
*For correspondence:

alexander_fengler@brown.edu

(AF);

Michael_Frank@brown.edu (MJF)

Competing interest: See

page 30

Funding: See page 30

Received: 21 November 2020

Accepted: 01 April 2021

Published: 06 April 2021

Reviewing editor: Valentin

Wyart, École normale supérieure,

PSL University, INSERM, France

Copyright Fengler et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Likelihood approximation networks
(LANs) for fast inference of simulation
models in cognitive neuroscience
Alexander Fengler1,2*, Lakshmi N Govindarajan1,2, Tony Chen3,
Michael J Frank1,2*

1Department of Cognitive, Linguistic and Psychological Sciences, Brown University,
Providence, United States; 2Carney Institute for Brain Science, Brown University,
Providence, United States; 3Psychology and Neuroscience Department, Boston
College, Chestnut Hill, United States

Abstract In cognitive neuroscience, computational modeling can formally adjudicate between

theories and affords quantitative fits to behavioral/brain data. Pragmatically, however, the space of

plausible generative models considered is dramatically limited by the set of models with known

likelihood functions. For many models, the lack of a closed-form likelihood typically impedes

Bayesian inference methods. As a result, standard models are evaluated for convenience, even

when other models might be superior. Likelihood-free methods exist but are limited by their

computational cost or their restriction to particular inference scenarios. Here, we propose neural

networks that learn approximate likelihoods for arbitrary generative models, allowing fast posterior

sampling with only a one-off cost for model simulations that is amortized for future inference. We

show that these methods can accurately recover posterior parameter distributions for a variety of

neurocognitive process models. We provide code allowing users to deploy these methods for

arbitrary hierarchical model instantiations without further training.

Introduction
Computational modeling has gained traction in cognitive neuroscience in part because it can guide

principled interpretations of functional demands of cognitive systems while maintaining a level of

tractability in the production of quantitative fits of brain-behavior relationships. For example, models

of reinforcement learning (RL) are frequently used to estimate the neural correlates of the explora-

tion/exploitation tradeoff, of asymmetric learning from positive versus negative outcomes, or of

model-based vs. model-free control (Schönberg et al., 2007; Niv et al., 2012; Frank et al., 2007;

Zajkowski et al., 2017; Badre et al., 2012; Daw et al., 2011b). Similarly, models of dynamic deci-

sion-making processes are commonly used to disentangle the strength of the evidence for a given

choice from the amount of that evidence needed to commit to any choice, and how such parameters

are impacted by reward, attention, and neural variability across species (Rangel et al., 2008;

Forstmann et al., 2010; Krajbich and Rangel, 2011; Frank et al., 2015; Yartsev et al., 2018;

Doi et al., 2020). Parameter estimates might also be used as a theoretically driven method to

reduce the dimensionality of brain/behavioral data that can be used for prediction of, for example,

clinical status in computational psychiatry (Huys et al., 2016).

Interpreting such parameter estimates requires robust methods that can estimate their generative

values, ideally including their uncertainty. For this purpose, Bayesian statistical methods have gained

traction. The basic conceptual idea in Bayesian statistics is to treat parameters q and data x as stem-

ming from a joint probability model pð�; xÞ. Statistical inference proceeds by using Bayes’ rule,

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 1 of 39

TOOLS AND RESOURCES

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.65074
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


pð�jxÞ ¼ pðxj�Þpð�Þ
pðxÞ

to get at pð�jxÞ, the posterior distribution over parameters’ given data. pð�Þ is known as the prior dis-

tribution over the parameters q, and pðxÞ is known as the evidence or just probability of the data (a

quantity of importance for model comparison). The term pðxj�Þ, the probability (density) of the data-

set x given parameters q, is known as the likelihood (in accordance with usual notation, we will also

write ‘ð�jxÞ in the following). It is common in cognitive science to represent likelihoods as pðxj�; sÞ,
where s specifies a particular stimulus. We suppress s in our notation, but note that our approach

easily generalizes when explicitly conditioning on trial-wise stimuli. Bayesian parameter estimation is

a natural way to characterize uncertainty over parameter values. In turn, it provides a way to identify

and probe parameter tradeoffs. While we often do not have access to pð�jxÞ directly, we can draw

samples from it instead, for example, via Markov Chain Monte Carlo (MCMC) (Robert and Casella,

2013; Diaconis, 2009; Robert and Casella, 2011).

Bayesian estimation of the full posterior distributions over model parameters contrasts with maxi-

mum likelihood estimation (MLE) methods that are often used to extract single best parameter val-

ues, without considering their uncertainty or whether other parameter estimates might give similar

fits. Bayesian methods naturally extend to settings that assume an implicit hierarchy in the genera-

tive model in which parameter estimates at the individual level are informed by the distribution

across a group, or even to assess within an individual how trial-by-trial variation in (for example) neu-

ral activity can impact parameter estimates (commonly known simply as hierarchical inference). Sev-

eral toolboxes exist for estimating the parameters of popular models like the drift diffusion model

(DDM) of decision-making and are widely used by the community for this purpose (Wiecki et al.,

2013; Heathcote et al., 2019; Turner et al., 2015; Ahn et al., 2017). Various studies have used

eLife digest Cognitive neuroscience studies the links between the physical brain and cognition.

Computational models that attempt to describe the relationships between the brain and specific

behaviours quantitatively is becoming increasingly popular in this field. This approach may help

determine the causes of certain behaviours and make predictions about what behaviours will be

triggered by specific changes in the brain.

Many of the computational models used in cognitive neuroscience are built based on

experimental data. A good model can predict the results of new experiments given a specific set of

conditions with few parameters. Candidate models are often called ‘generative’: models that can

simulate data. However, typically, cognitive neuroscience studies require going the other way

around: they need to infer models and their parameters from experimental data. Ideally, it should

also be possible to properly assess the remaining uncertainty over the parameters after having

access to the experimental data. To facilitate this, the Bayesian approach to statistical analysis has

become popular in cognitive neuroscience.

Common software tools for Bayesian estimation require a ‘likelihood function’, which measures

how well a model fits experimental data for given values of the unknown parameters. A major

obstacle is that for all but the most common models, obtaining precise likelihood functions is

computationally costly. In practice, this requirement limits researchers to evaluating and comparing

a small subset of neurocognitive models for which a likelihood function is known. As a result, it is

convenience, rather than theoretical interest, that guides this process.

In order to provide one solution for this problem, Fengler et al. developed a method that allows

users to perform Bayesian inference on a larger number of models without high simulation costs.

This method uses likelihood approximation networks (LANs), a computational tool that can estimate

likelihood functions for a broad class of models of decision making, allowing researchers to estimate

parameters and to measure how well models fit the data. Additionally, Fengler et al. provide both

the code needed to build networks using their approach and a tutorial for users.

The new method, along with the user-friendly tool, may help to discover more realistic brain

dynamics underlying cognition and behaviour as well as alterations in brain function.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 2 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


these methods to characterize how variability in neural activity, and manipulations thereof, alters

learning and decision parameters that can quantitatively explain variability in choice and response

time distributions (Cavanagh et al., 2011; Frank et al., 2015; Herz et al., 2016; Pedersen and

Frank, 2020).

Traditionally, however, posterior sampling or MLE for such models required analytical likelihood

functions: a closed-form mathematical expression providing the likelihood of observing specific data

(reaction times and choices) for a given model and parameter setting. This requirement limits the

application of any likelihood-based method to a relatively small subset of cognitive models chosen

for so-defined convenience instead of theoretical interest. Consequently, model comparison and

estimation exercises are constrained as many important but likelihood-free models were effectively

untestable or required weeks to process a single model formulation. Testing any slight adjustment

to the generative model (e.g., different hierarchical grouping or splitting conditions) requires a

repeated time investment of the same order. For illustration, we focus on the class of sequential

sampling models (SSMs) applied to decision-making scenarios, with the most common variants of

the DDM. The approach is, however, applicable to any arbitrary domain.

In the standard DDM, a two-alternative choice decision is modeled as a noisy accumulation of evi-

dence toward one of two decision boundaries (Ratcliff and McKoon, 2008). This model is widely

used as it can flexibly capture variations in choice, error rates, and response time distributions across

a range of cognitive domains and its parameters have both psychological and neural implications.

While the likelihood function is available for the standard DDM and some variants including inter-trial

variability of its drift parameter, even seemingly small changes to the model form, such as dynami-

cally varying decision bounds (Cisek et al., 2009; Hawkins et al., 2015) or multiple-choice alterna-

tives (Krajbich and Rangel, 2011), are prohibitive for likelihood-based estimation, and instead

require expensive Monte Carlo (MC) simulations, often without providing estimates of uncertainty

across parameters.

In the last decade and a half, approximate Bayesian computation (ABC) algorithms have grown to

prominence (Sisson et al., 2018). These algorithms enable one to sample from posterior distribu-

tions over model parameters, where models are defined only as simulators, which can be used to

construct empirical likelihood distributions (Sisson et al., 2018). ABC approaches have enjoyed suc-

cessful application across life and physical sciences (e.g., Akeret et al., 2015), and notably, in cogni-

tive science (Turner and Van Zandt, 2018), enabling researchers to estimate theoretically

interesting models that were heretofore intractable. However, while there have been many advances

without sacrificing information loss in the posterior distributions (Turner and Sederberg, 2014;

Holmes, 2015), such ABC methods typically require many simulations to generate synthetic or

empirical likelihood distributions, and hence can be computationally expensive (in some cases pro-

hibitive – it can take weeks to estimate parameters for a single model). This issue is further exacer-

bated when embedded within a sequential MCMC sampling scheme, which is needed for unbiased

estimates of posterior distributions. For example, one typically needs to simulate between 10,000

and 100,000 times (the exact number varies depending on the model) for each proposed combina-

tion of parameters (i.e., for each sample along a Markov chain [MC], which may itself contain tens of

thousands of samples), after which they are discarded. This situation is illustrated in Figure 1, where

the red arrows point at the computations involved in the approach suggested by Turner et al.,

2015.

To address this type of issue, the statistics and machine learning communities have increasingly

focused on strategies for the amortization of simulation-based computations (Gutmann et al., 2018;

Papamakarios and Murray, 2016; Papamakarios et al., 2019a; Lueckmann et al., 2019;

Radev et al., 2020b; Radev et al., 2020a; Gonçalves et al., 2020; Järvenpää et al., 2021). The

aim is generally to use model simulations upfront and learn a reusable approximation of the function

of interest (targets can be the likelihood, the evidence, or the posterior directly).

In this paper, we develop a general ABC method (and toolbox) that allows users to perform infer-

ence on a significant number of neurocognitive models without repeatedly incurring substantial sim-

ulation costs. To motivate our particular approach and situate it in the context of other methods, we

outline the following key desiderata:

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 3 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


1. The method needs to be easily and rapidly deployable to end users for Bayesian inference on
various models hitherto deemed computationally intractable. This desideratum naturally leads
us to an amortization approach, where end users can benefit from costs incurred upfront.

2. Our method should be sufficiently flexible to support arbitrary inference scenarios, including
hierarchical inference, estimation of latent covariate (e.g., neural) processes on the model
parameters, arbitrary specification of parameters across experimental conditions, and without
limitations on dataset sizes. This desideratum leads us to amortize the likelihood functions,
which (unlike other amortization strategies) can be immediately applied to arbitrary inference
scenarios without further cost.

3. We desire approximations that do not a priori sacrifice covariance structure in the parameter
posteriors, a limitation often induced for tractability in variational approaches to approximate
inference (Blei et al., 2017).

4. End users should have access to a convenient interface that integrates the new methods seam-
lessly into preexisting workflows. The aim is to allow users to get access to a growing database
of amortized models through this toolbox and enable increasingly complex models to be fit to
experimental data routinely, with minimal adjustments to the user’s working code. For this pur-
pose, we will provide an extension to the widely used HDDM toolbox (Wiecki et al., 2013;
Pedersen and Frank, 2020) for parameter estimation of DDM and RL models.

5. Our approach should exploit modern computing architectures, specifically parallel computa-
tion. This leads us to focus on the encapsulation of likelihoods into neural network (NN) archi-
tectures, which will allow batch processing for posterior inference.

Figure 1. High level overview of the proposed methods. (A) The space of theoretically interesting models in the cognitive neurosciences (red) is much

larger than the space of mechanistic models with analytical likelihood functions (green). Traditional approximate Bayesian computation (ABC) methods

require models that have low-dimensional sufficient statistics (blue). (B) illustrates how likelihood approximation networks can be used in lieu of online

simulations for efficient posterior sampling. The left panel shows the predominant ’probability density approximation’ (PDA) method used for ABC in

the cognitive sciences (Turner et al., 2015). For each step along a Markov chain, 10K–100K simulations are required to obtain a single likelihood

estimate. The right panel shows how we can avoid the simulation steps during inference using amortized likelihood networks that have been pretrained

using empirical likelihood functions (operationally in this paper: kernel density estimates and discretized histograms).

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 4 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


Guided by these desiderata, we developed two amortization strategies based on NNs and empir-

ical likelihood functions. Rather than simulate during inference, we instead train NNs as parametric

function approximators to learn the likelihood function from an initial set of a priori simulations

across a wide range of parameters. By learning (log) likelihood functions directly, we avoid posterior

distortions that result from inappropriately chosen (user-defined) summary statistics and correspond-

ing distance measures as applied in traditional ABC methods (Sisson et al., 2018). Once trained,

likelihood evaluation only requires a forward pass through the NN (as if it were an analytical likeli-

hood) instead of necessitating simulations. Moreover, any algorithm can be used to facilitate poste-

rior sampling, MLE or maximum a posteriori estimation (MAP).

For generality, and because they each have their advantages, we use two classes of architectures,

multilayered perceptrons (MLPs) and convolutional neural networks (CNNs), and two different poste-

rior sampling methods (MCMC and importance sampling). We show proofs of concepts using poste-

rior sampling and parameter recovery studies for a range of cognitive process models of interest.

The trained NNs provide the community with a (continually expandable) bank of encapsulated likeli-

hood functions that facilitate consideration of a larger (previously computationally inaccessible) set

of cognitive models, with orders of magnitude speedup relative to simulation-based methods. This

speedup is possible because costly simulations only have to be run once per model upfront and

henceforth be avoided during inference: previously executed computations are amortized and then

shared with the community.

Moreover, we develop standardized amortization pipelines that allow the user to apply this

method to arbitrary models, requiring them to provide only a functioning simulator of their model of

choice.

In the ’Approximate Bayesian Computation’ section, we situate our approach in the greater con-

text of ABC, with a brief review of online and amortization algorithms. The subsequent sections

describe our amortization pipelines, including two distinct strategies, as well as their suggested use

cases. The ’Test beds’ section provides an overview of the (neuro)cognitive process models that

comprise our benchmarks. The ’Results’ section shows proof-of-concept parameter recovery studies

for the two proposed algorithms, demonstrating that the method accurately recovers both the pos-

terior mean and variance (uncertainty) of generative model parameters, and that it does so at a run-

time speed of orders of magnitude faster than traditional ABC approaches without further training.

We further demonstrate an application to hierarchical inference, in which our trained networks can

be imported into widely used toolboxes for arbitrary inference scenarios. In the’Discussion’ and the

last section, we further situate our work in the context of other ABC amortization strategies and dis-

cuss the limitations and future work.

Approximate Bayesian computation
ABC methods apply when one has access to a parametric stochastic simulator (also referred to as

generative model), but, unlike the usual setting for statistical inference, no access to an explicit

mathematical formula for the likelihood of observations given the simulator’s parameter setting.

While likelihood functions for a stochastic stimulator can in principle be mathematically derived,

this can be exceedingly challenging even for some historically famous models such as the Ornstein–

Uhlenbeck (OU) process (Lipton and Kaushansky, 2018) and may be intractable in many others.

Consequently, the statistical community has increasingly developed ABC tools that enable posterior

inference of such ‘likelihood-free’ stochastic models while completely bypassing any likelihood deri-

vations (Cranmer et al., 2020).

Given a parametric stochastic simulator model M and dataset x, instead of exact inference based

on pMð�jxÞ, these methods attempt to draw samples from an approximate posterior ~pMð�jxÞ. Con-
sider the following general equation:

~pMð�jxÞ /
Z

Kh jjsM� sxjjð ÞpMðsMj�ÞdsM pð�Þ / ~pMðxj�Þpð�Þ

where sM refers to sufficient statistics (roughly, summary statistics of a dataset that retain sufficient

information about the parameters of the generative process). KhðjjsM� sxjjÞ refers to a kernel-based

distance measure/cost function, which evaluates a probability density function for a given distance

between the observed and expected summary statistics jjsM� sxjj. The parameter h (commonly

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 5 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


known as bandwidth parameter) modulates the cost gradient. Higher values of h lead to more grace-

ful decreases in cost (and therefore a worse approximation of the true posterior).

By generating simulations, one can use such summary statistics to obtain approximate likelihood

functions, denoted as ~pMðxj�Þ, where approximation error can be mitigated by generating large

numbers of simulations. The caveat is that the amount of simulation runs needed to achieve a

desired degree of accuracy in the posterior can render such techniques computationally infeasible.

With a focus on amortization, our goal is to leverage some of the insights and developments in

the ABC community to develop NN architectures that can learn approximate likelihoods deployable

for any inference scenario (and indeed any inference method, including MCMC, variational inference,

or even MLE) without necessitating repeated training. We next describe our particular approach and

return to a more detailed comparison to existing methods in the ’Discussion’ section.

Learning the likelihood with simple NN architectures
In this section, we outline our approach to amortization of computational costs of large numbers of

simulations required by traditional ABC methods. Amortization approaches incur a one-off (poten-

tially quite large) simulation cost to enable cheap, repeated inference for any dataset. Recent

research has led to substantial developments in this area (Cranmer et al., 2020). The most straight-

forward approach is to simply simulate large amounts of data and compile a database of how model

parameters are related to observed summary statistics of the data (Mestdagh et al., 2019). This

database can then be used during parameter estimation in empirical datasets using a combination

of nearest-neighbor search and local interpolation methods. However, this approach suffers from

the curse of dimensionality with respect to storage demands (a problem that is magnified with

increasing model parameters). Moreover, its reliance on summary statistics (Sisson et al., 2018)

does not naturally facilitate flexible reuse across inference scenarios (e.g., hierarchical models, multi-

ple conditions while fixing some parameters across conditions, etc.).

To fulfill all desiderata outlined in the introduction, we focus on directly encapsulating the likeli-

hood function over empirical observations of a simulation model so that likelihood evaluation is sub-

stantially cheaper than constructing (empirical) likelihoods via model simulation online during

inference. Such empirical observations could be, for example, trial-wise choices and reaction times

(RTs). This strategy then allows for flexible reuse of such approximate likelihood functions ‘̂ð�jxÞ in a

large variety of inference scenarios applicable to common experimental design paradigms. Specifi-

cally, we encapsulate ‘̂ð�jxÞ as a feed-forward NN, which allows for parallel evaluation by design. We

refer to these networks as likelihood approximation networks (LANs).

Figure 1 spells out the setting (A) and usage (B) of such a method. The LAN architectures used in

this paper are simple, small in size, and are made available for download for local usage. While this

approach does not allow for instantaneous posterior inference, it does considerably reduce compu-

tation time (by up to three orders of magnitude; see ‘Run time’ section) when compared to

approaches that demand simulations at inference. Notably, this approach also substantially speeds

up inference even for models that are not entirely likelihood free but nevertheless require costly

numerical methods to obtain likelihoods. Examples are the full-DDM with inter-trial variability in

parameters (for which likelihoods can be obtained via numerical integration, as is commonly done in

software packages such as HDDM but with substantial cost), but also other numerical methods for

generalized DDMs (Shinn et al., 2020; Drugowitsch, 2016). At the same time, we maintain the high

degree of flexibility with regards to deployment across arbitrary inference scenarios. As such, LANs

can be treated as a highly flexible plug-in to existing inference algorithms and remain conceptually

simple and lightweight.

Before elaborating our LAN approach, we briefly situate it in the context of some related work.

One branch of literature that interfaces ABC with deep learning attempts to amortize posterior

inference directly in end-to-end NNs (Radev et al., 2020b; Radev et al., 2020a; Papamakarios and

Murray, 2016; Papamakarios et al., 2019a; Gonçalves et al., 2020). Here, NN architectures are

trained with a large number of simulated datasets to produce posterior distributions over parame-

ters, and once trained, such networks can be applied to directly estimate parameters from new data-

sets without the need for further simulations. However, the goal to directly estimate posterior

parameters from data requires the user to first train a NN for the very specific inference scenario in

which it is applied empirically. Such approaches are not easily deployable if a user wants to test

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 6 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


multiple inference scenarios (e.g., parameters may vary as a function of task condition or brain activ-

ity, or in hierarchical frameworks), and consequently, they do not achieve our second desideratum

needed for a user-friendly toolbox, making inference cheap and simple.

We return to discuss the relative merits and limitations of these and further alternative

approaches in the ’Discussion’ section.

Formally, we use model simulations to learn a function fFðx; �Þ, where fFð:Þ is the output of a NN

with parameter vector F (weights, biases). The function fFðx; �Þ is used as an approximation ‘̂ð�jxÞ of
the likelihood function ‘ð�jxÞ. Once learned, we can use such f as a plug-in to Bayes’ rule:

p̂ð�jxÞ /
Y

N

i¼1

‘̂ð�jxiÞpð�Þ

To perform posterior inference, we can now use a broad range of existing MC or MCMC algo-

rithms. We note that, fulfilling our second desideratum, an extension to hierarchical inference is as

simple as plugging in our NN into a probabilistic model of the form

p̂ð�jxÞ /
Y

J

j¼1

Y

N

i¼1

‘̂ð�jjxjiÞpð�jja;bÞpða;bjgÞ

where a, b are generic group-level global parameters, and g serves as a generic fixed hyperpara-

meter vector.

We provide proofs of concepts for two types of LANs. While we use MLPs and convolutional neu-

ral networks (CNNs), of conceptual importance is the distinction between the two problem represen-

tations they tackle, rather than the network architectures per se.

The first problem representation, which we call the pointwise approach, considers the functions

fFðxj�Þ, where q is the parameter vector of a given stochastic simulator model, and x is a single data-

point (trial outcome). The pointwise approach is a mapping from the input dimension jQj þ jxj, where
j:j refers to the cardinality, to the one-dimensional output. The output is simply the log-likelihood of

the single datapoint x given the parameter vector q. As explained in the next section, for this map-

ping we chose simple MLPs.

The second problem representation, which we will refer to as the histogram approach, instead

aims to learn a function fFð:j�Þ, which maps a parameter vector q to the likelihood over the full (dis-

cretized) dataspace (i.e., the likelihood of the entire RT distributions at once). We represent the out-

put space as an outcome histogram with dimensions n� m (where in our applications n is the

number of bins for a discretization of reaction times, and m refers to the number of distinct choices).

Thus, our mapping has input dimension jQj and output dimension jm� nj. Representing the problem

this way, we chose CNNs as the network architecture.

In each of the above cases, we pursued the architectures that seemed to follow naturally, without

any commitment to their optimality. The pointwise approach operates on low-dimensional inputs

and outputs. With network evaluation speed being of primary importance to us, we chose a rela-

tively shallow MLP to learn this mapping, given that it was expressive enough. However, when learn-

ing a mapping from a parameter vector q to the likelihood over the full dataspace, as in the

histogram approach, we map a low-dimensional data manifold to a much higher dimensional one.

Using an MLP for this purpose would imply that the number of NN parameters needed to learn this

function would be orders of magnitude larger than using a CNN. Not only would this mean that for-

ward passes through the network would take longer, but also an increased propensity to overfit on

an identical data budget.

The next two sections will give some detail regarding the networks chosen for the pointwise and

histogram LANs. Figure 1 illustrates the general idea of our approach while Figure 2 gives a con-

ceptual overview of the exact training and inference procedure proposed. These details are thor-

oughly discussed in the last section of the paper.

Pointwise approach: learn likelihoods of individual observations with
MLPs
As a first approach, we use simple MLPs to learn the likelihood function of a given stochastic simula-

tor. The network learns the mapping f�; xg ! log ‘Fð�jxÞ, where q represents the parameters of our

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 7 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


stochastic simulator, x are the simulator outcomes (in our specific examples below, x, refers to the

tuple ðrt; cÞ of reaction times and choices), and log ‘ð�jxÞ is the log-likelihood of the respective out-

come. The trained network then serves as the approximate likelihood function log ‘̂Fð�jxÞ. We

emphasize that the network is trained as a function approximator to provide us with a computation-

ally cheap likelihood estimate, not to provide a surrogate simulator. Biological plausibility of the net-

work is therefore not a concern when it comes to architecture selection. Fundamentally this

approach attempts to learn the log-likelihood via a nonlinear regression, for which we chose an

MLP. Log-likelihood labels for training were derived from empirical likelihoods functions (details are

given in the ’Materials and methods’ section), which in turn were constructed as kernel density esti-

mates (KDEs). The construction of KDEs roughly followed Turner et al., 2015. We chose the Huber

loss function (details are given in the ’Materials and methods’ section) because it is more robust to

outliers and thus less susceptible to distortions that can arise in the tails of distributions.

Histogram approach: learn likelihoods of entire dataset distributions
with CNNs
Our second approach is based on a CNN architecture. Whereas the MLP learned to output a single

scalar likelihood output for each datapoint (‘trial’, given a choice, reaction time, and parameter vec-

tor), the goal of the CNN was to evaluate, for the given model parameters, the likelihood of an arbi-

trary number of datapoints via one forward pass through the network. To do so, the output of the

CNN was trained to produce a probability distribution over a discretized version of the dataspace,

given a stochastic model and parameter vector. The network learns the mapping � ! log ‘Fð�j:Þ.

Figure 2. High-level overview of our approaches. For a given model M, we sample model parameters q from a region of interest (left 1) and run 100k

simulations (left 2). We use those simulations to construct a kernel density estimate-based empirical likelihood, and a discretized (histogram-like)

empirical likelihood. The combination of parameters and the respective likelihoods is then used to train the likelihood networks (right 1). Once trained,

we can use the multilayered perceptron and convolutional neural network for posterior inference given an empirical/experimental dataset (right 2).

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 8 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


As a side benefit, in line with the methods proposed by Lueckmann et al., 2019;

Papamakarios et al., 2019b, the CNN can in fact act as a surrogate simulator; for the purpose of

this paper, we do not exploit this possibility however. Since here we attempt to learn distributions,

labels were simple binned empirical likelihoods, and as a loss function we chose the Kullback Leibler

(KL) divergence between the network’s output distribution and the label distribution (details are

given in the ’Materials and methods’ section).

Training specifics
Most of the specifics regarding training procedures are discussed in detail in the ’Materials and

methods’ section; however, we mention some aspects here to aid readability.

We used 1.5 M and 3 M parameter vectors (based on 100k simulations each) to train the MLP

and CNN approach, respectively. We chose these numbers consistently across all models and in fact

trained on less examples for the MLP only due to RAM limitations we faced on our machines (which

in principle can be circumvented). These numbers are purposely high (but in fact quite achievable

with access to a computing cluster, simulations for each model was on the order of hours only) since

we were interested in a workable proof of concept. We did not investigate the systematic minimiza-

tion of training data; however, some crude experiments indicate that a decrease by an order of mag-

nitude did not seriously affect performance.

We emphasize that this is in line with the expressed philosophy of our approach. The point of

amortization is to throw a lot of resources at the problem once so that downstream inference is

made accessible even on basic setups (a usual laptop). In case simulators are prohibitively expensive

even for reasonably sized computer clusters, minimizing training data may gain more relevance. In

such scenarios, training the networks will be very cheap compared to simulation time, which implies

that retraining with progressively more simulations until one observes asymptotic test performance

is a viable strategy.

Test beds
We chose variations of SSMs common in the cognitive neurosciences as our test bed (Figure 3). The

range of models we consider permits great flexibility in allowable data distributions (choices and

response times). We believe that initial applications are most promising for such SSMs because (1)

analytical likelihoods are available for the most common variants (and thus provide an upper-bound

benchmark for parameter recovery) and (2) there exist many other interesting variants for which no

analytic solution exists.

We note that there is an intermediate case in which numerical methods can be applied to obtain

likelihoods for a broader class of models (e.g., Shinn et al., 2020). These methods are nevertheless

computationally expensive and do not necessarily afford rapid posterior inference. Therefore, amor-

tization via LANs is attractive even for these models. Figure 3 further outlines this distinction.

We emphasize that our methods are quite general, and any model that generates discrete

choices and response times from which simulations can be drawn within a reasonable amount of

time can be suitable to the amortization techniques discussed in this paper (given that the model

has parameter vectors of dimension roughly lt15). In fact, LANs are not restricted to models of reac-

tion time and choice to begin with, even though we focus on these as test beds.

As a general principle, all models tested below are based on stochastic differential equations

(SDEs) of the following form:

dXt ¼ aðt;xÞdtþ bðt;xÞdBt; X0 ¼w

where we are concerned with the probabilistic behavior of the particle (or vector of particles) X. The

behavior of this particle is driven by aðt;xÞ, an underlying drift function, bðt;xÞ, an underlying noise

transformation function, Bt, an incremental noise process, and X0 ¼w, a starting point.

Of interest to us are specifically the properties of the first-passage-time-distributions (FPTD) for

such processes, which are needed to compute the likelihood of a given response time/choice pair

frt; cg. In these models, the exit region of the particle (i.e., the specific boundary it reaches) deter-

mines the choice, and the time point of that exit determines the response time. The joint distribution

of choices and reaction times is referred to as a FPTD.

Given some exit region E, such FPTDs are formally defined as

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 9 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


fEðtÞ ¼ pðinf
t
fðXt 2 EÞg ¼ tÞ

In words, a first passage time, for a given exit region, is defined as the first time point of entry

into the exit region, and the FPTD is the probability, respectively, of such an exit happening at any

specified time t (Ratcliff, 1978; Feller, 1968). Partitioning the exit region into subsets E1; ::::;En (e.g.,

representing n choices), we can now define the set of defective distributions

ffE1ðt;�Þ; :::; fEN ðt;�Þg

where �2Q describes the collection of parameters driving the process. For every Ei,
Z

½0;þ¥�
fE i
ðt;�Þdt¼ PðX exitsinto EiÞ ¼ Pð i getschosenÞ

ffEi ; :::; fEng jointly define the FPTD such that

X

n

i¼1

Z

½0;þ¥�
fEiðt;�Þdt¼ 1

These functions fEi , jointly serve as the likelihood function s.t.

‘ð�;frt;cgÞ ¼ fEcðt;�Þ

For illustration, we focus the general model formulation above to the standard DDM. Details

regarding the other models in our test bed are relegated to the ’Materials and methods’ section.

To obtain the DDM from the general equation above, we set aðt; xÞ ¼ v (a fixed drift across time),

bðt; xÞ ¼ 1 (a fixed noise variance across time), and DB ~Nð0;DtÞ. The DDM applies to the two alter-

native decision cases, where decision corresponds to the particle crossings of an upper or lower

fixed boundary. Hence, E1 ¼ fR � ag and E2 ¼ fR � �ag, where a is a parameter of the model. The

Figure 3. Pictorial representation of the stochastic simulators that form our test bed. Our point of departure is the standard simple drift diffusion model

(DDM) due to its analytical tractability and its prevalence as the most common sequential sampling model (SSM) in cognitive neuroscience. By

systematically varying different facets of the DDM, we test our likelihood approximation networks (LANs) across a range of SSMs for parameter

recovery, goodness of fit (posterior predictive checks), and inference runtime. We divide the resulting models into four classes as indicated by the

legend. We consider the simple DDM in the analytical likelihood (solid line) category, although, strictly speaking, the likelihood involves an infinite sum

and thus demands an approximation algorithm introduced by Navarro and Fuss, but this algorithm is sufficiently fast to evaluate so that it is not a

computational bottleneck. The full-DDM needs numerical quadrature (dashed line) to integrate over variability parameters, which inflates the evaluation

time by 1–2 orders of magnitude compared to the simple DDM. Similarly, likelihood approximations have been derived for a range of models using the

Fokker–Planck equations (dotted-dashed line), which again incurs nonsignificant evaluation cost. Finally, for some models no approximations exist and

we need to resort to computationally expensive simulations for likelihood estimates (dotted line). Amortizing computations with LANs can substantially

speed up inference for all but the analytical likelihood category (but see runtime for how it can even provide speedup in that case for large datasets).

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 10 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


DDM also includes a normalized starting point w (capturing potential response biases or priors), and

finally a nondecision time t (capturing the time for perceptual encoding and motor output). Hence,

the parameter vector for the DDM is then � ¼ ðv; a;w; t Þ. The SDE is defined as

dXtþt ¼ vdtþ dW; Xt ¼w

The DDM serves principally as a basic proof of concept for us, in that it is a model for which we

can compute the exact likelihoods analytically (Feller, 1968; Navarro and Fuss, 2009).

The other models chosen for our test bed systematically relax some of the fixed assumptions of

the basic DDM, as illustrated in Figure 3.

We note that many new models can be constructed from the components tested here. As an

example of this modularity, we introduce inhibition/excitation to the race model, which gives us the

leaky competing accumulator (LCA) (Usher and McClelland, 2001). We could then further extend

this model by introducing parameterized bounds. We could introduce reinforcement learning param-

eters to a DDM (Pedersen and Frank, 2020) or in combination with any of the other decision mod-

els. Again we emphasize that while these diffusion-based models provide a large test bed for our

proposed methods, applications are in no way restricted to this class of models.

Results

Networks learn likelihood function manifolds
Across epochs of training, both training and validation loss decrease rapidly and remain low

(Figure 4A) suggesting that overfitting is not an issue, which is sensible in this context. The low vali-

dation loss further shows that the network can interpolate likelihoods to specific parameter values it

has not been exposed to (with the caveat that it has to be exposed to the same range; no claims are

made about extrapolation).

Indeed, a simple interrogation of the learned likelihood manifolds shows that they smoothly vary

in an interpretable fashion with respect to changes in generative model parameters (Figure 4B).

Moreover, Figure 4C shows that the MLP likelihoods mirror those obtained by KDEs using 100,000

simulations, even though the model parameter vectors were drawn randomly and thus not trained

per se. We also note that the MLP likelihoods appropriately filter out simulation noise (random fluc-

tuations in the KDE empirical likelihoods across separate simulation runs of 100K samples each). This

observation can also be gleaned from Figure 4C, which shows the learned likelihood to sit right at

the center of sampled KDEs (note that for each subplot 100 such KDEs were used). As illustrated in

the Appendix, these observations hold across all tested models. One perspective on this is to con-

sider the MLP likelihoods as equivalent to KDE likelihoods derived from a much larger number of

underlying samples and interpolated. The results for the CNN (not shown to avoid redundancy) mir-

ror the MLP results. Finally, while Figure 4 depicts the learned likelihood for the simple DDM for

illustration purposes, the same conclusions apply to the learned manifolds for all of the tested mod-

els (as shown in Appendix 1—figures 1–6). Indeed inspection of those manifolds is insightful for

facilitating interpretation of the dynamics of the underlying models, how they differ from each other,

and the corresponding RT distributions that can be captured.

Parameter recovery
Benchmark: analytical likelihood available
While the above inspection of the learned manifolds is promising, a true test of the method is to

determine whether one can perform proper inference of generative model parameters using the

MLP and CNN. Such parameter recovery exercises are typically performed to determine whether a

given model is identifiable for a given experimental setting (e.g., number of trials, conditions, etc.).

Indeed, when parameters are collinear, recovery can be imperfect even if the estimation method

itself is flawless (Wilson and Collins, 2019; Nilsson et al., 2011; Daw, 2011a). A Bayesian estima-

tion method, however, should properly assign uncertainty to parameter estimates in these circum-

stances, and hence it is also important to evaluate the posterior variances over model parameters.

Thus as a benchmark, we first consider the basic DDM for which an arbitrarily close approximation

to the analytical likelihood is available (Navarro and Fuss, 2009). This benchmark allows us to com-

pare parameter recovery given (1) the analytical likelihood, (2) an approximation to the likelihood

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 11 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


specified by training an MLP on the analytical likelihood (thus evaluating the potential loss of infor-

mation incurred by the MLP itself), (3) an approximation to the likelihood specified by training an

MLP on KDE-based empirical likelihoods (thus evaluating any further loss incurred by the KDE recon-

struction of likelihoods), and (4) an approximate likelihood resulting from training the CNN architec-

ture, on empirical histograms. Figure 5 shows the results for the DDM.

For the simple DDM and analytical likelihood, parameters are nearly perfectly recovered given

N ¼ 1024 datapoints (‘trials’) (Figure 5A). Notably, these results are mirrored when recovery is per-

formed using the MLP trained on the analytical likelihood (Figure 5B). This finding corroborates, as

visually suggested by the learned likelihood manifolds, the conclusion that globally the likelihood

function was well behaved. Moreover, only slight reductions in recoverability were incurred when the

MLP was trained on the KDE likelihood estimates (Figure 5C), likely due to the known small biases

in KDE itself (Turner et al., 2015). Similar performance is achieved using the CNN instead of MLP

(Figure 5D).

As noted above, an advantage of Bayesian estimation is that we obtain an estimate of the poste-

rior uncertainty in estimated parameters. Thus, a more stringent requirement is to additionally

Figure 4. Likelihoods and manifolds: DDM. (A) shows the training and validation loss for the multilayered perceptron (MLP) for the drift diffusion model

across epochs. Training was driven by the Huber loss. The MLP learned the mapping f�; rt; cg7!log‘ð�jrt; cÞ, that is, the log-likelihood of a single-choice/

RT datapoint given the parameters. Training error declines rapidly, and validation loss trailed training loss without further detriment (no overfitting).

Please see Figure 2 and the ’Materials and methods’ section for more details about training procedures. (B) illustrates the marginal likelihood

manifolds for choices and RTs by varying one parameter in the trained region. Reaction times are mirrored for choice options �1, and 1, respectively, to

aid visualization. (C) shows MLP likelihoods in green for four random parameter vectors, overlaid on top of a sample of 100 kernel density estimate

(KDE)-based empirical likelihoods derived from 100k samples each. The MLP mirrors the KDE likelihoods despite not having been explicitly trained on

these parameters. Moreover, the MLP likelihood sits firmly at the mean of sample of 100 KDEs. Negative and positive reaction times are to be

interpreted as for (B).

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 12 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


recover the correct posterior variance for a given dataset D and model M. One can already see visu-

ally in Figure 5C, D that posterior uncertainty is larger when the mean is further from the ground

truth (lighter shades of gray indicate higher posterior variance). However, to be more rigorous one

can assess whether the posterior variance is precisely what it should be.

The availability of an analytical likelihood for the DDM, together with our use of sampling meth-

ods (as opposed to variational methods that can severely bias posterior variance), allows us to obtain

the ‘ground truth’ uncertainty in parameter estimates. Figure 6 shows that the sampling from a MLP

trained on analytical likelihoods, an MLP trained on KDE-based likelihoods, and a CNN all yield

excellent recovery of the variance. For an additional run that involved datasets of size n ¼ 4096

instead of n ¼ 1024, we observed a consistent decrease in posterior variance across all methods (not

shown) as expected.

Figure 5. Simple drift diffusion model parameter recovery results for (A) analytical likelihood (ground truth), (B) multilayered perceptron (MLP) trained

on analytical likelihood, (C) MLP trained on kernel density estimate (KDE)-based likelihoods (100K simulations per KDE), and (D) convolutional neural

network trained on binned likelihoods. The results represent posterior means, based on inference over datasets of size N1 ¼ 1024‘trials’. Dot shading is

based on parameter-wise normalized posterior variance, with lighter shades indicating larger posterior uncertainty of the parameter estimate.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 13 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


No analytical likelihood available
As a proof of concept for the more general ABC setting, we show parameter recovery results for

two nonstandard models, the linear collapse (LC) and Weibull models, as described in the ’Test bed’

section. The results are summarized in Figures 7 and 8 and described in more detail in the following

two paragraphs.

Parameter recovery
Figure 7 shows that both the MLP and CNN methods consistently yield very good to excellent

parameter recovery performance for the LC model, with parameter-wise regression coefficients

globally above R2>0:9. As shown in Figure 8, parameter recovery for the Weibull model is less suc-

cessful, however, particularly for the Weibull collapsing bound parameters. The drift parameter v,

the starting point bias w, and the nondecision time are estimated well; however, the boundary

parameters a, a, and b are less well recovered by the posterior mean. Judging by the parameter

recovery plot, the MLP seems to perform slightly less well on the boundary parameters when com-

pared to the CNN.

To interrogate the source of the poor recovery of a and b parameters, we considered the possi-

bility that the model itself may have issues with identifiability, rather than poor fit. Figure 8 shows

that indeed, for two representative datasets in which these parameters are poorly recovered, the

model nearly perfectly reproduces the ground truth data in the posterior predictive RT distributions.

Moreover, we find that whereas the individual Weibull parameters are poorly recovered, the net

boundary BðtÞ is very well recovered, particularly when evaluated within the range of the observed

dataset. This result is reminiscent of the literature on sloppy models (Gutenkunst et al., 2007),

where sloppiness implies that various parameter configurations can have the same impact on the

data. Moreover, two further conclusions can be drawn from this analysis. First, when fitting the Wei-

bull model, researchers should interpret the bound trajectory as a latent parameter rather than the

individual a and b parameters per se. Second, the Weibull model may be considered as viable only if

the estimated bound trajectory varies sufficiently within the range of the empirical RT distributions. If

the bound is instead flat or linearly declining in that range, the simple DDM or LC models may be

preferred, and their simpler form would imply that they would be selected by any reasonable model

comparison metric. Lastly, given our results the Weibull model could likely benefit from reparamete-

rization if the desire is to recover individual parameters rather than the bound trajectory BðtÞ. Given

the common use of this model in collapsing bound studies (Hawkins et al., 2015) and that the

bound trajectories are nevertheless interpretable, we leave this issue for future work.

The Appendix shows parameter recovery studies on a number of other stochastic simulators with

non-analytical likelihoods, described in the ’Test bed’ section. The appendices show tables of param-

eter-wise recovery R2 for all models tested. In general, recovery ranges from good to excellent.

Given the Weibull results above, we attribute the less good recovery for some of these models to

Figure 6. Inference using likelihood approximation networks (LANs) recovers posterior uncertainty. Here, we leverage the analytic solution for the drift

diffusion model to plot the ‘ground truth’ posterior variance on the x-axis, against the posterior variance from the LANs on the y-axis. (Left) Multilayered

perceptrons (MLPs) trained on the analytical likelihood. (Middle) MLPs trained on kernel density estimate-based empirical likelihoods. (Right)

Convolutional neural networks trained on binned empirical likelihoods. Datasets were equivalent across methods for each model (left to right) and

involved n ¼ 1024 samples.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 14 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


identifiability issues and specific dataset properties rather than to the method per se. We note that

our parameter recovery studies here are in general constrained to the simplest inference setting

equivalent to a single-subject, single-condition experimental design. Moreover, we use uninforma-

tive priors for all parameters of all models. Thus, these results provide a lower bound on parameter

recoverability, provided of course that the datasets were generated from the valid parameter ranges

on which the networks were trained; see Section 0.10 for how recovery can benefit from more com-

plex experimental designs with additional task conditions, which more faithfully represents the typi-

cal inference scenario deployed by cognitive neuroscientists. Lastly, some general remarks about the

parameter recovery performance. A few factors can negatively impact how well one can recover

parameters. First, if the model generally suffers from identifiability issues, the resulting tradeoffs in

the parameters can lead the MCMC chain to get stuck on the boundary for one or more parameters.

This issue is endemic to all models and unrelated to likelihood-free methods or LANs, and should at

best be attacked at the level of reparameterization (or a different experimental design that can dis-

entangle model parameters). Second, if the generative parameters of a dataset are too close to (or

beyond) the bounds of the trained parameter space, we may also end with a chain that gets stuck

on the boundary of the parameter space. We confronted this problem by training on parameter

spaces that yield response time distributions that are broader than typically observed experimentally

for models of this class, while also excluding obviously defective parameter setups. Defective param-

eter setups were defined in the context of our applications as parameter vectors that generate data

that never allow one or the other choice to occur (as in pðcÞ<< 1

100;000, data that concentrates more

Figure 7. Linear collapse model parameter recovery and posterior predictives. (Left) Parameter recovery results for the multilayered perceptron (top)

and convolutional neural network (bottom). (Right) Posterior predictive plots for two representative datasets. Model samples of all parameters (black)

match those from the true generative model (red), but one can see that for the lower dataset, the bound trajectory is somewhat more uncertain (more

dispersion of the bound). In both cases, the posterior predictive (black histograms) is shown as predicted choice proportions and RT distributions for

upper and lower boundary responses, overlaid on top of the ground truth data (red; hardly visible since overlapping/matching).

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 15 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


than half of the reaction times within a single 1 ms bin and data that generated mean reaction times

beyond 10 s). These guidelines were chosen as a mix of basic rationale and domain knowledge

regarding usual applications of DDMs to experimental data. As such, the definition of defective data

may depend on the model under consideration.

Runtime
A major motivation for this work is the amortization of network training time during inference,

affording researchers the ability to test a variety of theoretically interesting models for linking brain

and behavior without large computational cost. To quantify this advantage, we provide some results

on the posterior sampling runtimes using (1) the MLP with slice sampling (Neal, 2003) and (2) CNN

with iterated importance sampling.

The MLP timings are based on slice sampling (Neal, 2003), with a minimum of n ¼ 2000 samples.

The sampler was stopped at some n> ¼ 2000, for which the Geweke statistic (Geweke, 1992) indi-

cated convergence (the statistic was computed once every 100 samples for n> ¼ 2000). Using an

alternative sampler, based on differential evolution Markov chain Monte Carlo (DEMCMC) and

Figure 8. Weibull model parameter recovery and posterior predictives. (Left) Parameter recovery results for the multilayered perceptron (top) and

convolutional neural network (bottom). (Right) Posterior predictive plots for two representative datasets in which parameters were poorly estimated

(denoted in blue on the left). In these examples, model samples (black) recapitulate the generative parameters (red) for the nonboundary parameters,

and the recovered bound trajectory is poorly estimated relative to the ground truth, despite excellent posterior predictives in both cases (RT

distributions for upper and lower boundary, same scheme as Figure 7). Nevertheless, one can see that the net decision boundary is adequately

recovered within the range of the RT data that are observed. Across all datasets, the net boundary BðtÞ ¼ a � exp � t
b

a
� �

is well recovered within the

range of the data observed, and somewhat less so outside of the data, despite poor recovery of individual Weibull parameters a and b.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 16 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


stopped when the Gelman–Rubin R̂<1:1 (Gelman and Rubin, 1992), yielded very similar timing

results and was omitted in our figures.

For the reported importance sampling runs, we used 200K importance samples per iteration,

starting with g values of 64, which was first reduced to 1 where in iteration i, gi ¼ 64

2i�1, before a stop-

ping criterion based on relative improvement of the confusion metric was used.

Figure 9A shows that all models can be estimated in the order of hundreds of seconds (minutes),

comprising a speed improvement of at least two orders of magnitude compared to traditional ABC

methods using KDE during inference (i.e., the PDA method motivating this work; Turner et al.,

2015). Indeed, this estimate is a lower bound on the speed improvement: we extrapolate only the

observed difference between network evaluation and online simulations, ignoring the additional cost

of constructing and evaluating the KDE-based likelihood. We decided to use this benchmark

because it provides a fairer comparison to more recent PDA approaches in which the KDE evalua-

tions can be sped up considerably (Holmes, 2015).

Notably, due to its potential for parallelization (especially on GPUs), our NN methods can even

induce performance speedups relative to analytical likelihood evaluations. Indeed, Figure 9B shows

that as the dataset grows runtime is significantly faster than even a highly optimized cython imple-

mentation of the Navarro Fuss algorithm (Navarro and Fuss, 2009) for evaluation of the analytic

DDM likelihood. This is also noteworthy in light of the full-DDM (as described in the ’Test bed’ sec-

tion), for which it is currently common to compute the likelihood term via quadrature methods, in

turn based on repeated evaluations of the Navarro Fuss algorithm. This can easily inflate the

Figure 9. Computation times. (A) Comparison of sampler timings for the multilayered perceptron (MLP) and convolutional neural network (CNN)

methods, for datasets of size 1024 and 4096 (respectively MLP-1024, MLP-4096, CNN-1024, CNN-4096). For comparison, we include a lower bound

estimate of the sample timings using traditional PDA approach during online inference (using 100k online simulations for each parameter vector). 100K

simulations were used because we found this to be required for sufficiently smooth likelihood evaluations and is the number of simulations used to train

our networks; fewer samples can of course be used at the cost of worse estimation, and only marginal speedup since the resulting noise in likelihood

evaluations tends to prevent chain mixing; see Holmes, 2015. We arrive at 100k seconds via simple arithmetic. It took our slice samplers on average

approximately 200k likelihood evaluations to arrive at 2000 samples from the posterior. Taking 500 ms * 200,000 gives the reported number. Note that

this is a generous but rough estimate since the cost of data simulation varies across simulators (usually quite a bit higher than the drift diffusion model

[DDM] simulator). Note further that these timings scale linearly with the number of participants and task conditions for the online method, but not for

likelihood approximation networks, where they can be in principle be parallelized. (B) compares the timings for obtaining a single likelihood evaluation

for a given dataset. MLP and CNN refer to Tensorflow implementations of the corresponding networks. Navarro Fuss refers to a cython (Behnel et al.,

2010) (cpu) implementation of the algorithm suggested (Navarro and Fuss, 2009) for fast evaluation of the analytical likelihood of the DDM. 100k-sim

refers to the time it took a highly optimized cython (cpu) version of a DDM sampler to generate 100k simulations (averaged across 100 parameter

vectors).

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 17 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


evaluation time by 1–2 orders of magnitude. In contrast, evaluation times for the MLP and CNN are

only marginally slower (as a function of the slightly larger network size in response to higher dimen-

sional inputs). We confirm (omitted as separate figure) from experiments with the HDDM Python

toolbox that our methods end up approximately 10� 50 times faster for the full-DDM than the cur-

rent implementation based on numerical integration, maintaining comparable parameter recovery

performance. We strongly suspect there to be additional remaining potential for performance

optimization.

Hierarchical inference
One of the principal benefits of LANs is that they can be directly extended – without further training

– to arbitrary hierarchical inference scenarios, including those in which (1) individual participant

parameters are drawn from group distributions, (2) some parameters are pooled and others sepa-

rated across task conditions, and (3) neural measures are estimated as regressors on model parame-

ters (Figure 10). Hierarchical inference is critical for improving parameter estimation particularly for

realistic cognitive neuroscience datasets in which thousands of trials are not available for each partic-

ipant and/or where one estimates impacts of noisy physiological signals onto model parameters

(Wiecki et al., 2013; Boehm et al., 2018; Vandekerckhove et al., 2011; Ratcliff and Childers,

2015).

To provide a proof of concept, we developed an extension to the HDDM Python toolbox

(Wiecki et al., 2013), widely used for hierarchical inference of the DDM applied to such settings.

Lifting the restriction of previous versions of HDDM to only DDM variants with analytical likelihoods,

we imported the MLP likelihoods for all two-choice models considered in this paper. Note that GPU-

based computation is supported out of the box, which can easily be exploited with minimal over-

head using free versions of Google’s Colab notebooks. We generally observed GPUs to improve

speed approximately fivefold over CPU-based setups for the inference scenarios we tested. Prelimi-

nary access to this interface and corresponding instructions can be found at https://github.com/

lnccbrown/lans/tree/master/hddmnn_tutorial (copy archived at swh:1:rev:e3369b9df138c75d0e490-

be0c48c53ded3e3a1d6); Fengler, 2021.

Figure 11 shows example results from hierarchical inference using the LC model, applied to syn-

thetic datasets comprising 5 and 20 subjects (a superset of participants). Recovery of individual

parameters was adequate even for five participants, and we also observe the expected improvement

of recovery of the group-level parameters m and s for 20 participants.

Figure 12 shows an example that illustrates how parameter recovery is affected when a dataset

contains multiple experimental conditions (e.g., different difficulty levels). It is common in such sce-

narios to allow task conditions to affect a single (or subset)-model parameter (in the cases shown: v),

while other model parameters are pooled across conditions. As expected, for both the full-DDM (A)

and the Levy model (B), the estimation of global parameters is improved when increasing the num-

ber of conditions from 1 to 5 to 10 (left to right, where the former are subsets of the latter datasets).

These experiments confirm that one can more confidently estimate parameters that are otherwise

difficult to estimate such as the noise a in the Levy model and sv the standard deviation of the drift

in the full-DDM.

Both of these experiments provide evidence that our MLPs provide approximate likelihoods

which behave in accordance with what is expected from proper analytical methods, while also dem-

onstrating their robustness to other samplers (i.e., we used HDDM slice samplers without further

modification for all models).

We expect that proper setting of prior distributions (uniform in our examples) and further refine-

ments to the slice sampler settings (to help mode discovery) can improve these results even further.

We include only the MLP method in this section since it is most immediately amenable to the kind of

trial-by-trial-level analysis that HDDM is designed for. We plan to investigate the feasibility of includ-

ing the CNN method into HDDM in future projects.

Discussion
Our results demonstrate the promise and potential of amortized LANs for Bayesian parameter esti-

mation of neurocognitive process models. Learned manifolds and parameter recovery experiments

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 18 of 39

Tools and resources Neuroscience

https://github.com/lnccbrown/lans/tree/master/hddmnn_tutorial
https://github.com/lnccbrown/lans/tree/master/hddmnn_tutorial
https://archive.softwareheritage.org/swh:1:dir:985b12b70c56af4d31f0674d3317a4aeaac1f419;origin=https://github.com/lnccbrown/lans/;visit=swh:1:snp:5eaab2fe7281d7891f747744994023109d07c00c;anchor=swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6
https://archive.softwareheritage.org/swh:1:dir:985b12b70c56af4d31f0674d3317a4aeaac1f419;origin=https://github.com/lnccbrown/lans/;visit=swh:1:snp:5eaab2fe7281d7891f747744994023109d07c00c;anchor=swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6
https://doi.org/10.7554/eLife.65074


showed successful inference using a range of network architectures and posterior sampling algo-

rithms, demonstrating the robustness of the approach.

Although these methods are extendable to any model of similar complexity, we focused here on

a class of SSMs, primarily because the most popular of them – the DDM – has an analytic solution,

and is often applied to neural and cognitive data. Even slight departures from the standard DDM

framework (e.g., dynamic bounds or changes in the noise distribution) are often not considered for

full Bayesian inference due to the computational complexity associated with traditional ABC meth-

ods. We provide access to the learned likelihood functions (in the form of network weights) and

code to enable users to fit a variety of such models with orders of magnitude speedup (minutes

Figure 10. Illustration of the common inference scenarios applied in the cognitive neurosciences and enabled by our amortization methods. The figure

uses standard plate notation for probabilistic graphical models. White single circles represent random variables, white double circles represent

variables computed deterministically from their inputs, and gray circles represent observations. For illustration, we split the parameter vector of our

simulator model (which we call q in the rest of the paper) into two parts q and l since some, but not all, parameters may sometimes vary across

conditions and/or come from global distribution. (Upper left) Basic hierarchical model across M participants, with N observations (trials) per participant.

Parameters for individuals are assumed to be drawn from group distributions. (Upper right) Hierarchical models that further estimate the impact of trial-

wise neural regressors onto model parameters. (Lower left) Nonhierarchical, standard model estimating one set of parameters across all trials. (Lower

right) Common inference scenario in which a subset of parameters (q) are estimated to vary across conditions M, while others (l) are global. Likelihood

approximation networks can be immediately repurposed for all of these scenarios (and more) without further training.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 19 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


instead of days). In particular, we provided an extension to the commonly used HDDM toolbox

(Wiecki et al., 2013) that allows users to apply these models to their own datasets immediately. We

also provide access to code that would allow users to train their own likelihood networks and per-

form recovery experiments, which can then be made available to the community.

We offered two separate approaches with their own relative advantages and weaknesses. The

MLP is suited for evaluating likelihoods of individual observations (choices, response times) given

model parameters, and as such can be easily extended to hierarchical inference settings and trial-by-

trial regression of neural activity onto model parameters. We showed that importing the MLP likeli-

hood functions into the HDDM toolbox affords fast inference over a variety of models without tracta-

ble likelihood functions. Moreover, these experiments demonstrated that use of the NN likelihoods

even confers a performance speedup over the analytical likelihood function – particularly for the full-

DDM, which otherwise required numerical methods on top of the analytical likelihood function for

the simple DDM.

Conversely, the CNN approach is well suited for estimating likelihoods across parameters for

entire datasets in parallel, as implemented with importance sampling. More generally and implying

Figure 11. Hierarchical inference results using the multilayered perceptron likelihood imported into the HDDM package. (A) Posterior inference for the

linear collapse model on a synthetic dataset with 5 participants and 500 trials each. Posterior distributions are shown with caterpillar plots (thick lines

correspond to 5� 95 percentiles, thin lines correspond to 1� 99 percentiles) grouped by parameters (ordered from above

fsubject1; :::; subjectn; �groupsgroupgÞ. Ground truth simulated values are denoted in red. (B) Hierarchical inference for synthetic data comprising 20

participants and 500 trials each. m and s indicate the group-level mean and variance parameters. Estimates of group-level posteriors improve with more

participants as expected with hierarchical methods. Individual-level parameters are highly accurate for each participant in both scenarios.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 20 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


potential further improvements, any sequential MC method may be applied instead. These methods

offer a more robust path to sampling from multimodal posteriors compared to MCMC, at the cost

of the curse of dimensionality, rendering them potentially less useful for highly parameterized prob-

lems, such as those that require hierarchical inference. Moreover, representing the problem directly

as one of learning probability distributions and enforcing the appropriate constraints by design

endows the CNN approach with a certain conceptual advantage. Finally, we note that in principle

(with further improvements) trial-level inference is possible with the CNN approach, and vice versa,

importance sampling can be applied to the MLP approach.

In this work, we employed sampling methods (MCMC and importance sampling) for posterior

inference because in the limit they are well known to allow for accurate estimation of posterior distri-

butions on model parameters, including not only mean estimates but their variances and covarian-

ces. Accurate estimation of posterior variances is critical for any hypothesis testing scenario because

it allows one to be confident about the degree of uncertainty in parameter estimates. Indeed, we

showed that for the simple DDM we found that posterior inference using our networks yielded

nearly perfect estimation of the variances of model parameters (which are available due to the ana-

lytic solution). Of course, our networks can also be deployed for other estimation methods even

more rapidly: they can be immediately used for MLE via gradient descent or within other approxi-

mate inference methods, such as variational inference (see Acerbi, 2020 for a related approach).

Figure 12. Effect of multiple experimental conditions on inference. The panel shows an example of posterior inference for 1, (left), 5 (middle), and 10

(right) conditions. (A) and (B) refer to the full drift diffusion model (DDM) and Levy model, respectively. The drift parameter v is estimated to vary across

conditions, while the other parameters are treated as global across conditions. Inference tends to improve for all global parameters when adding

experimental conditions. Importantly, this is particularly evident for parameters that are otherwise notoriously difficult to estimate such as sv (trial-by-

trial variance in drift in the full-DDM) and a (the noise distribution in the Levy model). Red stripes show the ground truth values of the given parameters.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 21 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


Other approaches exist for estimating generalized diffusion models. A recent example, not dis-

cussed thus far, is the pyDDM Python toolbox (Shinn et al., 2020), which allows MLE of generalized

drift diffusion models. The underlying solver is based on the Fokker–Planck equations, which allow

access to approximate likelihoods (where the degree of approximation is traded off with computa-

tion time/discretization granularity) for a flexible class of diffusion-based models, notably allowing

arbitrary evidence trajectories, starting point, and nondecision time distributions. However, to incor-

porate trial-by-trial effects would severely inflate computation time (on the order of the number of

trials) since the solver would have to operate on a trial-by-trial level. Moreover, any model that is not

driven by Gaussian diffusion, such as the Levy model we considered here or the linear ballistic accu-

mulator, is out of scope with this method. In contrast, LANs can be trained to estimate any such

model, limited only by the identifiability of the generative model itself. Finally, pyDDM does not

afford full Bayesian estimation and thus quantification of parameter uncertainty and covariance.

We moreover note that our LAN approach can be useful even if the underlying simulation model

admits other likelihood approximations, regardless of trial-by-trial effect considerations, since a for-

ward pass through a LAN may be speedier. Indeed, we observed substantial speedups in HDDM for

using our LAN method to the full-DDM, for which numerical methods were previously needed to

integrate over inter-trial variability.

We emphasize that our test bed application to SSMs does not delimit the scope of application of

LANs. Neither are reasonable architectures restricted to MLPs and CNNs (see Lueckmann et al.,

2019; Papamakarios et al., 2019b for related approaches that use completely different architec-

tures). Models with high-dimensional (roughly gt15) parameter spaces may present a challenge for

our global amortization approach due to the curse of dimensionality. Further, models with discrete

parameters of high cardinality may equally present a given network with training difficulties. In such

cases, other methods may be preferred over likelihood amortization generally (e.g., Acerbi, 2020);

given that this is an open and active area of research, we can expect surprising developments that

may in fact turn the tide again in the near future.

Despite some constraints, this still leaves a vast array of models in reach for LANs, of which our

test bed can be considered only a small beginning.

By focusing on LANs, our approach affords the flexibility of networks serving as plug-ins for hier-

archical or arbitrarily complex model extensions. In particular, the networks can be immediately

transferred, without further training, to arbitrary inference scenarios in which researchers may be

interested in evaluating links between neural measures and model parameters, and to compare vari-

ous assumptions about whether parameters are pooled and split across experimental manipulations.

This flexibility in turn sets our methods apart from other amortization and NN-based ABC

approaches offered in the statistics, machine learning, and computational neuroscience literature

(Papamakarios and Murray, 2016; Papamakarios et al., 2019a; Gonçalves et al., 2020;

Lueckmann et al., 2019; Radev et al., 2020b), while staying conceptually extremely simple. Instead

of focusing on extremely fast inference for very specialized inference scenarios, our approach

focuses on achieving speedy inference while not implicitly compromising modeling flexibility through

amortization step.

Closest to our approach is the work of Lueckmann et al., 2019, and Papamakarios et al.,

2019b, both of which attempt to target the likelihood with a neural density estimator. While flexible,

both approaches imply the usage of summary statistics, instead of a focus on trial-wise likelihood

functions. Our work can be considered a simple alternative with explicit focus on trial-wise

likelihoods.

Besides deep learning-based approaches, another major machine learning-inspired branch of the

ABC literature concerns log-likelihood and posterior approximations via Gaussian process surrogates

(GPSs) (Meeds and Welling, 2014; Järvenpää et al., 2018; Acerbi, 2020). A major benefit of GPSs

lies in the ability for clever training data selection via active learning since such GPSs allow uncer-

tainty quantification out of the box, which in turn can be utilized for the purpose of targeting high-

uncertainty regions in parameter space. GPS-based computations scale with the number of training

examples, however, which make them much more suitable for minimizing the computational cost for

a given inference scenario than facilitating global amortization as we suggest in this paper (for which

one usually need larger sets of training data than can traditionally be handled efficiently by GPS).

Again when our approach is applicable, it will offer vastly greater flexibility once a LAN is trained.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 22 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


Limitations and future work
There are several limitations of the methods presented in this paper, which we hope to address in

future work. While allowing for great flexibility, the MLP approach suffers from the drawback that

we do not enforce (or exploit) the constraint that ‘̂ð�jxÞ is a valid probability distribution, and hence

the networks have to learn this constraint implicitly and approximately. Enforcing this constraint has

the potential to improve estimation of tail probabilities (a known issue for KDE approaches to ABC

more generally; Turner et al., 2015).

The CNN encapsulation exploits the fact that
R

X ‘̂ð�jxÞdx ¼ 1, however, makes estimation of trial-

by-trial effects more resource hungry. We plan to investigate the potential of the CNN for trial-by-

trial estimation in future research.

A potential solution that combines the strengths of both the CNN and MLP methods is to utilize

mixture density networks to encapsulate the likelihood functions. We are currently exploring this

avenue. Mixture density networks have been successfully applied in the context of ABC

(Papamakarios and Murray, 2016); however, training can be unstable without extra care (Guil-

laumes, 2017). Similarly, invertible flows (Rezende and Mohamed, 2015) and/or mixture density

networks Bishop, 1994 may be used to learn likelihood functions (Papamakarios et al., 2019b;

Lueckmann et al., 2019); however, the philosophy remains focused on distributions of summary sta-

tistics for single datasets. While impressive improvements have materialized at the intersection of

ABC and deep learning methods (Papamakarios et al., 2019a; Greenberg et al., 2019;

Gonçalves et al., 2020) (showing some success with posterior amortization for models up to 30

parameters, but restricted to a local region of high posterior density in the resulting parameter

space), generally less attention has been paid to amortization methods that are not only of case-spe-

cific efficiency but sufficiently modular to serve a large variety of inference scenarios (e.g., Figure 10).

This is an important gap that we believe the popularization of the powerful ABC framework in the

domain of experimental science hinges upon. A second and short-term avenue for future work is the

incorporation of our presented methods into the HDDM Python toolbox (Wiecki et al., 2013) to

extend its capabilities to a larger variety of SSMs. Initial work in this direction has been completed,

the alpha version of the extension being available in the form of a tutorial at https://github.com/

lnccbrown/lans/tree/master/hddmnn_tutorial.

Our current training pipeline can be further optimized on two fronts. First, no attempt was made

to minimize the size of the network needed to reliably approximate likelihood functions so as to fur-

ther improve computational speed. Second, little attempt was made to optimize the amount of

training provided to networks. For the models explored here, we found it sufficient to simply train

the networks for a very large number of simulated datapoints such that interpolation across the man-

ifold was possible. However, as model complexity increases, it would be useful to obtain a measure

of the networks’ uncertainty over likelihood estimates for any given parameter vector. Such uncer-

tainty estimates would be beneficial for multiple reasons. One such benefit would be to provide a

handle on the reliability of sampling, given the parameter region. Moreover, such uncertainty esti-

mates could be used to guide the online generation of training data to train the networks in regions

with high uncertainty. At the intersection of ABC and NNs, active learning has been explored via

uncertainty estimates based on network ensembles (Lueckmann et al., 2019). We plan to addition-

ally explore the use of Bayesian NNs, which provide uncertainty over their weights, for this purpose

(Neal, 1995).

One more general shortcoming of our methods is the reliance on empirical likelihoods for train-

ing, which in turn are based on a fixed number of samples across parameter vectors, just as the PDA

method proposed by Turner et al., 2015. Recently, this approach has been criticized fundamentally

on grounds of producing bias in the generated KDE-based likelihood estimates (van Opheusden

et al., 2020). A reduction of the approximate likelihood problem to one of inverse binomial sam-

pling was proposed (van Opheusden et al., 2020), which will generate unbiased likelihood esti-

mates. To address this concern, we will investigate adaptive strategies for the selection of the

simulations count n. We however highlight two points here that aim to put the promise of unbiased

likelihoods in perspective. First, our networks add interpolation to the actual estimation of a likeli-

hood. Likelihoods close in parameter space therefore share information that translates into an effec-

tively higher simulation count than the 100k chosen to construct each empirical likelihood used for

training. Quantifying this benefit precisely we leave for future research; however, we suspect, as

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 23 of 39

Tools and resources Neuroscience

https://github.com/lnccbrown/lans/tree/master/hddmnn_tutorial
https://github.com/lnccbrown/lans/tree/master/hddmnn_tutorial
https://doi.org/10.7554/eLife.65074


suggested by Figure 4, that it may be substantial. Second, while we generally acknowledge that

bias in the tails remains somewhat of an issue in our approach, resolution is at best partial even in

the proposed methods of van Opheusden et al., 2020. For the estimation of parameters for which

a given datapoint is extremely unlikely (i.e., the data is generally unlikely under the model), the

authors suggest to threshold the simulation count so that their algorithm is guaranteed to stop. This

effectively amounts to explicitly allowing for bias again. As another alternative, the authors suggest

to introduce a lapse rate in the generative model, which the LAN approach can accommodate as

well. However, the introduction of a lapse rate does not deal with tail events directly either, but

rather assumes that tail events are unrelated to the process of interest. This in turn will render a

lower but fixed number of simulations N feasible for training LANs as well. This is notwithstanding

the desirable minimization of simulation times even for high likelihood events, especially when trial-

wise simulations are in fact necessary (which tends to be in cases where amortization with LANs is a

priori not a good computational strategy to begin with). Hence, although the inverse binomial sam-

pling approach is elegant conceptually, excessive computation remains an issue when we need accu-

rate estimates of the probability of actual tail events. Generally, however, we maintain it is desirable

and important for future work to make use of the otherwise great potential of adaptive sampling to

minimize total computational cost.

Furthermore, we relegate to future research proper exploitation of the fact that LANs are by

design differentiable in the parameters. We are currently working on an integration of LANs with

Tensorflow probability (Abadi et al., 2016), utilizing autograd to switch our MCMC method to the

gradient-based NUTS sampler (Hoffman and Gelman, 2014). The main benefits of this sampler are

robust mixing behavior, tolerance for high levels of correlations in the parameter space, while at the

same time maintaining the ability to sample from high-dimensional posteriors. High level of correla-

tions in posteriors is traditionally an Achilles’ heel of the otherwise robust coordinate-wise slice sam-

plers. DEMCMC and iterated Importance samplers are somewhat more robust in this regards;

however, both may not scale efficiently to high-dimensional problems. Robustness concerns aside,

initial numerical results additionally show some promising further speedups.

Another important branch for future work lies in the utilization of LANs for model comparison. Ini-

tial results are promising in that we obtained satisfactory model recovery using the deviance infor-

mation criterion (DIC) used for model selection in the standard HDDM package. However, this issue

demands much more attention to evaluate other model selection metrics and extensive further

numerical experiments, which we relegate to future work.

Lastly, in contrast to the importance sampler driving the posterior inference for the CNN, we

believe that some of the performance deficiencies of the MLP are the result of our MCs not having

converged to the target distribution. A common problem seems to be that the sampler hits the

bounds of the constrained parameter space and does not recover from that. As shown in Figures 7

and 8, even ostensibly bad parameter recoveries follow a conceptual coherence and lead to good

posterior predictive performance. We therefore may be underreporting the performance of the MLP

and plan to test the method on an even more comprehensive suite of MCMC samplers, moreover

including thus far neglected potential for reparameterization.

Materials and methods

Test beds
General information
All models were simulated using the Euler–Maruyama method, which for some fixed discretization

step size Dt evolves the process as

XtþDt ¼ Xt þ aðt;xÞDtþ bðt;xÞDB

where the definition of DB depends on the noise process. For simple Brownian motion, this trans-

lates into Gaussian displacements, specifically DB~Nð0;DtÞ, which is commonly denoted as dW.

More generally, the noise need not be Gaussian, and indeed we later apply our methods to the Levy

flight model for which the noise process is an alpha stable distribution, denoted as La s.t.

DLa ~ðDtÞ
1

aLða;0;1;0Þ.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 24 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


The models chosen for our test bed systematically vary different aspects of complexity, as illus-

trated in Figure 3. The DDM provides a benchmark and a sanity check since we can compute its like-

lihood analytically. The full-DDM provides us with a model for which analytical computations are still

based on the analytical likelihood of the DDM; however, evaluation is slowed by the necessity for

numerical integration. This forms a first test for the speed of evaluation of our methods. For the Orn-

stein–Uhlenbeck, Levy, Race, and DDM with parameterized boundary models, we cannot base our

calculations on an analytical likelihood, but we can nevertheless perform parameter recovery and

compare to other methods that utilize empirical likelihoods. The Ornstein–Uhlenbeck model adds

state-dependent behavior to the diffusion while the Levy model adds variation in the noise process

and the Race models expand the output dimensions according to the number of choices.

Full-DDM
The full-DDM maintains the same specification for the driving SDE, but also allows for trial-to-trial

variability in three parameters (Ratcliff and McKoon, 2008). We allow the drift rate v to vary trial by

trial; according to a normal distribution, v~Nð0;svÞ, the nondecision time t to vary according to a

uniform distribution t ~U½��t ; �t � and the starting point w to vary according to a uniform distribu-

tion as well w ~U½��w; �w�. The parameter vector for the full-DDM is then � ¼ ðv; a;w; t ;sv; �t ; �wÞ.
To calculate the FPTD for this model, we can use the analytical likelihood expression from the

DDM. However, we need to use numerical integration to take into account the random parameters

(Wiecki et al., 2013). This inflates execution time by a factor equivalent to the number of executions

needed to compute the numerical integral.

Ornstein–Uhlenbeck model
The Ornstein–Uhlenbeck model introduces a state dependency on the drift rate v. Here,

aðt; xÞ ¼ vþ g � x, where g is an inhibition/excitation parameter. If g<0, it acts as a leak (the particle is

mean reverting). If g>0, the particle accelerates away from the 0 state, as in an attractor model. At

g ¼ 0, we recover the simple DDM process. This leaves us with a parameter vector � ¼ ðv; a;w; t ; gÞ.
The corresponding SDE is defined as

dXtþt ¼ ðvþ g �XtÞdtþ dW; Xt ¼w

This model does not have an analytical likelihood function that can be employed for cheap infer-

ence (Mullowney and Iyengar, 2006). We discuss alternatives, other than our proposed methods,

to simple analytical likelihoods later. For our purposes, approximate inference is necessary for this

model. The Ornstein–Uhlenbeck model is usually defined only for g<0; our parameter space makes it

strictly speaking a relaxation.

Levy flights
The Levy flight (Wieschen et al., 2020; Reynolds and Rhodes, 2009) model dispenses with the

Gaussian noise assumption in that the incremental noise process instead follows an alpha-stable dis-

tribution La. Specifically, we consider distributions Lða; 0; 1; 0Þ that are centered at 0, symmetric,

and have unitary scale parameter. These distributions have a first moment for a 2 ð1; 2�, but infinite
variance for a<2. An important special case is a ¼ 2, where Lð2; 0; 1; 0Þ ¼ N ð0; 2Þ. The parameter vec-

tor for this process is � ¼ ðv; a;w; t ;aÞ. We fix aðt; xÞ ¼ v and bðt; xÞ ¼ 1. The SDE is defined as

dXtþt ¼ vdtþ dLa; Xt ¼w

The Levy flight is a flexible model used across disciplines for some of its theoretical optimality

properties (Wosniack et al., 2017) despite not possessing closed-form FPTDs. We add it here as it

is different from the other models under consideration; in principle, it could also capture decision-

making scenarios in which there are sudden jumps in the accumulation of evidence (e.g., due to

internal changes in attention). Its behavior is shaped by altering the properties of the incremental

noise process directly.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 25 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


Parameterized collapsing decision bounds
We will consider variations of the DDM in which the decision boundary is not fixed but is time-vary-

ing (represented by a boundary parameter a with a parameterized boundary function hðt; �hÞ). In
such cases, we augment the parameter vector q with the set �h and drop a. Such variations are opti-

mal in a variety of settings (e.g., when there are response deadlines, Frazier and Angela, 2008, or

distributions of trial types with different difficulties, Malhotra et al., 2018; Palestro et al., 2018),

and also better reflect the underlying dynamics of decision bounds within biologically inspired neural

models (O’Reilly and Frank, 2006; Ratcliff and Frank, 2012; Wiecki and Frank, 2013). The bound-

ary functions considered in the following are the Weibull bound (Weibull),

bWBðt;a;a;bÞ ¼ a � exp � t

b

a
� �

and the linear collapse bound (LC),

bLCðt;a; �Þ ¼ a� t � sinð�Þ
cosð�Þ

� �

Race models: N > 2
The Race model departs from previous model formulations in that it has a particle for each of N

choice options instead of a single particle representing the evidence for one option over another.

The function fEi
ðt; �Þ now represents the probability of particle i to be the first of all particle to cross

the bound a at time t. We consider race models for which the drift and starting point can vary for

each particle separately. Treating the boundary as a constant a leaves us with a parameter vector

� ¼ ðv1; :::; vn; a;w1; :::;wn; ndtÞ. The SDE is defined for each particle separately (or in vector form) as

dXi
tþt ¼ vi dtþ dW; X

i
0
¼ :::¼X

i
t ¼wi

These models represent the most straightforward extension to a multichoice scenario.

Multilayered perceptron
Network specifics
We apply the same simple architecture consistently across all example contexts in this paper. Our

networks have three hidden layers, fL1; L2; L3g, of sizes f100; 100; 120g, each using tanhð:Þ activation

functions. The output layer consists of a single node with linear activation function.

Training process
Training hyperparameters
The network is trained via stochastic back-propagation using the Adam (Kingma and Ba, 2014) opti-

mization algorithm. As a loss function, we utilize the Huber loss (Huber, 1992) defined as

f ðjy� ŷjÞ ¼ 0:5 � jy� ŷj2 if jy� ŷj � 1

0:5þjy� ŷj if jy� ŷj>1

�

Training data
We used the following approach to generate training data across all examples shown below.

First, we generate 100K simulations from the stochastic simulator (or model M) for each of 1.5 M

parameter configurations. Since for the examples we consider the stochasticity underlying the mod-

els are in the form of a SDE, all simulations were conducted using the simple Euler–Maruyama

method with timesteps dt of 0.001 s. The maximum time we allowed the algorithms to run was 20 s,

much more than necessary for a normal application of the simulator models under consideration.

Based on these simulations, we then generate empirical likelihood functions using KDEs

(Turner et al., 2015). KDEs use atomic datapoints fx0; :::; xNg and reformulate them into a continuous

probability distribution f ðy; xÞ ¼ PN
i Kðy�x

h
Þ , where we choose Kð:Þ as a standard Gaussian kernel

f ðxÞ ¼ 1
ffiffiffiffi

2p
p exp� x2

2
, and h, the so-called bandwidth parameter, is set by utilizing Silverman’s rule of

thumb (Silverman, 1986). Where the data made Silverman’s rule inapplicable, we set a lower bound

on h as 10�3. Additionally, we follow Charpentier and Flachaire, 2015 in transforming our KDE to

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 26 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


accommodate positive random variables with skewed distributions (in adherence to the properties

of data resulting from the response time models forming our examples).

To ensure that the networks accurately learn likelihoods across a range of plausible data, for each

parameter set we trained the networks by sampling 1000 datapoints from a mixture distribution with

three components (mixture probabilities respectively f0:8; 0:1; 0:1g). The first component draws sam-

ples directly from the KDE distributions. The second component is uniform on ½0s; 20s�, and the third

component samples uniformly on ½�1s; 0s�. The aim of this mixture is to allow the network to see, for

each parameter setting of the stochastic simulator, training examples of three kinds: (1) ‘Where it

matters’, that is, where the bulk of the probability mass is given in the generative model. (2) Regions

of low probability to inform the likelihood estimate in those regions (i.e., to prevent distortion of

likelihood estimates for datapoints that are unlikely to be generated under the model). (3) Examples

on the negative real line to ensure that it is learned to consistently drive likelihood predictions to 0

for datapoints close to 0.

The supervision signal for training has two components. For positive datapoints (reaction times in

our examples), we evaluate the log-likelihood according to our KDE. Likelihoods of negative data-

points were set to an arbitrary low value of 10�29 (a log-likelihood of �66.79). 10�29 also served as

the lower bounds on likelihood evaluations. While this constrains our accuracy on the very tails of

distributions, extremely low evaluations unduly affect the training procedure. Since the generation

of training data can easily be parallelized across machines, we simply front-loaded the data genera-

tion accordingly. We refer back to Figure 2 for a conceptual overview.

This procedure yields 1.5B labeled training examples on which we train the network. We applied

early stopping upon a lack of loss improvement for more than five epochs of training. All models

were implemented using Tensorflow (Abadi et al., 2016).

We note here that this amount of training examples is likely an overshoot by potentially one or

more orders of magnitude. We did not systematically test for the minimum amount of training exam-

ples needed to train the networks. Minimal experiments we ran showed that roughly one-tenth of

the training examples lead to very much equivalent training results. Systematic minimization of the

training data is left for future numerical experiments since we do not deem it essential for purposes

of a proof of concept.

Sampling algorithms
Once trained, we can now run standard MCMC schemes, where, instead of an analytical likelihood,

we evaluate fwðx; �Þ as a forward pass through the MLP. Figure 1B schematically illustrates this

approach (following the green arrows) and contrasts with currently applied methods (red arrows).

We report multiple so-conducted parameter recovery experiments in the ’Results’ section and vali-

date the approach first with models with known analytical likelihood functions.

Regarding sampling, we utilized two MCMC algorithms, which showed generally very similar

results. In contrast to the importance sampling algorithm used for the CNN (described below),

MCMC methods are known for having trouble with multimodal posteriors. Running our experiments

across algorithms was a safeguard against incorporating sampler-specific deficiencies into our analy-

sis. We however acknowledge that even more extensive experiments may be necessary for compre-

hensive guarantees. First, having an ultimate implementation of our method into the HDDM Python

toolbox (Wiecki et al., 2013) in view, we use slice sampling (as used by the toolbox), specifically the

step-out procedure following Neal, 2003. Second, we used a custom implementation of the

DEMCMC algorithm (Braak, 2006), known for being robust in higher dimensional parameter spaces.

Our DEMCMC implementation adds reflecting boundaries to counteract problematic behavior when

the sampler attempts to move beyond the parameter space, which is truncated by the (broad) range

of parameters in which the MLP was trained. The number of chains we use is consistently determined

as 5 � j�j, five times the number of parameters of a given stochastic model. Samplers were initialized

by using slight perturbations of five maximum likelihood estimates and computed via differential

evolution optimization (Storn and Price, 1997; Virtanen et al., 2020). Since results were very similar

across samplers, we restrict ourselves mostly to reporting results derived from the slice sampler,

given that this sampler forms the back-end of the HDDM user interface we envision. Implementa-

tions of the MLP method, the samplers we used, as well as the training pipeline can be found at

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 27 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


https://github.com/lnccbrown/lans/tree/master/al-mlp (copy archived at swh:1:rev:

e3369b9df138c75d0e490be0c48c53ded3e3a1d6); Fengler, 2021.

Additional notes
Note that we restricted parameter recovery for the MLP to datasets that distributed at least 5% of

choices to the less frequently chosen option. This modest filtering accommodates the fact that such

datasets were also excluded form the training data for the MLP model since they (1) present difficul-

ties for the KDE estimator and (2) lead to generally less stable parameter estimates (i.e., it is not

advisable to use diffusion models when choices are deterministic).

Convolutional neural network
Network specifics
The CNN takes as an input a parameter vector q, giving as output a discrete probability distribution

over the relevant dataspace. In the context of our examples below, the output space is of dimen-

sions RNc �RNd , where Nc is the number of relevant choice alternatives, and Nd is the number of bins

for the reaction time for each choice (Nd ¼ 512 for all examples below). The network architecture

consists of a sequence of three fully connected upsampling layers, fLFC
1
; LFC

2
; LFC

3
g, of respectively

f64; 256; 1024g nodes. These are followed by a sequence of three convolutional layers fLC
1
; LC

2
; LC

3
g

with 1� 5 kernels, and a final fully connected layer with softmax activation. The network size was not

minimized through architecture search, which, along with other potential further speed improve-

ments, we leave for future research.

Training process
For the CNN, we use 100K simulations from the stochastic simulator for each of 3 M parameter vec-

tors and bin the simulation outcomes as normalized counts into RNc �RNd slots respectively (looking

ahead to our examples, Nc concerns the number of choice outcomes, and Nd the number of bins into

which the reaction time outcomes are split for a given simulator). The resultant relative frequency

histograms (empirical likelihood functions) ‘empiricalð�jxÞ 8� 2 Q; 8x 2 X , then serve as the target labels

during training, with the corresponding parameters q serving as feature vectors. For a given parame-

ter vector q, the CNN gives out a histogram ‘̂fð�jxÞ, where f are the network parameters. The net-

work is then trained by minimizing the KL divergence between observed and generated histograms

Dð‘̂ð�jxÞk‘empiricalð�jxÞÞ ¼
Pc

i¼0

Pd
j¼0

‘̂ð�jxijÞ log ‘̂ð�jxijÞ
‘empiricalð�jxijÞ

h i

Training Dð‘̂ð�jxÞk‘empiricalð�jxÞÞ is not the only option. We note that it would have been a valid

choice to train on Dð‘empiricalð�jxÞk‘̂ð�jxÞÞ (Minka, 2013) or the symmetrized Kullback–Leibler diver-

gence instead. Training results, however, were good enough for our present purposes to leave a

precise performance comparison across those loss functions for future research, leaving room for fur-

ther improvements.

As for the MLP, we use the Adam optimizer (Kingma and Ba, 2014) and implemented the net-

work in Tensorflow (Abadi et al., 2016).

Sampling algorithm
One benefit of using the CNN lies in the enhanced potential for parallel processing across large

number of parameter configurations and datapoints. To fully exploit this capability, instead of run-

ning a (sequential) MCMC algorithm for our parameter recovery studies, we use iterated importance

sampling, which can be done in parallel. Specifically, we use adaptive importance sampling based

on mixtures of t-distributions, following a slightly adjusted version of the suggestions in

Cappé et al., 2008; Wraith et al., 2009.

While importance sampling is well established, for clarity and the setting in which we apply it, we

explain some of the details here. Importance sampling algorithms are driven by the basic equality

Z

f ð�Þdx¼ f ð�Þ
gð�Þgð�Þd�

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 28 of 39

Tools and resources Neuroscience

https://github.com/lnccbrown/lans/tree/master/al-mlp
https://archive.softwareheritage.org/swh:1:dir:985b12b70c56af4d31f0674d3317a4aeaac1f419;origin=https://github.com/lnccbrown/lans/;visit=swh:1:snp:5eaab2fe7281d7891f747744994023109d07c00c;anchor=swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6
https://archive.softwareheritage.org/swh:1:dir:985b12b70c56af4d31f0674d3317a4aeaac1f419;origin=https://github.com/lnccbrown/lans/;visit=swh:1:snp:5eaab2fe7281d7891f747744994023109d07c00c;anchor=swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6
https://doi.org/10.7554/eLife.65074


which holds for any pair of probability distributions such that gð�Þ>0, where f ð�Þ>0. f ð�Þ is our poste-
rior distribution, and gð�Þ is the proposal distribution. We now sample N tuples q according to gð�Þ
and assign each �i an importance weight wi ¼ f ð�iÞ

gð�iÞ.

To get samples from the posterior distribution, we sample with replacement the q from the set

f�0; :::; �ng, with probabilities assigned as the normalized weights f ~w0; :::; ~wng. We note that impor-

tance sampling is exact for N ! ¥. However for finite N, the performance is strongly dependent on

the quality of the proposal distribution gð:Þ. A bad match of f ð:Þ and gð:Þ leads to high variance in the

importance weights, which drives down performance of the algorithm, as commonly measured by

the effective sample size (Liu, 2008)

^ESS¼ 1
PN

n¼1
�w2
n

Iterated importance sampling uses consecutive importance sampling rounds to improve the pro-

posal distribution gð:Þ. A final importance sampling round is used to get the importance sample we

use as our posterior sample. Specifically, we start with a mixture of t-distributions g0ð:Þ, where M is

the number of mixture components. Each component of g0ð:Þ is centered at the MAP according to a

optimization run (again we used differential evolution). The component-covariance matrix is esti-

mated by a numerical approximation of the Hessian at the respective MAP. Each round i, based on

the importance sample fx;wgi, we update the proposal distribution (to a new mixture of t-distribu-

tions) using the update equations derived in Cappé et al., 2008.

As suggested by Cappé et al., 2008, convergence is assessed using the normalized perplexity

statistic (the exponentiated Shannon entropy of the importance weights). For run i, this is computed

as exp
Hk;N

=N , where Hk;N ¼ �PN
i¼1

�wk;i log �wk;i.

To help convergence, we depart from the basic setup suggested in Cappé et al., 2008 in the fol-

lowing way. We apply an annealing factor gk ¼ max 2z�k; 1 z 2 f1; 2; 4; :::; g, so that for iteration k of

the importance sampler we are operating on the target f ðxÞ 1

gk . Smoothing the target during the first

iterations helps with successfully adjusting the proposal distribution gð:Þ. Figure 2 visualizes the

CNN approach. Again, we emphasize that more numerical experiments using a larger variety of sam-

pling algorithms are desirable, but are out of the scope for this paper. Implementations of the CNN

method, the samplers we used, as well as the training pipeline can be found at https://github.com/

lnccbrown/lans/tree/master/al-cnn.

Strengths and weaknesses
In this section, we clarify a few strengths and weaknesses of the two presented methods and their

respective use cases. First, representing the likelihood function datapoint-wise as an MLP output, or

globally via the CNN output histogram, affects the potential for parallelization. As exploited by the

choice of sampler, the CNN is very amenable to parallelization across parameters since inputs are

parameter tuples only. Since the output is represented as a global likelihood histogram, the dataset

likelihood is computed as the summation of the elementwise multiplied of bin-log-likelihoods, with a

correspondingly binned dataset (counts over bins). This has the highly desirable property of making

evaluation cost (time) independent of dataset size. While the MLP in principle allows parallel proc-

essing of inputs, the datapoint-wise representation of input values (f�; xg) makes the potential for

cross-parameter parallelization dependent on dataset sizes. While a single evaluation of the CNN is

more costly, cross-parameter batch processing can make it preferable to the MLP. Second, the CNN

has an advantage during training, where the representation of the output as a softmax layer, and

corresponding training via minimization of the KL divergence, provides a more robust training signal

to ensure probability distributions compared to the purely local one in which the MLP learns a scalar

likelihood output as a simple regression problem. Third, and conversely, the MLP formulation is

more natural for trial-wise parameter estimates since the histogram representations may be redun-

dant in case datapoints are in fact evaluated one by one (given datapoint-wise parameters induced

by trial-by-trial effects on parameter vectors). Give equivalent success in learning likelihoods, we see

potential for speedup when using the pointwise approach in this case. In principle, both approaches

however allow one to estimate the impact of trial-wise regressors on model parameters during infer-

ence, without further training. It is, for example, common in the cognitive neuroscience literature to

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 29 of 39

Tools and resources Neuroscience

https://github.com/lnccbrown/lans/tree/master/al-cnn
https://github.com/lnccbrown/lans/tree/master/al-cnn
https://doi.org/10.7554/eLife.65074


allow the cross-trial time-course of EEG, fMRI, or spike signals to be modeled as a trial-by-trial

regressor on model parameters of, for example, DDMs (Wiecki et al., 2013; Frank et al., 2015;

Cavanagh et al., 2011; Herz et al., 2016; Pedersen and Frank, 2020). Another relevant example is

the incorporation of latent learning dynamics. If a subject’s choice behavior is driven by reinforce-

ment learning across stimuli, we can translate this into trial-by-trial effects on the parameter vectors

of a generative process model (Pedersen and Frank, 2020). These applications are implicitly

enabled at no extra cost with the MLP method, while the trial-by-trial split multiplies the necessary

computations for the CNN by the number N of datapoints when compared to scenarios that only

need dataset-wise parameters. We stress again, however, that in general both the CNN and the

MLP can directly be used for hierarchical inference scenarios. The preceding discussion pertains to

further potential for optimization and relative strengths, not categorical potential for application to a

given scenario. With respect to the latter, both methods are essentially equal.

Acknowledgements
This work was funded by NIMH grants P50 MH 119467-01 and R01 MH084840-08A1. We thank

Michael Shvartsman, Matthew Nassar, and Thomas Serre for helpful comments and discussion

regarding the earlier versions of this manuscript. Furthermore, we thank Mads Lund Pederson for

help with integrating our methods into the HDDM Python toolbox. Lastly, we would like to thank the

two reviewers of the manuscript for helpful suggestions, which improved the readability of the

manuscript.

Additional information

Competing interests

Michael J Frank: Senior editor, eLife. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

National Institute of Mental
Health

P50 MH119467-01 Michael J Frank

National Institute of Mental
Health

R01 MH084840-08A1 Michael J Frank

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Alexander Fengler, Conceptualization, Data curation, Software, Formal analysis, Validation, Investi-

gation, Visualization, Methodology, Writing - original draft, Writing - review and editing; Lakshmi N

Govindarajan, Conceptualization, Data curation, Software, Formal analysis, Investigation, Visualiza-

tion, Methodology, Writing - review and editing; Tony Chen, Software, Investigation; Michael J

Frank, Conceptualization, Resources, Software, Supervision, Funding acquisition, Validation, Writing

- original draft, Writing - review and editing

Author ORCIDs

Alexander Fengler https://orcid.org/0000-0002-0104-3905

Lakshmi N Govindarajan https://orcid.org/0000-0002-0936-2919

Michael J Frank https://orcid.org/0000-0001-8451-0523

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.65074.sa1

Author response https://doi.org/10.7554/eLife.65074.sa2

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 30 of 39

Tools and resources Neuroscience

https://orcid.org/0000-0002-0104-3905
https://orcid.org/0000-0002-0936-2919
https://orcid.org/0000-0001-8451-0523
https://doi.org/10.7554/eLife.65074.sa1
https://doi.org/10.7554/eLife.65074.sa2
https://doi.org/10.7554/eLife.65074


Additional files
Supplementary files
. Transparent reporting form

Data availability

All code is provided freely and is available at the following links: https://github.com/lnccbrown/lans/

tree/master/hddmnn_tutorial, https://github.com/lnccbrown/lans/tree/master/al-mlp and https://

github.com/lnccbrown/lans/tree/master/al-cnn (copy archived at https://archive.softwareheritage.

org/swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6).

References
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M. 2016.
Tensorflow: a system for large-scale machine learning. 12th USENIX Symposium on Operating SystemsDesign
and Implementation (OSDI 16) 265–283.

Acerbi L. 2020. Variational bayesian monte carlo with noisy likelihoods. Advances in Neural Information
Processing Systems.

Ahn WY, Haines N, Zhang L. 2017. Revealing neurocomputational mechanisms of reinforcement learning and
Decision-Making with the hBayesDM package. Computational Psychiatry 1:24–57. DOI: https://doi.org/10.
1162/CPSY_a_00002, PMID: 29601060

Akeret J, Refregier A, Amara A, Seehars S, Hasner C. 2015. Approximate bayesian computation for forward
modeling in cosmology. Journal of Cosmology and Astroparticle Physics 2015:043. DOI: https://doi.org/10.
1088/1475-7516/2015/08/043

Badre D, Doll BB, Long NM, Frank MJ. 2012. Rostrolateral prefrontal cortex and individual differences in
uncertainty-driven exploration. Neuron 73:595–607. DOI: https://doi.org/10.1016/j.neuron.2011.12.025,
PMID: 22325209

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. 2010. Cython: the best of both worlds.
Computing in Science & Engineering 13:31–39. DOI: https://doi.org/10.1109/MCSE.2010.118

Bishop CM. 1994. Mixture Density Networks: Technical report.
Blei DM, Kucukelbir A, McAuliffe JD. 2017. Variational inference: a review for statisticians. Journal of the
American Statistical Association 112:859–877. DOI: https://doi.org/10.1080/01621459.2017.1285773

Boehm U, Annis J, Frank MJ, Hawkins GE, Heathcote A, Kellen D, Krypotos A-M, Lerche V, Logan GD, Palmeri
TJ, van Ravenzwaaij D, Servant M, Singmann H, Starns JJ, Voss A, Wiecki TV, Matzke D, Wagenmakers E-J.
2018. Estimating across-trial variability parameters of the diffusion decision model: expert advice and
recommendations. Journal of Mathematical Psychology 87:46–75. DOI: https://doi.org/10.1016/j.jmp.2018.09.
004

Braak C. 2006. A markov chain monte carlo version of the genetic algorithm differential evolution: easy bayesian
computing for real parameter spaces. Statistics and Computing 16:239–249. DOI: https://doi.org/10.1007/
s11222-006-8769-1

Cappé O, Douc R, Guillin A, Marin J-M, Robert CP. 2008. Adaptive importance sampling in general mixture
classes. Statistics and Computing 18:447–459. DOI: https://doi.org/10.1007/s11222-008-9059-x

Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, Sherman SJ, Frank MJ. 2011. Subthalamic nucleus
stimulation reverses mediofrontal influence over decision threshold. Nature Neuroscience 14:1462–1467.
DOI: https://doi.org/10.1038/nn.2925, PMID: 21946325

Charpentier A, Flachaire E. 2015. Log-transform kernel density estimation of income distribution. L’actualité
Économique 91:141–159.

Cisek P, Puskas GA, El-Murr S. 2009. Decisions in changing conditions: the urgency-gating model. Journal of
Neuroscience 29:11560–11571. DOI: https://doi.org/10.1523/JNEUROSCI.1844-09.2009, PMID: 19759303

Cranmer K, Brehmer J, Louppe G. 2020. The frontier of simulation-based inference. PNAS 117:30055–30062.
DOI: https://doi.org/10.1073/pnas.1912789117, PMID: 32471948

Daw ND. 2011a. Trial-by-trial data analysis using computational models. Decision Making, Affect, and Learning:
Attention and Performance XXIII.

Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. 2011b. Model-based influences on humans’ choices and
striatal prediction errors. Neuron 69:1204–1215. DOI: https://doi.org/10.1016/j.neuron.2011.02.027,
PMID: 21435563

Diaconis P. 2009. The markov chain monte carlo revolution. Bulletin of the American Mathematical Society 46:
179–205. DOI: https://doi.org/10.1090/S0273-0979-08-01238-X

Doi T, Fan Y, Gold JI, Ding L. 2020. The caudate nucleus contributes causally to decisions that balance reward
and uncertain visual information. eLife 9:e56694. DOI: https://doi.org/10.7554/eLife.56694, PMID: 32568068

Drugowitsch J. 2016. Fast and accurate monte carlo sampling of first-passage times from Wiener Diffusion
models. Scientific Reports 6:20490. DOI: https://doi.org/10.1038/srep20490, PMID: 26864391

Feller W. 1968. An Introduction to Probability Theory and Its Applications. Wiley.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 31 of 39

Tools and resources Neuroscience

https://github.com/lnccbrown/lans/tree/master/hddmnn_tutorial
https://github.com/lnccbrown/lans/tree/master/hddmnn_tutorial
https://github.com/lnccbrown/lans/tree/master/al-mlp
https://github.com/lnccbrown/lans/tree/master/al-cnn
https://github.com/lnccbrown/lans/tree/master/al-cnn
https://archive.softwareheritage.org/swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6
https://archive.softwareheritage.org/swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6
https://doi.org/10.1162/CPSY_a_00002
https://doi.org/10.1162/CPSY_a_00002
http://www.ncbi.nlm.nih.gov/pubmed/29601060
https://doi.org/10.1088/1475-7516/2015/08/043
https://doi.org/10.1088/1475-7516/2015/08/043
https://doi.org/10.1016/j.neuron.2011.12.025
http://www.ncbi.nlm.nih.gov/pubmed/22325209
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1016/j.jmp.2018.09.004
https://doi.org/10.1016/j.jmp.2018.09.004
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-008-9059-x
https://doi.org/10.1038/nn.2925
http://www.ncbi.nlm.nih.gov/pubmed/21946325
https://doi.org/10.1523/JNEUROSCI.1844-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19759303
https://doi.org/10.1073/pnas.1912789117
http://www.ncbi.nlm.nih.gov/pubmed/32471948
https://doi.org/10.1016/j.neuron.2011.02.027
http://www.ncbi.nlm.nih.gov/pubmed/21435563
https://doi.org/10.1090/S0273-0979-08-01238-X
https://doi.org/10.7554/eLife.56694
http://www.ncbi.nlm.nih.gov/pubmed/32568068
https://doi.org/10.1038/srep20490
http://www.ncbi.nlm.nih.gov/pubmed/26864391
https://doi.org/10.7554/eLife.65074


Fengler A. 2021. projectABC. Software Heritage. swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6.
https://archive.softwareheritage.org/swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6

Forstmann BU, Anwander A, Schäfer A, Neumann J, Brown S, Wagenmakers EJ, Bogacz R, Turner R. 2010.
Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. PNAS 107:
15916–15920. DOI: https://doi.org/10.1073/pnas.1004932107, PMID: 20733082

Frank MJ, Samanta J, Moustafa AA, Sherman SJ. 2007. Hold your horses: impulsivity, deep brain stimulation,
and medication in parkinsonism. Science 318:1309–1312. DOI: https://doi.org/10.1126/science.1146157,
PMID: 17962524

Frank MJ, Gagne C, Nyhus E, Masters S, Wiecki TV, Cavanagh JF, Badre D. 2015. fMRI and EEG predictors of
dynamic decision parameters during human reinforcement learning. The Journal of Neuroscience 35:485–494.
DOI: https://doi.org/10.1523/JNEUROSCI.2036-14.2015, PMID: 25589744

Frazier PI, Angela JY. 2008. Sequential hypothesis testing under stochastic deadlines. Advances in Neural
Information Processing Systems 465–472.

Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7:
457–472. DOI: https://doi.org/10.1214/ss/1177011136

Geweke J. 1992. Evaluating the accuracy of sampling-based approaches to the calculations of posterior
moments. Bayesian Statistics 4:641–649.

Gonçalves PJ, Lueckmann JM, Deistler M, Nonnenmacher M, Öcal K, Bassetto G, Chintaluri C, Podlaski WF,
Haddad SA, Vogels TP, Greenberg DS, Macke JH. 2020. Training deep neural density estimators to identify
mechanistic models of neural dynamics. eLife 9:e56261. DOI: https://doi.org/10.7554/eLife.56261, PMID: 32
940606

Greenberg D, Nonnenmacher M, Macke J. 2019. Automatic posterior transformation for Likelihood-Free
inference. International Conference on Machine Learning, PMLR 2404–2414.

Guillaumes AB. 2017. Mixture density networks for distribution and uncertainty estimation. Universitat
Politècnica de Catalunya. Facultat d’Informàtica de Barcelona, PhD thesis.

Gutenkunst RN, Waterfall JJ, Fergal PC, Brown KS, Myers CR, Sethna JP. 2007. Sloppy models and parameter
indeterminancy in systems biology. PLOS Computational Biology 3:30189. DOI: https://doi.org/10.1371/
journal.pcbi.0030189

Gutmann MU, Dutta R, Kaski S, Corander J. 2018. Likelihood-free inference via classification. Statistics and
Computing 28:411–425. DOI: https://doi.org/10.1007/s11222-017-9738-6, PMID: 31997856

Hawkins GE, Forstmann BU, Wagenmakers EJ, Ratcliff R, Brown SD. 2015. Revisiting the evidence for collapsing
boundaries and urgency signals in perceptual decision-making. Journal of Neuroscience 35:2476–2484.
DOI: https://doi.org/10.1523/JNEUROSCI.2410-14.2015, PMID: 25673842

Heathcote A, Lin YS, Reynolds A, Strickland L, Gretton M, Matzke D. 2019. Dynamic models of choice. Behavior
Research Methods 51:961–985. DOI: https://doi.org/10.3758/s13428-018-1067-y, PMID: 29959755

Herz DM, Zavala BA, Bogacz R, Brown P. 2016. Neural correlates of decision thresholds in the human
subthalamic nucleus. Current Biology 26:916–920. DOI: https://doi.org/10.1016/j.cub.2016.01.051, PMID: 26
996501

Hoffman MD, Gelman A. 2014. The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte
carlo. Journal of Machine Learning Research : JMLR 15:1593–1623.

Holmes WR. 2015. A practical guide to the probability density approximation (PDA) with improved
implementation and error characterization. Journal of Mathematical Psychology 68-69:13–24. DOI: https://doi.
org/10.1016/j.jmp.2015.08.006

Huber PJ. 1992. Robust estimation of a location parameter. In: Kotz S, Johnson N. L (Eds). Breakthroughs in
Statistics. Springer. p. 492–518. DOI: https://doi.org/10.1007/978-1-4612-4380-9_35

Huys QJ, Maia TV, Frank MJ. 2016. Computational psychiatry as a bridge from neuroscience to clinical
applications. Nature Neuroscience 19:404–413. DOI: https://doi.org/10.1038/nn.4238, PMID: 26906507

Järvenpää M, Gutmann MU, Vehtari A, Marttinen P. 2018. Gaussian process modelling in approximate bayesian
computation to estimate horizontal gene transfer in Bacteria. The Annals of Applied Statistics 12:2228–2251.
DOI: https://doi.org/10.1214/18-AOAS1150

Järvenpää M, Gutmann MU, Vehtari A, Marttinen P. 2021. Parallel gaussian process surrogate bayesian inference
with noisy likelihood evaluations. Bayesian Analysis 16:147–178. DOI: https://doi.org/10.1214/20-BA1200

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. arXiv. https://arxiv.org/abs/1412.6980.
Krajbich I, Rangel A. 2011. Multialternative drift-diffusion model predicts the relationship between visual
fixations and choice in value-based decisions. PNAS 108:13852–13857. DOI: https://doi.org/10.1073/pnas.
1101328108, PMID: 21808009

Lipton A, Kaushansky V. 2018. On the first hitting time density of an ornstein-uhlenbeck process. arXiv. https://
arxiv.org/abs/1810.02390.

Liu JS. 2008. Monte Carlo Strategies in Scientific Computing. Springer Science & Business Media. DOI: https://
doi.org/10.1007/978-0-387-76371-2

Lueckmann J-M, Bassetto G, Karaletsos T, Macke JH. 2019. Likelihood-free inference with emulator networksIn:.
Symposium on Advances in Approximate Bayesian Inference, PMLR 32–53.

Malhotra G, Leslie DS, Ludwig CJH, Bogacz R. 2018. Time-varying decision boundaries: insights from optimality
analysis. Psychonomic Bulletin & Review 25:971–996. DOI: https://doi.org/10.3758/s13423-017-1340-6, PMID: 2
8730465

Meeds E, Welling M. 2014. Gps-abc: gaussian process surrogate approximate bayesian computation. arXiv.
https://arxiv.org/abs/1401.2838.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 32 of 39

Tools and resources Neuroscience

https://archive.softwareheritage.org/swh:1:rev:e3369b9df138c75d0e490be0c48c53ded3e3a1d6
https://doi.org/10.1073/pnas.1004932107
http://www.ncbi.nlm.nih.gov/pubmed/20733082
https://doi.org/10.1126/science.1146157
http://www.ncbi.nlm.nih.gov/pubmed/17962524
https://doi.org/10.1523/JNEUROSCI.2036-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25589744
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.7554/eLife.56261
http://www.ncbi.nlm.nih.gov/pubmed/32940606
http://www.ncbi.nlm.nih.gov/pubmed/32940606
https://doi.org/10.1371/journal.pcbi.0030189
https://doi.org/10.1371/journal.pcbi.0030189
https://doi.org/10.1007/s11222-017-9738-6
http://www.ncbi.nlm.nih.gov/pubmed/31997856
https://doi.org/10.1523/JNEUROSCI.2410-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25673842
https://doi.org/10.3758/s13428-018-1067-y
http://www.ncbi.nlm.nih.gov/pubmed/29959755
https://doi.org/10.1016/j.cub.2016.01.051
http://www.ncbi.nlm.nih.gov/pubmed/26996501
http://www.ncbi.nlm.nih.gov/pubmed/26996501
https://doi.org/10.1016/j.jmp.2015.08.006
https://doi.org/10.1016/j.jmp.2015.08.006
https://doi.org/10.1007/978-1-4612-4380-9_35
https://doi.org/10.1038/nn.4238
http://www.ncbi.nlm.nih.gov/pubmed/26906507
https://doi.org/10.1214/18-AOAS1150
https://doi.org/10.1214/20-BA1200
https://arxiv.org/abs/1412.6980
https://doi.org/10.1073/pnas.1101328108
https://doi.org/10.1073/pnas.1101328108
http://www.ncbi.nlm.nih.gov/pubmed/21808009
https://arxiv.org/abs/1810.02390
https://arxiv.org/abs/1810.02390
https://doi.org/10.1007/978-0-387-76371-2
https://doi.org/10.1007/978-0-387-76371-2
https://doi.org/10.3758/s13423-017-1340-6
http://www.ncbi.nlm.nih.gov/pubmed/28730465
http://www.ncbi.nlm.nih.gov/pubmed/28730465
https://arxiv.org/abs/1401.2838
https://doi.org/10.7554/eLife.65074


Mestdagh M, Verdonck S, Meers K, Loossens T, Tuerlinckx F. 2019. Prepaid parameter estimation without
likelihoods. PLOS Computational Biology 15:e1007181. DOI: https://doi.org/10.1371/journal.pcbi.1007181,
PMID: 31498789

Minka TP. 2013. Expectation propagation for approximate bayesian inference. arXiv. https://arxiv.org/abs/1301.
2294.

Mullowney P, Iyengar S. 2006. Maximum Likelihood Estimation and Computation for the Ornstein-Uhlenbeck
Process: stat.pitt.

Navarro DJ, Fuss IG. 2009. Fast and accurate calculations for first-passage times in Wiener Diffusion models.
Journal of Mathematical Psychology 53:222–230. DOI: https://doi.org/10.1016/j.jmp.2009.02.003

Neal RM. 1995. Bayesian learning for neural networks. University of Toronto, PhD thesis.
Neal RM. 2003. Slice sampling. The Annals of Statistics 31:705–741. DOI: https://doi.org/10.1214/aos/
1056562461

Nilsson H, Rieskamp J, Wagenmakers E-J. 2011. Hierarchical bayesian parameter estimation for cumulative
prospect theory. Journal of Mathematical Psychology 55:84–93. DOI: https://doi.org/10.1016/j.jmp.2010.08.
006

Niv Y, Edlund JA, Dayan P, O’Doherty JP. 2012. Neural prediction errors reveal a risk-sensitive reinforcement-
learning process in the human brain. Journal of Neuroscience 32:551–562. DOI: https://doi.org/10.1523/
JNEUROSCI.5498-10.2012, PMID: 22238090

O’Reilly RC, Frank MJ. 2006. Making working memory work: a computational model of learning in the prefrontal
cortex and basal ganglia. Neural Computation 18:283–328. DOI: https://doi.org/10.1162/
089976606775093909, PMID: 16378516

Palestro JJ, Weichart E, Sederberg PB, Turner BM. 2018. Some task demands induce collapsing bounds:
evidence from a behavioral analysis. Psychonomic Bulletin & Review 25:1225–1248. DOI: https://doi.org/10.
3758/s13423-018-1479-9, PMID: 29845433

Papamakarios G, Nalisnick E, Rezende DJ, Mohamed S, Lakshminarayanan B. 2019a. Normalizing flows for
probabilistic modeling and inference. arXiv. https://arxiv.org/abs/1912.02762.

Papamakarios G, Sterratt D, Murray I. 2019b. Sequential neural likelihood: fast likelihood-free inference with
autoregressive flows PMLR. The 22nd International Conference on Artificial Intelligence and Statistics 837–848.

Papamakarios G, Murray I. 2016. Fast e-free inference of simulation models with bayesian conditional density
estimation. Advances in Neural Information Processing Systems 1028–1036.

Pedersen ML, Frank MJ. 2020. Simultaneous hierarchical bayesian parameter estimation for reinforcement
learning and drift diffusion models: a tutorial and links to neural data. Computational Brain & Behavior 3:458–
471. DOI: https://doi.org/10.1007/s42113-020-00084-w

Radev ST, Mertens UK, Voss A, Ardizzone L, Kothe U. 2020a. BayesFlow: learning complex stochastic models
with invertible neural networks. IEEE Transactions on Neural Networks and Learning Systems 1–15.
DOI: https://doi.org/10.1109/TNNLS.2020.3042395

Radev ST, Mertens UK, Voss A, Köthe U. 2020b. Towards end-to-end likelihood-free inference with convolutional
neural networks. British Journal of Mathematical and Statistical Psychology 73:23–43. DOI: https://doi.org/10.
1111/bmsp.12159, PMID: 30793299

Rangel A, Camerer C, Montague PR. 2008. A framework for studying the neurobiology of value-based decision
making. Nature Reviews Neuroscience 9:545–556. DOI: https://doi.org/10.1038/nrn2357, PMID: 18545266

Ratcliff R. 1978. A theory of memory retrieval. Psychological Review 85:59–108. DOI: https://doi.org/10.1037/
0033-295X.85.2.59

Ratcliff R, Childers R. 2015. Individual differences and fitting methods for the two-choice diffusion model of
decision making. Decision 2:237–279. DOI: https://doi.org/10.1037/dec0000030

Ratcliff R, Frank MJ. 2012. Reinforcement-based decision making in corticostriatal circuits: mutual constraints by
neurocomputational and diffusion models. Neural Computation 24:1186–1229. DOI: https://doi.org/10.1162/
NECO_a_00270, PMID: 22295983

Ratcliff R, McKoon G. 2008. The diffusion decision model: theory and data for two-choice decision tasks. Neural
Computation 20:873–922. DOI: https://doi.org/10.1162/neco.2008.12-06-420, PMID: 18085991

Reynolds AM, Rhodes CJ. 2009. The lévy flight paradigm: random search patterns and mechanisms. Ecology 90:
877–887. DOI: https://doi.org/10.1890/08-0153.1, PMID: 19449680

Rezende D, Mohamed S. 2015. Variational inference with normalizing flows. International Conference on
Machine Learning, PMLR 1530–1538.

Robert C, Casella G. 2011. A short history of markov chain monte carlo: subjective recollections from incomplete
data. Statistical Science 26:102–115. DOI: https://doi.org/10.1214/10-STS351

Robert C, Casella G. 2013. Monte Carlo Statistical Methods. Springer Science & Business Media. DOI: https://
doi.org/10.1007/978-1-4757-4145-2

Schönberg T, Daw ND, Joel D, O’Doherty JP. 2007. Reinforcement learning signals in the human striatum
distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience 27:
12860–12867. DOI: https://doi.org/10.1523/JNEUROSCI.2496-07.2007, PMID: 18032658

Shinn M, Lam NH, Murray JD. 2020. A flexible framework for simulating and fitting generalized drift-diffusion
models. eLife 9:e56938. DOI: https://doi.org/10.7554/eLife.56938, PMID: 32749218

Silverman BW. 1986. Density Estimation for Statistics and Data Analysis. 26 CRC press. DOI: https://doi.org/10.
1201/9781315140919

Sisson SA, Fan Y, Beaumont M. 2018. Handbook of Approximate Bayesian Computation. CRC Press. DOI: https://
doi.org/10.1201/9781315117195

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 33 of 39

Tools and resources Neuroscience

https://doi.org/10.1371/journal.pcbi.1007181
http://www.ncbi.nlm.nih.gov/pubmed/31498789
https://arxiv.org/abs/1301.2294
https://arxiv.org/abs/1301.2294
https://doi.org/10.1016/j.jmp.2009.02.003
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1016/j.jmp.2010.08.006
https://doi.org/10.1016/j.jmp.2010.08.006
https://doi.org/10.1523/JNEUROSCI.5498-10.2012
https://doi.org/10.1523/JNEUROSCI.5498-10.2012
http://www.ncbi.nlm.nih.gov/pubmed/22238090
https://doi.org/10.1162/089976606775093909
https://doi.org/10.1162/089976606775093909
http://www.ncbi.nlm.nih.gov/pubmed/16378516
https://doi.org/10.3758/s13423-018-1479-9
https://doi.org/10.3758/s13423-018-1479-9
http://www.ncbi.nlm.nih.gov/pubmed/29845433
https://arxiv.org/abs/1912.02762
https://doi.org/10.1007/s42113-020-00084-w
https://doi.org/10.1109/TNNLS.2020.3042395
https://doi.org/10.1111/bmsp.12159
https://doi.org/10.1111/bmsp.12159
http://www.ncbi.nlm.nih.gov/pubmed/30793299
https://doi.org/10.1038/nrn2357
http://www.ncbi.nlm.nih.gov/pubmed/18545266
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/dec0000030
https://doi.org/10.1162/NECO_a_00270
https://doi.org/10.1162/NECO_a_00270
http://www.ncbi.nlm.nih.gov/pubmed/22295983
https://doi.org/10.1162/neco.2008.12-06-420
http://www.ncbi.nlm.nih.gov/pubmed/18085991
https://doi.org/10.1890/08-0153.1
http://www.ncbi.nlm.nih.gov/pubmed/19449680
https://doi.org/10.1214/10-STS351
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18032658
https://doi.org/10.7554/eLife.56938
http://www.ncbi.nlm.nih.gov/pubmed/32749218
https://doi.org/10.1201/9781315140919
https://doi.org/10.1201/9781315140919
https://doi.org/10.1201/9781315117195
https://doi.org/10.1201/9781315117195
https://doi.org/10.7554/eLife.65074


Storn R, Price K. 1997. Differential evolution–a simple and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization 11:341–359. DOI: https://doi.org/10.1023/A:
1008202821328

Turner BM, van Maanen L, Forstmann BU. 2015. Informing cognitive abstractions through neuroimaging: the
neural drift diffusion model. Psychological Review 122:312–336. DOI: https://doi.org/10.1037/a0038894,
PMID: 25844875

Turner BM, Sederberg PB. 2014. A generalized, likelihood-free method for posterior estimation. Psychonomic
Bulletin & Review 21:227–250. DOI: https://doi.org/10.3758/s13423-013-0530-0, PMID: 24258272

Turner BM, Van Zandt T. 2018. Approximating bayesian inference through model simulation. Trends in Cognitive
Sciences 22:826–840. DOI: https://doi.org/10.1016/j.tics.2018.06.003, PMID: 30093313

Usher M, McClelland JL. 2001. The time course of perceptual choice: the leaky, competing accumulator model.
Psychological Review 108:550–592. DOI: https://doi.org/10.1037/0033-295X.108.3.550, PMID: 11488378

van Opheusden B, Acerbi L, Ma WJ. 2020. Unbiased and efficient log-likelihood estimation with inverse binomial
sampling. PLOS Computational Biology 16:e1008483. DOI: https://doi.org/10.1371/journal.pcbi.1008483,
PMID: 33362195

Vandekerckhove J, Tuerlinckx F, Lee MD. 2011. Hierarchical diffusion models for two-choice response times.
Psychological Methods 16:44–62. DOI: https://doi.org/10.1037/a0021765, PMID: 21299302

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser
W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,
Carey CJ, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods
17:261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2, PMID: 32015543

Wiecki TV, Sofer I, Frank MJ. 2013. HDDM: hierarchical bayesian estimation of the Drift-Diffusion model in
Python. Frontiers in Neuroinformatics 7:14. DOI: https://doi.org/10.3389/fninf.2013.00014, PMID: 23935581

Wiecki TV, Frank MJ. 2013. A computational model of inhibitory control in frontal cortex and basal ganglia.
Psychological Review 120:329–355. DOI: https://doi.org/10.1037/a0031542, PMID: 23586447

Wieschen EM, Voss A, Radev S. 2020. Jumping to conclusion? A lévy flight model of decision making. The
Quantitative Methods for Psychology 16:120–132. DOI: https://doi.org/10.20982/tqmp.16.2.p120

Wilson RC, Collins AG. 2019. Ten simple rules for the computational modeling of behavioral data. eLife 8:
e49547. DOI: https://doi.org/10.7554/eLife.49547, PMID: 31769410

Wosniack ME, Santos MC, Raposo EP, Viswanathan GM, da Luz MGE. 2017. The evolutionary origins of lévy walk
foraging. PLOS Computational Biology 13:e1005774. DOI: https://doi.org/10.1371/journal.pcbi.1005774,
PMID: 28972973

Wraith D, Kilbinger M, Benabed K, Cappé O, Cardoso J-F, Fort G, Prunet S, Robert CP. 2009. Estimation of
cosmological parameters using adaptive importance sampling. Physical Review D 80:023507. DOI: https://doi.
org/10.1103/PhysRevD.80.023507

Yartsev MM, Hanks TD, Yoon AM, Brody CD. 2018. Causal contribution and dynamical encoding in the striatum
during evidence accumulation. eLife 7:e34929. DOI: https://doi.org/10.7554/eLife.34929, PMID: 30141773

Zajkowski WK, Kossut M, Wilson RC. 2017. A causal role for right frontopolar cortex in directed, but not
random, exploration. eLife 6:e27430. DOI: https://doi.org/10.7554/eLife.27430, PMID: 28914605

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 34 of 39

Tools and resources Neuroscience

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1037/a0038894
http://www.ncbi.nlm.nih.gov/pubmed/25844875
https://doi.org/10.3758/s13423-013-0530-0
http://www.ncbi.nlm.nih.gov/pubmed/24258272
https://doi.org/10.1016/j.tics.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/30093313
https://doi.org/10.1037/0033-295X.108.3.550
http://www.ncbi.nlm.nih.gov/pubmed/11488378
https://doi.org/10.1371/journal.pcbi.1008483
http://www.ncbi.nlm.nih.gov/pubmed/33362195
https://doi.org/10.1037/a0021765
http://www.ncbi.nlm.nih.gov/pubmed/21299302
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.3389/fninf.2013.00014
http://www.ncbi.nlm.nih.gov/pubmed/23935581
https://doi.org/10.1037/a0031542
http://www.ncbi.nlm.nih.gov/pubmed/23586447
https://doi.org/10.20982/tqmp.16.2.p120
https://doi.org/10.7554/eLife.49547
http://www.ncbi.nlm.nih.gov/pubmed/31769410
https://doi.org/10.1371/journal.pcbi.1005774
http://www.ncbi.nlm.nih.gov/pubmed/28972973
https://doi.org/10.1103/PhysRevD.80.023507
https://doi.org/10.1103/PhysRevD.80.023507
https://doi.org/10.7554/eLife.34929
http://www.ncbi.nlm.nih.gov/pubmed/30141773
https://doi.org/10.7554/eLife.27430
http://www.ncbi.nlm.nih.gov/pubmed/28914605
https://doi.org/10.7554/eLife.65074


Appendix 1

Parameter recovery
Here, we provide additional figures concerning parameter recovery studies. Appendix 1—table 1

summarizes the parameter-wise R2 between ground truth and the posterior mean estimates for each

tested model and for each the CNN and MLP (where applicable) methods in turn. For the MLP,

results are based on a reference run that used training data constructed from KDE empirical likeli-

hoods utilizing 100k simulations each, and a slice sampler stopped with help of the Geweke diagnos-

tic. Results in the paper are based on slice samplers as well as slice samplers, which explains why not

all R2 values match exactly the ones found in other figures. Our findings were, however, generally

robust across samplers.

Appendix 1—table 1. Parameter recovery for a variety of test bed models.

DDM N v a w ndt

R2 MLP 1024 1.0 1.0 0.99 1

4096 1.0 1.0 0.99 1

CNN 1024 1 0.94 0.98 1

4096 1 1 0.99 1

DDM-SDV v a w ndt sdv

R2 MLP 1024 0.95 0.94 0.96 1 0.57

4096 0.94 0.95 0.97 1 0.58

CNN 1024 0.98 0.97 0.98 1 0.79

4096 0.99 0.98 0.99 1 0.87

LC v a w ndt �

R2 MLP 1024 0.99 0.93 0.97 1 0.98

4096 0.99 0.94 0.98 1 0.97

CNN 1024 0.96 0.94 0.97 1 0.97

4096 0.97 0.94 0.98 1 0.97

OU v a w ndt g

R2 MLP 1024 0.98 0.89 0.98 0.99 0.12

4096 0.99 0.79 0.95 0.99 0.03

CNN 1024 0.99 0.94 0.97 1 0.41

4096 0.99 0.95 0.98 1 0.45

Levy v a w ndt a

R2 MLP 1024 0.96 0.94 0.84 1 0.33

4096 0.97 0.91 0.61 1 0.2

CNN 1024 0.99 0.97 0.9 1 0.71

4096 0.99 0.98 0.95 1 0.8

Weibull v a w ndt a b

R2 MLP 1024 0.99 0.82 0.96 1 0.2 0.43

4096 0.99 0.8 0.98 0.99 0.26 0.41

CNN 1024 0.98 0.91 0.96 1 0.4 0.69

4096 0.98 0.91 0.97 1 0.37 0.63

Full-DDM v a w ndt dw sdv dndt

R2 MLP 1024 0.95 0.94 0.88 1 0 0.28 0.47

4096 0.93 0.94 0.88 1 0 0.25 0.38

Continued on next page

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 35 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


Appendix 1—table 1 continued

DDM N v a w ndt

CNN 1024 0.98 0.98 0.93 1 0 0.62 0.79

4096 0.99 0.99 0.97 1 0 0.8 0.91

Race 3 v0 v1 v2 a w0 w1 w2 ndt

R2 CNN 1024 0.88 0.86 0.89 0.19 0.49 0.51 0.5 0.99

4096 0.93 0.91 0.93 0.18 0.49 0.47 0.47 1

Race 4 v0 v1 v2 v3 a w0 w1 w2 w3 ndt

R2 CNN 1024 0.73 0.68 0.71 0.73 0.11 0.49 0.5 0.48 0.49 0.99

4096 0.79 0.76 0.77 0.81 0.18 0.5 0.5 0.51 0.55 0.99

LCA 3 v0 v1 v2 a w0 w1 w2 g b ndt

R2 CNN 1024 0.58 0.56 0.58 0.47 0.7 0.72 0.68 0.27 0.57 1

4096 0.51 0.5 0.52 0.44 0.67 0.67 0.66 0.23 0.52 1

LCA 4 v0 v1 v2 v3 a w0 w1 w2 w3 g b ndt

R2 CNN 1024 0.5 0.46 0.54 0.51 0.51 0.71 0.69 0.69 0.67 0.18 0.7 0.99

4096 0.42 0.42 0.46 0.42 0.52 0.67 0.63 0.68 0.65 0.15 0.64 1

MLP: multilayered perceptron; CNN: convolutional neural network; DDM: drift diffusion model; LC: linear collapse;
LCA: leaky competing accumulator.

Manifolds/likelihoods
We show some examples of the likelihood manifolds for the various models that we tested.

DDM-SDV

Appendix 1—figure 1. Likelihoods and manifolds: DDM-SDV. (A) shows the training and validation

loss for Huber as well as mean squared error (MSE) for the drift diffusion model (DDM)-SDV model.

Training was driven by the Huber loss. (B) illustrates the likelihood manifolds by varying one

parameter in the trained region. (C) shows multilayered perceptron likelihoods in green on top of a

sample of 50 kernel density estimate-based empirical likelihoods derived from 20k samples each.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 36 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


Linear collapse

Appendix 1—figure 2. Likelihoods and manifolds: linear collapse. (A) shows the training and

validation loss for Huber as well as MSE for the linear collapse model. Training was driven by the

Huber loss. (B) illustrates the likelihood manifolds by varying one parameter in the trained region.

(C) shows multilayered perceptron likelihoods in green on top of a sample of 50 kernel density

estimate-based empirical likelihoods derived from 20k samples each.

Weibull

Appendix 1—figure 3. Likelihoods and manifolds: Weibull. (A) shows the training and validation loss

for Huber as well as MSE for the Weibull model. Training was driven by the Huber loss. (B) illustrates

the likelihood manifolds by varying one parameter in the trained region. (C) shows multilayered

perceptron likelihoods in green on top of a sample of 50 kernel density estimate-based empirical

likelihoods derived from 100k samples each.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 37 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


Levy

Appendix 1—figure 4. Likelihoods and Manifolds: Levy. (A) shows the training and validation loss

for Huber as well as MSE for the Levy model. Training was driven by the Huber loss. (B) illustrates

the likelihood manifolds by varying one parameter in the trained region. (C) shows multilayered

perceptron likelihoods in green on top of a sample of 50 kernel density estimate-based empirical

likelihoods derived from 100k samples each.

Ornstein

Appendix 1—figure 5. Likelihoods and manifolds: Ornstein. (A) shows the training and validation

loss for Huber as well as MSE for the Ornstein model. Training was driven by the Huber loss. (B)

illustrates the likelihood manifolds by varying one parameter in the trained region. (C) shows

multilayered perceptron likelihoods in green on top of a sample of 50 kernel density estimate-based

empirical likelihoods derived from 100k samples each.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 38 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074


Full-DDM

Appendix 1—figure 6. Likelihoods and manifolds: full-DDM. (A) shows the training and validation

loss for Huber as well as MSE for the full drift diffusion model. Training was driven by the Huber loss.

(B) illustrates the likelihood manifolds by varying one parameter in the trained region. (C) shows

multilayered perceptron likelihoods in green on top of a sample of 50 kernel density estimate-based

empirical likelihoods derived from 100k samples each.

Fengler et al. eLife 2021;10:e65074. DOI: https://doi.org/10.7554/eLife.65074 39 of 39

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.65074

