Abi-Dargham et
al., 1998; Howes et al., 2012), has led to a renewed focus on the
role of reward-related dopaminergic mechanisms in both the
positive and negative symptoms of schizophrenia (Kapur et al.,
2005; Howes and Kapur, 2009; Ziauddeen and Murray, 2010;
Deserno et al., 2013).

Our behavioral results and modeling strategy indicate, how-
ever, that learning impairments in SZ stem primarily from a core
deficit in working memory, which may be responsible for what
appears to be a reinforcement learning impairment. Specifically,
we found robust evidence that patients had reduced working
memory capacity, as well as faster working memory decay, cou-
pled with normal reinforcement learning rates. This was observ-
able in terms of a stronger detrimental effect of set size on
learning in patients than in controls, together with a diminished
effect of set size on reaction time. Assuming that the increased
reaction time with set size arises from greater taxing of WM pro-
cesses, the latter result is convergent with the modeling finding,
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not only of WM capacity and forgetting limitations, but also of
less overall reliance on WM, among patients (even with their
limited capacity). In contrast, the slow, incremental learning that
is thought to be driven by dopaminergic prediction error signal-
ing appears to be intact in schizophrenia, consistent with several
recent reports from our group (Gold et al., 2012).

Note that we are not suggesting that reinforcement learning as
a behavioral construct is normal in schizophrenia; the evidence
for a behavioral deficit is clear (Waltz and Gold, 2007; Polli et al.,
2008; Murray et al., 2008b; Somlai et al., 2011). Patients fail to
learn from outcomes, and thus, functionally, patients show fail-
ures in reinforcement learning. This learning impairment, how-
ever, appears to arise primarily as a consequence of WM deficits.

This conclusion was substantially aided by the use of compu-
tational modeling to estimate contributions of distinct processes.
Much as it did for healthy participants (Collins and Frank, 2012),
model fitting revealed that behavior is better accounted for by a
mixture of WM and RL processes than by single process models,
for both controls and patients. Moreover, our prior work showed
that two of the key parameters characterizing WM and RL sys-
tems are related to genetic variations in prefrontal versus striatal
function, respectively. The use of computational modeling for
teasing apart the purported neural and psychological processes
governing motivational deficits in learning and decision making
may be particularly useful with disorders, such as schizophrenia,
that involve multiple cognitive deficits (Montague et al., 2012;
Wiecki et al., 2014). Indeed, it is difficult to isolate the role of
specific processes in a quantifiable fashion using behavioral or
imaging methods alone. Computational modeling methods,
however, provide a method to parse out different contributions
to behavior.

It is interesting to note that the patient group did not differ
from controls in noise parameters. This is important evidence
that the patients did not simply have a noisier decision strategy in
the face of a challenging task: their impairment is in learning the
associations, not in using the learned associations to make a
decision.

Deficits in working memory have long been considered a cen-
tral feature of schizophrenia (Lee and Park, 2005; Barch et al.,
2009). Indeed, one reason working memory has been such a focus
of the schizophrenia literature is that it is a critical resource for
many other aspects of cognition, ranging from fluid reasoning to
language comprehension (Just and Carpenter, 1992; Johnson et
al., 2013). Thus, working memory impairments could reasonably
provide a principled account of many of the cognitive deficits
characteristic of schizophrenia. Here, we show that this same
impairment has consequences for reinforcement learning,
thereby having broad implications for motivational processes.

A potential limitation of our study is that, contrary to many
published studies, our experiment uses deterministic rather than
probabilistic reinforcement feedback. Although this allows more
straightforward interpretation and modeling of the potential
content of working memory, it may weaken the sensitivity to the
contribution of “RL” mechanisms to overall performance: in the
absence of probabilistic feedback, prediction errors are less vari-
able over time and the integration process of RL less critical. In
principle, probabilistic tasks may be more sensitive to gradual RL
mechanisms, whereas WM mechanisms may be more useful with
deterministic feedback. Thus, we do not mean to suggest that our
account of the data from this experiment can be confidently gen-
eralized to the larger clinical literature. However, it is interesting
to note that patients sometimes demonstrate more severe learn-
ing impairments on nearly deterministic stimulus pairs (e.g., in
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the case of 90% validly reinforced responses, which, in principle,
should be easier to learn), but more “normal” performance on
less deterministic pairs (e.g., in the case of 80% validly reinforced
responses, which are more slowly acquired; Gold et al., 2012).
This suggests a role for WM in some probabilistic learning envi-
ronments (Kim et al., 2007). Thus, we suspect that WM impair-
ments may well play an important and previously unknown role
in the learning, decision making, and motivational deficits ob-
served in people with schizophrenia.

Several other results deserve discussion. First, we found that
both patients and controls tended to neglect errors but that pa-
tients were more likely to do so and persist with prior response
choices. This is consistent with numerous prior reports of perse-
veration in the schizophrenia literature, beginning with studies
using the Wisconsin Card Sorting Test (Goldberg, 1987; Prentice
et al.,, 2008). Interestingly, there are now multiple reports of rel-
atively normal feedback error-related negativity in schizophrenia
(Morris et al., 2011; Horan et al., 2012), suggesting that the error
information is processed but fails to fully impact behavior.

Second, model fits showed that patients relied less on the
working memory process relative to RL process, as indicated by a
significantly lower reliability parameter, py,;. One possible in-
terpretation is that storage of any individual stimulus into work-
ing memory is less reliable (even within capacity) and is thus less
likely to be used by patients, highlighting another limitation of
their working memory system. However, another interpretation
is in the arbitration between the use of the WM and RL systems.
Indeed, the WM system is capacity limited, so that if subjects
completely rely on it, their best performance will be constrained
by capacity. But they could also decide to not rely on WM as
much even if within their capacity, e.g., because they have learned
over the course of their life that WM is not likely to be successful
in producing the right behaviors. This could arise because capac-
ity is lower and thus more often unhelpful, or because of more
noise within WM even when under capacity. Thus, they might
generalize that to all situations regardless of whether that situa-
tion could actually be solved within their capacity. Although the
current results cannot distinguish between those two possibili-
ties, they both support the interpretation of impaired working
memory as a source of slower learning.

Finally, as noted above, we found a negative relationship be-
tween antipsychotic dose and RL learning rate. Whereas it is
tempting to conclude that substantial blockade of striatal dopa-
mine receptors is responsible for this association, this result
should be regarded with caution. Recall that the patients and
controls did not differ on RL learning rate, and that all of the
patients were taking antipsychotic medications. Thus, if antipsy-
chotics had a dose-dependent effect on RL, one would expect
robust between-group differences. Furthermore, close examina-
tion of the data revealed that the performance correlations were
primarily driven by a small number of patients who were taking
very high doses of antipsychotics (>20 mg of haloperidol equiv-
alents). Thus, this association could exist either because a high
degree of D, blockade is needed to “overcompensate” for excess
striatal DA levels, and thus impair RL, or it could also simply
reflect the possibility that those patients taking very high doses
were the most ill and least treatment responsive. In the absence of
random assignment to antipsychotic drug, the interpretation of
drug dose correlations with behavioral or modeling parameters is
necessarily confounded. However, the notion that very high
doses of antipsychotic medication might interfere with RL is
clearly plausible (Beninger et al., 2003). Indeed, it would be
somewhat surprising if this were not the case.
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In summary, through the use of a novel behavioral task and
computational model, it appears that working memory impair-
ments may be critically implicated in the reinforcement learning
deficits found in schizophrenia. It remains for future work to
determine whether this understanding generalizes to other types
of learning and decision-making tasks.
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