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Abstract:

Dopamine (DA) depletion in the basal ganglia (BG) of Parkinson’s patients gives rise to both frontal-like and implicit
learning impairments. Dopaminergic medication alleviates some cognitive deficits but impairs those that depend on
intact areas of the BG, apparently due to DA “overdose”. These findings are difficult to accommodate with verbal
theories of BG/DA function, owing to complexity of system dynamics: DA dynamically modulates function in the
BG, which is itself a modulatory system. This paper presents a neural network model that instantiates key biological
properties and provides insight into the underlying role of DA in the BG during learning and execution of cognitive
tasks. Specifically, the BG modulates the execution of “actions” (e.g., motor responses and working memory updating)
that are being considered in different parts of frontal cortex. Phasic changes in DA, which occur during error feedback,
dynamically modulate the BG threshold for facilitating/suppressing a cortical command in response to particular stimuli.
Reduced dynamic range of DA explains Parkinson and DA overdose deficits with a single underlying dysfunction,
despite overall differences in raw DA levels. Simulated Parkinsonism and medication effects provide a theoretical basis
for behavioral data in probabilistic classification and reversal tasks. The model also provides novel testable predictions
for neuropsychological and pharmacological studies, and motivates further investigation of BG/DA interactions with
prefrontal cortex in working memory.

Introduction

In cognitive neuroscience, brain regions are often
characterized as if they implemented localized functions,
with relatively little treatment of interactive effects at the
network level. In part, this is because interactions are dif-
ficult to conceptualize and mileage has been gained from
simpler theories. In some cases, however, these theoreti-
cal accounts need to be reconsidered. Some brain regions
exert their effects only by modulating function in other
regions and therefore do not directly implement a cog-
nitive process. This problem is even more elusive when
considering effects of neuromodulators in a single brain
region, which may have indirect but substantial effects
on network dynamics.

This issue applies particularly well to the effects of
dopamine (DA) in the basal ganglia (BG), which are crit-
ical for many aspects of cognition (Nieoullon, 2002).
Because stimulus-response (SR) tasks recruit the BG,
many researchers assume that its function is to encode
detailed aspects of SR mappings (e.g., Packard & Knowl-
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ton, 2002). Others advocate a subtly different modula-
tory role of the BG to facilitate or suppress SR-like asso-
ciations that are represented in cortex (Hikosaka, 1998;
Mink, 1996). This paper explores the latter hypothesis
and further suggests that DA dynamically modulates ac-
tivity in an already modulatory BG, as DA levels change
in response to different behavioral events. These double
modulatory effects are complex and difficult to concep-
tualize, motivating the use of computational modeling to
make them more tenable. In so doing, the model ties to-
gether a variety of seemingly unrelated cognitive deficits
stemming from DA dysfunction in the BG, as in Parkin-
son’s disease (PD).

The cognitive deficits in PD can be divided into
two general classes: those that are “frontal-like” in
nature, and those that reflect impairments in implicit
learning. On the one hand, patients are impaired at
tasks involving attentional processes or working mem-
ory (Partiot, Verin, & Dubois, 1996; Gotham, Brown, &
Marsden, 1988; Dubois, Malapani, Verin, Rogelet, De-
weer, & Pillon, 1994; Woodward, Bub, & Hunter, 2002;
Henik, Singh, Beckley, & Rafal, 1993; Rogers, Sahakian,
Hodges, Polkey, Kennard, & Robbins, 1998). Implicit
learning deficits, on the other hand, do not implicate



frontal processes because they generally do not involve
working memory or conscious knowledge of task de-
mands, and frontal patients do not have such deficits
(Knowlton, Mangels, & Squire, 1996). Yet, PD pa-
tients are impaired at implicit sequence learning and im-
plicit categorization (Jackson et al., 1995; Ashby et al.,
2003; Maddox & Filoteo, 2001). Similar impairments
are observed in probabilistic classification, in which par-
ticipants integrate over multiple trials to extract statis-
tical regularities of the category structure (Knowlton,
Squire, & Gluck, 1994; Knowlton et al., 1996). The
involvement of dopamine (DA) in these tasks is not
straightforward, as dopaminergic medication has both
positive and negative effects on cognitive function in
PD (Gotham et al., 1988; Swainson, Rogers, Sahakian,
Summers, Polkey, & Robbins, 2000; Cools, Barker, Sa-
hakian, & Robbins, 2001, 2003).

Because the neuropathology of PD involves dam-
age to dopaminergic cells in the BG (Kish, Shannak, &
Hornykiewicz, 1988), the predominant explanations for
the two classes of deficits have been (a) that the dam-
aged BG is interconnected in a functional circuit with
prefrontal cortex (Alexander, DeLong, & Strick, 1986;
Middleton & Strick, 2000), thereby producing frontal
deficits, and (b) due to damage to a “neostriatal habit
learning system” (Knowlton et al., 1996; Hay, Moscov-
itch, & Levine, 2002). Finally, the selective cognitive im-
pairments resulting from dopaminergic medication have
been attributed to an “overdose” of dopamine in regions
of the BG that are relatively spared in PD (Gotham et al.,
1988; Cools et al., 2001).

To further understand the role of the BG as a func-
tional cognitive unit, a more mechanistic explanation
involving its neurobiology, and specifically the role of
dopamine, is required. What is the role of DA in the
BG in modulating frontal processes, and how is it in-
volved in habit learning? This paper accounts for Parkin-
son deficits by integrating aspects of BG biology together
with cellular and systems-level effects of dopamine. In
particular, two main populations of cells in the striatum
respond differentially to phasic changes in DA thought to
occur during error feedback. This causes the two groups
of striatal cells to independently learn positive and neg-
ative reinforcement values of responses, and ultimately
acts to facilitate or suppress the execution of commands
in frontal cortex. Because these cortical commands may
differ widely in content, damage to BG DA gives rise to
seemingly unrelated deficits.

This paper presents a neural network model that in-
corporates the above features to test their potential role
in cognitive function. One of the network’s key emer-
gent properties is that a large dynamic range in DA re-
lease is critical for BG-dependent learning. That is, the

DA signal has to both be able to increase and decrease
substantially from its baseline levels in order to support
discrimination between outcome values of different re-
sponses. This dynamic range is reduced in PD, account-
ing for cognitive deficits. The model further suggests that
by tonically increasing DA levels, dopaminergic medi-
cations might restrict this dynamic range to always be
at the high end of the DA spectrum, adversely affecting
some aspects of cognition. For simplicity, only cogni-
tive procedural learning tasks are modeled, but the same
arguments can be extended to include interactions with
frontal cortex in working memory (Frank, Loughry, &
O’Reilly, 2001), as discussed later.

Probabilistic Classification Deficits

Probabilistic classification deficits have been stud-
ied using the “weather prediction” task (Knowlton et al.,
1994). Participants study sets of cards with multiple
cues and have to predict whether the cues presented in
a given trial are associated with “rain” or “sunshine”.
The cue-outcome relationships are probabilistic and not
easily determined. Healthy participants implicitly inte-
grate information over multiple trials, progressively im-
proving despite not being able to explicitly state the ba-
sis of their choices (Gluck, Shohamy, & Myers, 2002).
The BG seems to be recruited for this ability, as it is
activated during the learning stages of the weather pre-
diction task (Poldrack, Prabakharan, Seger, & Gabrieli,
1999), and is more generally engaged in tasks that em-
phasize nondeclarative memory (Poldrack, Clark, Pare-
Blagoev, Shohamy, Moyano, Myers, & Gluck, 2001).
The damaged BG in PD likely causes slowed learning
observed in patients, just as it has been implicated as a
source for habit learning deficits in the motor domain
(e.g., Soliveri, Brown, Jahanshahi, Caraceni, & Marsden,
1997; Thomas-Ollivier, Reymann, Le Moal, Schueck,
Lieury, & Allain, 1999). But how is the weather predic-
tion task related to habit learning, and exactly what about
DA in the BG supports the learning of these so-called
habits?

Insight comes from the observation that PD patients
are selectively impaired in cognitive procedural learn-
ing tasks that involve trial-by-trial error feedback. In
purely observational implicit learning tasks (e.g., arti-
ficial grammar and prototype learning), patient perfor-
mance is normative (Reber & Squire, 1999). Among two
versions of conditional-associative SR learning, PD pa-
tients were only impaired in the one that relied on trial-
and-error (Vriezen & Moscovitch, 1990). In implicit
categorization tasks, successful integration of informa-
tion depends on both error feedback (Ashby, Queller, &
Berretty, 1999; Ashby, Maddox, & Bohil, 2002) and BG
integrity (Ashby, Alfonso-Reese, Turken, & Waldron,



1998).
Taken together, these observations support the notion

that feedback mediated learning occurs in the BG and is
therefore disrupted in PD. Feedback may modulate DA
release in the BG that, in addition to having a perfor-
mance effect on response execution, is critical for cogni-
tive reinforcement learning.

Phasic Bursting of DA Mediates Trial-and-
Error Learning

A healthy range of phasic DA bursts during feedback
may lead to the unconscious acquisition of stimulus-
reward-response associations. Data reviewed below sug-
gests that positive and negative feedback have opposing
effects on DA release, which in turn modulates synaptic
plasticity and therefore supports learning.

A multitude of data in primates show that DA re-
leasing cells fire in phasic bursts in response to unex-
pected reward (Schultz, 1998; Schultz, Dayan, & Mon-
tague, 1997). Equally relevant but sometimes ignored,
dopaminergic firing dips below baseline when a reward
is expected but not received (Hollerman & Schultz, 1998;
Schultz, Apicella, & Ljungberg, 1993). In humans, pha-
sic bursts and dips of DA have been inferred to occur
during positive and negative feedback, respectively (Hol-
royd & Coles, 2002).

Several lines of evidence support the notion that these
changes in extracellular levels of DA during feedback are
critical for learning. First, DA modifies synaptic plastic-
ity in animal experimental conditions. Dopamine D1 re-
ceptor stimulation leads to long term potentiation (LTP),
whereas D2 stimulation restricts LTP (Nishi, Snyder, &
Greengard, 1997). Accordingly, LTP is blocked by D1
antagonists and enhanced by D2 antagonists (for a re-
view, see Centonze, Picconi, Gubellini, Bernardi, & Cal-
abresi, 2001). Second, these effects are behaviorally rel-
evant: administration of D1 antagonists disrupted learn-
ing in an appetitive conditioning task, whereas D2 an-
tagonists promoted learning (Eyny & Horvitz, 2003).
Third, because dopamine modulates cellular excitabil-
ity (Nicola, Surmeier, & Malenka, 2000), associative or
“Hebbian” learning may be enhanced in the presence of
dopamine, since this type of learning depends on the
levels of activity of the cells in question (Hebb, 1949;
Schultz, 2002). Thus, the efficacy of recently active
synapses may be reinforced by a burst of DA acting as
a “teaching signal”, leading to the learning of reward-
ing behaviors (Wickens, 1997). This account predicts
that a delayed DA burst following the behavior should
degrade learning by enhancing the strengths of inappro-
priate synapses. In human category learning, substan-
tial impairments are indeed observed if feedback is de-
layed by just 2.5 seconds after each response (Maddox,

Ashby, & Bohil, 2003).
In summary, phasic bursts and dips of DA occur

differentially during positive and negative feedback, re-
sult in modification of synaptic plasticity, and therefore
may be critical for the learning of trial-and-error tasks.
A plausible explanation for implicit category learning
deficits in PD is that damage to dopaminergic neurons in
the BG reduces both the tonic and phasic levels of extra-
cellular DA, diminishing the effectiveness of the habit-
learning system. Before moving on to a more explicit
biologically based version of this theory, the next section
discusses the effects of dopaminergic medication on cog-
nition. By artificially increasing levels of DA, medica-
tion alleviates some cognitive deficits but actually gives
rise to others. This is taken to indicate that the dynamic
range of the DA signal may be more critical than its raw
level.

Deficits Induced by Dopaminergic Medication

The most common treatments for PD are DA agonists
and levodopa (L-Dopa), a DA precursor (Maruyama,
Naoi, & Narabayashi, 1996). Many cognitive studies
in PD do not take into account the level of medication
administered to the patient, somewhat confounding the
interpretation of experimental results. That is, if a null
effect is found, it could be attributed to the successful re-
plenishment of DA by L-Dopa therapy. Conversely, if an
effect is found, it is difficult to know if this effect stems
from a lack of DA in PD, or is somehow related to the
medication. For instance, medication results in elevated
levels of tonic DA in undamaged areas. This may pre-
vent phasic dips from being effective and degrade perfor-
mance when they are functionally important (e.g., during
negative feedback).

A series of studies compared cognitive function in
medicated versus non-medicated patients, finding that
L-Dopa therapy had positive or deleterious effects on
cognitive function, depending on the nature of the task
(Gotham et al., 1988; Swainson et al., 2000; Cools et al.,
2001). The general conclusion was that dopaminergic
medication ameliorates task-switching deficits in PD, but
that it impairs performance in probabilistic reversal (i.e.,
learning to reverse stimulus-reward probabilities after
prepotent responses are ingrained). Deficits induced by
medication are selective to the reversal stage, in which
participants must use negative feedback to override pre-
potent responses.

The interpretation given by these authors stems from
the fact that dopaminergic damage in early stage PD is
restricted to the dorsal striatum, leaving the ventral stria-
tum with normal levels of DA (Kish et al., 1988; Agid
et al., 1993). This explains why DA medication alle-
viates deficits in task-switching, which relies on dor-



sal striatal interactions with dorsolateral prefrontal cor-
tex. However, the amount of medication necessary to re-
plenish the dorsal striatum might “overdose” the ventral
striatum with DA, and is therefore detrimental to tasks
that recruit it. Reversal learning depends on the ventral
striatum and ventral prefrontal cortex in monkeys (Dias,
Robbins, & Roberts, 1996; Stern & Passingham, 1995)
and recruits these same areas in healthy humans (Cools,
Clark, Owen, & Robbins, 2002). The overdose hypothe-
sis is further supported by the finding that medicated, but
not non-medicated, patients exhibited impulsive betting
strategies in a gambling task known to recruit the ventral
striatum (Cools, Barker, Sahakian, & Robbins, 2003).

If the overdose account is accurate, a key question
is why should high levels of DA in the ventral striatum
produce deficits in reversal learning? Like categoriza-
tion tasks, reversal learning relies on trial-by-trial feed-
back. During positive feedback, phasic bursts of DA may
still be released. A notable difference is that higher lev-
els of tonic DA might functionally eliminate the effec-
tiveness of phasic dips in DA during negative feedback.
A DA agonist would continue to bind to receptors, as it
is not modulated by feedback/reward as is endogenous
dopamine. This by-product of dopaminergic medication
may eliminate an important aspect of the natural biolog-
ical control system — namely the ability to quickly un-
learn previously rewarding behaviors. In non-medicated
patients and healthy individuals, phasic dips in DA re-
lease may ensue after negative feedback in the reversal
stage, allowing the participant to unlearn the prepotent
association. The overdose of DA in the ventral striatum
of medicated patients would hinder this ability.

So far it has been hypothesized that cognitive deficits
in PD arise from a restricted range of DA signals in the
BG during error feedback, that does not get completely
fixed with medication. This is somewhat vague in that
it does not clarify what about the BG supports implicit
learning, and how DA modulates processes in the BG.
Why should phasic bursts and dips in DA support the
learning and unlearning of responses, respectively? To
be more clear, I now turn to a general (if highly simpli-
fied) description of BG circuitry and function, and review
the role of DA in modulating this function. A neural net-
work model instantiates these biological properties and
provides a mechanistic account of probabilistic classifi-
cation and reversal deficits in PD. Besides being a use-
ful tool for understanding complex system interactions
in implicit learning, the model can be extended to in-
clude those involved in modulating prefrontal function
in higher level cognition.

Basal Ganglia Neuroanatomy and
Biochemistry

In the context of motor control, various authors have
suggested that the BG selectively facilitates the execution
of a single motor command, while suppressing all oth-
ers (e.g., Mink, 1996; Chevalier & Deniau, 1990). The
BG does not encode the details of motor responses —
it simply modulates their execution by signaling “Go”
or “NoGo” (Hikosaka, 1989). Thus, the BG is thought
to act as a brake on competing motor actions that are
represented in motor (or premotor) cortex — only the
most appropriate motor command is able to “release the
brake” and get executed at any particular point in time.
This functionality also helps to string simple motor com-
mands together to form a complex motor sequence, by
selecting the most appropriate command at any given
portion of the sequence and inhibiting the other ones un-
til the time is appropriate. The circuitry that implements
these functions is described next.

The input segment of the BG is the striatum, which
is formed collectively by the caudate, putamen, and nu-
cleus accumbens. The striatum receives input from mul-
tiple cortical areas and projects through the globus pal-
lidus and substantia nigra to the thalamus, ultimately
closing the circuit back to the area of cortex from which
it received (e.g., premotor cortex) (Alexander et al.,
1986). 90-95% of all striatal neurons are GABAergic
medium spiny neurons (MSN’s). These are projection
cells that carry information to be transmitted to BG out-
put structures. The remaining 5-10% are local interneu-
rons that are GABAergic and cholinergic (Gerfen & Wil-
son, 1996).

The MSN’s project to the globus pallidus and sub-
stantia nigra via two main pathways which have oppos-
ing effects on the ultimate excitation/inhibition of the
thalamus (Alexander & Crutcher, 1990b). The “direct”
pathway facilitates the execution of responses, whereas
the “indirect” pathway inhibits them. Cells in the di-
rect pathway project from the striatum and inhibit the
internal segment of the globus pallidus (GPi).1 In the
absence of striatal firing, the GPi tonically inhibits the
thalamus, so the excitation of direct MSN’s and resulting
GPi inhibition serves to disinhibit the thalamus. Note
that the “double-negative” invoked by this disinhibition
does not directly excite the thalamus, but instead simply
enables the thalamus to get excited from other excita-
tory projections (e.g., Chevalier & Deniau, 1990; Frank
et al., 2001), thereby providing a gating function. Cells
in the indirect pathway inhibit the external segment of

1The substantia nigra pars reticulata (SNr) is equivalent to the GPi
in this circuitry, except that the former receives from the caudate, and
the latter from the putamen. For this reason I consider the two to be
one functional entity, but for simplicity only refer to GPi
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Figure 1: The cortico-striato-thalamo-cortical loops, includ-
ing the direct and indirect pathways of the basal ganglia. The
cells of the striatum are divided into two sub-classes based on
differences in biochemistry and efferent projections. The “Go”
cells project directly to the GPi, and have the effect of disin-
hibiting the thalamus, thereby facilitating the execution of an
action represented in cortex. The “NoGo” cells are part of the
indirect pathway to the GPi, and have an opposing effect, sup-
pressing actions from getting executed. Dopamine from the
SNc projects to the dorsal striatum, differentially modulating
activity in the direct and indirect pathways by activating differ-
ent receptors: The Go cells express the D1 receptor, and the
NoGo cells express the D2 receptor. Dopamine from the VTA
projects to ventral striatum (not shown) and frontal cortex. GPi:
internal segment of globus pallidus; GPe: external segment of
globus pallidus; SNc: substantia nigra pars compacta; SNr:
substantia nigra pars reticulata; VTA: ventral tegmental area.

the globus pallidus (GPe), which tonically inhibits the
GPi.2 The net effect of indirect MSN excitation is then
to further inhibit the thalamus. See figure 1 for a pictorial
description of this circuitry.

When striatal cells in the direct pathway disinhibit
the thalamus, excitatory thalamocortical projections en-
hance the activity of the motor command that is currently
represented in motor cortex so that its execution is facil-
itated. Thus, direct pathway cells send a “Go” signal to
select a given response. Indirect pathway activity, with
its opposite effect on the thalamus, sends a “NoGo” sig-
nal to suppress the response. In support of this model,
distinct neuronal activation was found in monkey stria-
tum in response to two cues that indicated whether the
monkey had to execute (Go) or suppress (NoGo) arm
movements (Apicella, Scarnati, Ljungberg, & Schultz,
1992).

Whether the direct and indirect pathways compete
with each other or function independently is controver-
sial. Because they both ultimately converge on the GPi
before either disinhibiting or further inhibiting the tha-
lamus, it would seem these two pathways act competi-

2The GPe inhibition of GPi actually involves two sub-pathways,
both directly and indirectly through the subthalamic nucleus, but I do
not consider the role of the latter structure here.

tively to control BG output (Percheron & Filion, 1991).
However, subregions of neurons in striatum terminate
in distinct subregions within GPi, suggesting the exis-
tence of independent parallel sub-loops within the overall
thalamocortical circuit (Alexander & Crutcher, 1990b),
rather than a competitive dynamic. It is plausible that
the direct and indirect pathways arising from a subegion
in striatum converge in the GPi and act competitively
to facilitate/suppress a particular response, but that this
competitive dynamic occurs in parallel for multiple re-
sponses. This may allow for selective control of different
responses, so that one response may be enabled, while
others are suppressed (Mink, 1996; Frank et al., 2001;
Beiser & Houk, 1998). Selection of a given response
may involve a Go signal to one area of thalamus, in con-
junction with a NoGo signal to thalamic areas involved
in competing responses.

Cellular Mechanisms of DA in the BG

The dynamics of BG circuitry are importantly mod-
ulated by phasic changes in DA. Dopamine is primar-
ily excitatory to D1 receptors and inhibitory to D2 re-
ceptors (see below). The functional consequences of
DA release can be deduced from the relative segregation
of D1 and D2 receptor expression in two main popula-
tions of striatal MSN’s. The D1 receptor is predomi-
nantly expressed in striatal cells of the direct pathway,
whereas the D2 receptor predominates in the indirect
pathway (Gerfen, 1992; Gerfen & Keefe, 1994; Ger-
fen, Keefe, & Gauda, 1995; Bloch & LeMoine, 1994;
Ince, Ciliax, & Levey, 1997). Even those who caution
that there is D1/D2 colocalization in both BG pathways
(Aizman et al., 2000; Surmeier et al., 1996) nevertheless
concede that the relative levels of expression is asym-
metrical. Thus, increased levels of DA activate the di-
rect/Go pathway and suppress the indirect/NoGo path-
way (e.g., Gurney, Prescott, & Redgrave, 2001; Brown,
Bullock, & Grossberg, 2004). DA depletion of the stria-
tum (as in PD) has the opposite effect, biasing the indi-
rect pathway to be overactive (Gerfen, 2000; Salin, Ha-
jji, & Kerkerian-Le Goff, 1996).

D1 Excites / Enhances Contrast of Go Cells
Many studies show an excitatory effect of D1 stim-

ulation (e.g., Kitai, Sugimori, & Kocsis, 1976), but
conflicting data also exist (Hernandez-Lopez, Bargas,
Surmeier, Reyes, & Galarraga, 1997). One intriguing
possibility raised by several researchers is that DA effec-
tively enhances contrast or increases the signal-to-noise
ratio, by amplifying activity of the most active cells while
inhibiting the least active ones (Cohen, Braver, & Brown,
2002; Cohen & Servan-Schreiber, 1992; Foote & Mor-
rison, 1987; Rolls, Thorpe, Boytim, Szabo, & Perrett,
1984). Recently, cellular mechanisms in the BG were



discovered that could potentially support this function
(Nicola et al., 2000; Hernandez-Lopez et al., 1997, fig-
ure 2). Specifically, the excitatory/inhibitory effect of
dopamine on D1 receptors in the rat basal ganglia de-
pends on the resting membrane potential of the target
cell. In the presence of a D1 agonist, spontaneous fir-
ing was reduced in cells that were held at a low mem-
brane potential, but was increased in those held at a more
depolarized potential. This is biologically relevant, be-
cause medium spiny cells of the BG are bi-stable: they
oscillate between two levels of resting membrane poten-
tial (Wilson, 1993; Wilson & Kawaguchi, 1996). The
“down-state” refers to a membrane potential of around
-80 mV, thought to result from inward rectifying K+ cur-
rents. The “up-state” refers to a membrane potential of
around -50 mV, and results from the opening of voltage
dependent Na+ and Ca2+ channels, upon being excited
from temporally coherent, convergent excitatory synap-
tic input.

Taken together, the above observations suggest that
dopamine, acting via D1 receptors, can sharpen con-
trast by amplifying activity of cells that are in their up-
states and inhibiting those in their down-states from fir-
ing spontaneously. This may have the effect of increas-
ing the signal-to-noise ratio, because cells encoding the
relevant signal receive temporally coherent synaptic in-
put from multiple cortical afferents and are therefore in
their up-state, whereas those reflecting biological noise
or other irrelevant background signals may be in their
down-state and only firing spuriously.3 The increased
signal-to-noise ratio in the direct pathway may help to
determine which among several responses is most appro-
priate to select.

At a molecular level, D1 activation enhances L-type
Ca2+ channel currents in striatal medium spiny neu-
rons (Surmeier, Bargas, Hemmings, Nairn, & Greengard,
1995). It appears that this is the mechanism by which the
DA contrast sharpening is operating, because both the
excitatory and inhibitory DA effects were blocked by L-
type Ca2+ channel antagonists (Hernandez-Lopez et al.,
1997).

D2 Inhibits NoGo Cells — “Releasing the Brakes”
In the case of the D1 receptor, the contrast achieved

by its activation is thought to be by way of enhancement
of L-type Ca2+ channel currents, described above. Re-
cently, it was shown that D2 activation reduces these
same currents, thereby reducing neuronal excitability

3Note that some argue that noise suppression in the direct path-
way is accomplished not by D1 inhibition, but by low amounts of D2
heteroreceptors acting presynaptically to decrease glutamate release in
corticostriatal synapses (O’Donnell, 2003; Maura, Giardi, & Raiteri,
1988). This proposal does not conflict in any important way with the
implementations of the model described later in the paper.

Figure 2: Medium spiny cells in the basal ganglia are bi-
stable, spontaneously switching between two levels of rest-
ing membrane potential, commonly labeled “up-state” (Vm ≈

−60mV ) and “down-state” (Vm ≈ −80mV ), depending on
amount of afferent drive. Cells are more likely to fire when
in the up-state, but may still fire spontaneously in the down-
state. Dopamine D1 receptor activity may increase the signal-
to-noise ratio. In the presence of D1 agonist SKF 81297, firing
is A) reduced for cells that are in their “down-state”, but B)
increased for cells in their “up-state”. Reproduced with per-
mission from Hernandez-Lopez et al. (1997), Copyright 1997
by the Society for Neuroscience.

(Hernandez-Lopez, Tkatch, Perez-Garci, Galarraga, Bar-
gas, Hamm, & Surmeier, 2000). Unlike the D1 modula-
tory effects, the D2 inhibition effect on neuronal excita-
tion was not found to be dependent on the membrane po-
tential of the target cell. These results confirmed a long
held assumption that DA suppresses activity in the indi-
rect pathway via D2 receptors, and that this is disrupted
in PD (Albin, Young, & Penney, 1989).

Recall that striatal cells expressing D2 receptors pre-
dominate in the indirect/NoGo pathway, which is thought
to act as a brake on a particular action or set of ac-
tions. DA can then aid in releasing the brake, by in-
hibiting NoGo activity via D2 receptors, and allowing
the Go pathway to exert more influence on BG output.
By this account, DA shifts the balance in the BG from
being “hesitant” to a more responsive state, effectively
lowering the threshold for selecting/gating a response to
be executed. This explains why Parkinson’s patients,
who have a lack of DA in the BG, have difficulty initi-
ating motor commands — without a reasonable amount
of basal dopamine release, the system is in a tonic state of
“NoGo” because an overactive indirect pathway leads to
excessive cortical inhibition (Filion & Tremblay, 1991;
Jellinger, 2002). With enough DA, the balance is shifted
to “Go”, and the particular response that is executed
may depend on levels of activity of different subpopu-



lations — representing different responses — in the di-
rect/Go cells. The D1 contrast enhancement mechanism
described above would aid in selecting the most appro-
priate response by boosting its associated neural activity,
while suppressing that of all other Go cells.

DA in the BG: Summary and Effects on Synaptic Plastic-
ity

In summary, increases in DA result in (a) increased
contrast enhancement in the direct pathway; and (b) sup-
pression of the indirect pathway. Phasic dips in DA have
the opposite effect, releasing the indirect pathway from
suppression.

An important consequence of DA performance ef-
fects on Go/NoGo activity levels is that they drive
activity-dependent learning to synaptic input. A well es-
tablished principle should hold across both Go and NoGo
cells: more active cells undergo LTP whereas less ac-
tive cells undergo LTD (e.g., Bear & Malenka, 1994).
Once we account for differential effects of DA on ex-
citability in the two BG pathways, this principle makes
straightforward predictions on their effects on plastic-
ity. If DA bursts during reinforcement are adaptive, they
should have the complementary effects of increasing Go
learning while decreasing NoGo learning so that rein-
forced responses are more likely to be facilitated in the
future. Because DA enhances activity in the direct path-
way, bursts may indeed induce LTP in Go cells. Further,
the inhibitory effects of DA in the indirect pathway may
induce LTD in NoGo cells so that they learn to become
less active. This hypothesis is supported by demonstra-
tions that DA induces LTP via D1 receptors and LTD via
D2 receptors (Kerr & Wickens, 2001; Calabresi, Saiardi,
Pisani, Baik, Centonze, Mercuri, Bernardi, & Borrelli,
1997).

The same principle can be applied to predict the ef-
fect of DA dips, which, if they are adaptive, should en-
hance NoGo learning so that non-reinforcing responses
are actively suppressed in the future. Because DA dips
release NoGo cells in the indirect pathway from DA in-
hibition, the increased NoGo activity should induce LTP
in NoGo cells. Although LTP has not been tested during
endogenous DA dips, this hypothesis is indirectly sup-
ported by examining the effects of D2 receptor block-
ade, assuming that DA dips decrease D2 stimulation and
should therefore have the same qualitative effects on the
indirect pathway as D2 blockade. When stimulated by
cortical inputs, D2 blockade increases bursting activity
and Fos expression of striatal cells in the indirect path-
way (Robertson, Vincent, & Fibiger, 1992; Finch, 1999),
and results in enhanced corticostriatal LTP (Calabresi
et al., 1997).

Neural Model of BG and DA

The hypothesis is that cognitive deficits in PD can be
accounted for by a reduced dynamic range of phasic DA
signals which reduces the ability to unconsciously learn
Go/NoGo associations. This verbal explanation alone is
not sufficient, but may be substantially strengthened by
testing its feasibility in a computational model that incor-
porates all the key elements. Such a model can generate
novel predictions because it gets at the underlying source
of cognitive dysfunction in PD. If validated, it can also
be used as a tool to understand complex involvement of
DA in the BG in other neurological disorders.

The above anatomical and biochemical considera-
tions are synthesized in a neural network model (figure
3). The model learns to select one of two responses
to different input stimuli. Direct and indirect pathways
enable the model to learn conditions that are appropri-
ate for gating as well as those for suppressing. Parallel
sub-loops independently modulate each response, allow-
ing selective facilitation of one response with concurrent
suppression of the other. Projections from the substan-
tia nigra pars compacta (SNc) to the striatum incorpo-
rate modulatory effects of DA. Phasic bursts and dips in
SNc firing (and therefore simulated DA release) ensue
from correct and incorrect responses, respectively. These
phasic changes drive learning by preferentially activating
the direct pathway after a correct response and the indi-
rect pathway after an incorrect response. The model is
trained on simulated versions of the weather prediction
task and probabilistic reversal. Disruption to the DA sys-
tem as in PD and “overdose” cases produces results that
are qualitatively similar to those observed behaviorally.

Mechanics of the Model

The units in the model operate according to a sim-
ple point neuron function using rate-coded output ac-
tivations, as implemented in the Leabra framework
(O’Reilly, 1998; O’Reilly & Munakata, 2000). There
are simulated excitatory and inhibitory synaptic input
channels. Local inhibition in each of the layers is com-
puted through a simple approximation to the effects of
inhibitory interneurons. Synaptic connection weights
were trained using a reinforcement learning version of
Leabra. The learning algorithm involves two phases, al-
lowing simulation of feedback effects, and is more bio-
logically plausible than standard error backpropagation.
In the minus phase, the network settles into activity states
based on input stimuli and its synaptic weights, ulti-
mately “choosing” a response. In the plus phase, the
network resettles in the same manner, with the only dif-
ference being a change in simulated dopamine: an in-
crease for correct responses, and a dip for incorrect re-
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Figure 3: Neural network model of direct and indirect path-
ways of the basal ganglia, with differential modulation of these
pathways by DA in the SNc. The Premotor Cortex (PMC) se-
lects a response via direct projections from the Input. BG gat-
ing results in bottom-up support from Thalamus, facilitating ex-
ecution of the response in cortex. In the Striatum, the response
has a Go representation (first column) that is stronger than its
NoGo representation (third column). This results in inhibition
of the left column of GPi and disinhibition of the left Thala-
mus unit, ultimately facilitating the execution of Response1 in
PMC. A tonic level of DA is shown here, during the response
selection (“minus”) phase. A burst or dip in DA ensues in the
feedback (“plus”) phase (see figures 4 and 5), depending on
whether the response is correct or incorrect for the particular
input stimulus.

sponses. Connection weights are then adjusted to learn
on the difference between activity states in the minus and
plus phases.

Overall Network Division of Labor

The network’s job is to select either Response1 or
Response2, depending on the task and the sensory input.
At the beginning of each trial, incoming stimuli directly
activate a response in premotor cortex (PMC). However,
these direct connections are not strong enough to elicit a
robust response in and of themselves; they also require
bottom-up support from the thalamus. The job of the BG
is to integrate stimulus input with the dominant response
selected by PMC, and based on what it has learned in past
experience, either facilitate (Go) or suppress (NoGo) that
response.

Within the overall thalamocortical circuit, there are
two parallel sub-loops that are isolated from each other,
separately modulating the two responses. This allows for
the BG to selectively gate one response, while continuing
to suppress the other(s). This was implemented in our
previous model (Frank et al., 2001), and has been sug-
gested by others (Beiser & Houk, 1998). The striatum
is divided into two distributed subpopulations. The two
columns on the left are “Go” units for the two potential
responses, and have simulated D1 receptors. The two
columns on the right are “NoGo” units, and have simu-
lated D2 receptors. Thus, the four columns in the stria-
tum represent, from left to right, “Go-Response1”; “Go-
Response2”; “NoGo-Response1”; “NoGo-Response2”.

The Go columns project only to the correspond-
ing column in the GPi (direct pathway), and the NoGo
columns to the GPe (indirect pathway). Both GPe
columns inhibit the associated column in GPi, so that
striatal Go and NoGo activity have opposing effects on
GPi. Finally, each column in GPi tonically inhibits the
associated column of the thalamus, which is reciprocally
connected to premotor cortex. Thus, if Go activity is
stronger than NoGo activity for Response1, the left col-
umn of GPi will be inhibited, removing tonic inhibition
(i.e. disinhibiting) of the corresponding thalamus unit,
and facilitating its execution in premotor cortex.

The above parallel and convergent connectivity is
supported by anatomical evidence discussed above. The
network architecture simply supports the existence of
connections, but how these ultimately influence behavior
depends on their relative strengths. The network starts
off with random weights and representations in both the
BG and cortical layers are learned. Distributed activ-
ity within each striatal column enables different Go and
NoGo representations to develop for various stimulus
configurations during the course of training.

Simulated Effects of DA

To simulate differential effects of DA on D1 and D2
receptors in the two populations of striatal cells, separate
excitatory and inhibitory projections were assigned from
the SNc to the direct and indirect pathways in the stria-
tum. Thus, the D1 projection only connects to the Go
columns of the striatum, whereas the D2 projection con-
nects only to the NoGo columns. Besides being excita-
tory, the effects of D1 activity involve contrast enhance-
ment. This was accomplished by increasing the striatal
units’ activation gain (making it more nonlinear), in con-
junction with increasing the activation threshold (so that
weakly active units do not exceed firing threshold and
are suppressed). The effects of D2 activity are inhibitory,
suppressing the NoGo cells. Thus, for a high amount of
simulated DA, contrast enhancement in the direct path-



way supports the enabling of a particular Go response
while the indirect pathway is suppressed.

DA Modulates Learning
Increases in DA during positive feedback lead to re-

inforcing the selected response, whereas decreases in DA
during negative feedback lead to learning not to select
that respose. A tonic level of DA is simulated by setting
the SNc units to be semi-active (activation value 0.5) at
the start of each trial, in the minus phase. In the initial
stages of training, the network selects a random response,
dictated by random initial weights together with a small
amount of random noise in premotor cortex activity. If
the response is correct, a phasic increase in SNc firing
occurs in the plus phase, with all SNc units set to have
an activation value of 1.0 (i.e., high firing rate). This
burst of DA causes a more coherent Go representation
in the striatum to be associated with the rewarding re-
sponse that was just selected. For an incorrect response
a phasic dip of DA occurs, with all SNc units set to zero
activation. In this case, the NoGo cells are released from
suppression, enabling the network to learn NoGo to the
selected incorrect response.

Note that an explicit supervised training signal is
never presented; the model simply learns based on the
difference between activity states in the minus and plus
phases, which only differ due to phasic changes in DA.
Weights from the input layer and premotor cortex are ad-
justed so that over time, the striatum learns which re-
sponses to facilitate and which to suppress in the context
of incoming sensory input. In addition, the premotor cor-
tex itself learns to favor a given response for a particular
input stimulus, via Hebbian learning from the input layer.
Thus, the BG initially learns which response to gate via
phasic changes in DA ensuing from random cortical re-
sponses, and then this learning transfers to cortex once
it starts to select the correct response more often than
not. This reflects the idea that the BG is not a stimulus-
response module, but rather modulates the gating of re-
sponses that are selected in cortex.

Probabilistic Classification Simulations

The weather prediction (WP) task (Knowlton et al.,
1994) involves presenting cards made up of four possible
cues that have different probabilities of being associated
with “rain” or “sun”. The predictability of the individual
cues is 75.6%, 57.5%, 42.5% and 24.4%. Actual trials in-
volve presenting from one to three cues simultaneously,
for a total of 14 cue combinations, making it difficult to
become explicitly aware of the probability structure.

In the network, cues are presented in the input, and
potential responses are immediately but weakly activated
in premotor cortex (figure 4). The BG gates one of the

two responses if its associated “Go” representation is
strong enough, facilitating its execution and suppressing
that of the alternative response. If the probabilistically
determined feedback to the selected response is positive,
a phasic DA burst is applied in the plus phase, resulting
in an enhanced Go representation and associated learn-
ing. Negative feedback results in a phasic dip of DA in
the plus phase, releasing NoGo cells from suppression
and allowing the network to learn not to gate the selected
response. Over the course of training, networks integrate
Go and NoGo signals in the context of different cue com-
binations to learn when is most appropriate to gate sun
and rain responses.

Performance measures involve percentage of opti-
mal responses, rather than percentage of responses that
were associated with (probabilistically determined) pos-
itive feedback provided to the network. Thus, individual
responses that had negative outcomes, but were actually
the best choice according to the odds, were scored cor-
rectly. Similarly, positive outcome responses that were
suboptimal were scored incorrectly. These optimal re-
sponding measures are consistently used in the behav-
ioral paradigms (e.g., Gluck et al., 2002). Of course, net-
works were not trained with this error measure but were
provided the same probabilistic feedback that would
have been given to the human participant.

Further implementational details of the weather pre-
diction task are described in the Methods section.



Weather Prediction Trial: Positive Feedback
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Figure 4: A positive feedback trial in the weather prediction task, for both intact and “Parkinson” networks. This trial consists
of two cues, represented by the two columns of active units in the Input layer. Intact(choice): Response selection (minus phase)
activity in the intact network. Early in training, the BG has not learned to gate either response, as shown by an active GPi and
inhibited thalamus. Premotor cortex (PMC) is weakly active due to direct connections from sensory input. The most active (left)
unit in PMC, corresponding to “sun”, determines the Output response. Intact(feedback): Because the model “guessed” correctly,
a phasic burst of DA firing occurs in the SNc. This has the effect of activating Go units associated with the selected response (via
D1 contrast enhancement), and suppressing NoGo units (via D2 inhibition). Weights are adjusted based on differences in network
activity between the minus and plus phases. The enhanced Go representation in the plus phase drives learning to gate the “sun”
response. PD(choice): Response selection (minus phase) activity in the PD network, for the same trial. Note the reduced number
of intact SNc units, which causes the NoGo units to be more active. Again, there is no BG gating early in training and the model
selects a random response from sensory-motor projections. PD(feedback): Correct guessing leads to a phasic burst of DA in the
plus phase. However, this phasic burst is not as effective because it applies to only one SNc unit, and therefore only weakly activates
more Go units while some NoGo activity persists. Reduced dynamic range of DA in the PD network results in less difference in
activity levels between the two phases of network settling, causing less learning.



Weather Prediction Trial: Negative Feedback
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Figure 5: A negative feedback trial in the weather prediction task for both intact and “Parkinson” networks. Intact(choice): A
single cue is presented. Based on previous learning, the Go units for “rain” are sufficiently active to gate that response, indicated by
the inhibition of right GPi units and disinhibition of the right thalamus unit. Intact(feedback): The feedback on this particular trial
is negative (due to probabilistic outcomes), shown by a phasic dip of DA firing in the the SNc. The lack of DA removes suppression
of NoGo units via D2 receptors, which are then more active than the Go units. The DA dip therefore drives NoGo learning to the
incorrect response selected for this cue. Note the Output layer displays the target response for the trial, but this is not used as a
training signal: the only signal driving learning is the change in SNc DA. PD(choice): The PD network has also learned to gate
the “rain” response for this same trial, based on previous learning. PD(feedback): Feedback is incorrect, and the phasic dip of DA
in the SNc leads to activation of some NoGo units. However, the PD network already had low amounts of tonic DA, causing an
overall propensity for NoGo learning, so this phasic dip is smaller and therefore not as effective. Reduced dynamic range of DA in
the PD network results in less difference in activity levels between the two phases of network settling.



Probabilistic Reversal Trial in Reversal Stage
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Figure 6: A trial in the probabilistic reversal task. Two cues are presented at the input, and the model has to select one of
them (see Methods for details). The trial shown here is in the reversal stage, during which the model has to learn “NoGo” to
the prepotent response before it can switch to selecting the alternative. Reduced dynamic range of DA in the “overdosed” (OD)
network causes degraded ability to learn NoGo. Intact(choice): Based on learning in the acquisition stage, the network chooses the
stimulus on the right (Resp2). Intact(feedback): In the reversal stage, this choice is incorrect. Phasic dips in SNc release NoGo
units from suppression, so that the network can subsequently learn not to perseverate. OD(choice): The same trial is presented to
the OD network. Unimpaired Go learning in the acquisition stage results in selection of the same response as the intact network.
OD(feedback): A phasic dip is applied to SNc on incorrect trials in the reversal stage, but a residual level of activation due to
simulated medication results in weaker activation of NoGo units. The network then takes longer to unlearn the initial response,
causing reversal deficits.



Simulated Parkinsonism
Parkinson’s disease was simulated by “lesioning”

three out of four SNc units so that they were tonically
inactive, representing the cell death of approximately 75-
80% of dopaminergic neurons in this area (bottom of
figures 4 and 5). This has the effect of reducing tonic
DA in the minus phase, as well as phasic DA during
feedback in the plus phase. Although the percentage in-
crease/decrease in phasic firing relative to baseline is the
same for intact and Parkinson networks, the total amount
of DA is reduced by a factor of four, resulting in re-
duced dynamic range of the DA signal. Dynamic range
is critical for learning appropriate Go/NoGo representa-
tions from error feedback, as network weights are ad-
justed based on difference in activity states in the two
phases of network settling. NoGo learning is degraded
in PD networks because tonic levels of DA are already
low, so the phasic dip during negative feedback has less
effect. Go learning is degraded because limited amounts
of available DA reduce the potency of phasic bursts, ac-
tivating less of a Go representation during positive feed-
back.

Less DA in PD also diminishes the contrast enhance-
ment effects of D1 receptor stimulation, further weaken-
ing the learning of Go signals. Smaller bursts of DA in
PD nets led to less contrast enhancement during positive
feedback, by reducing the change in unit activation gain
and threshold by a factor of four (see Methods). Thus,
degraded Go learning is exacerbated because of reduced
contrast enhancement that would normally amplify the
Go signal during positive feedback.

Testing the Contribution of the Indirect Pathway
Since other BG models include the direct, but not

necessarily the indirect pathway, the contribution of the
latter was evaluated in two different conditions. First,
the indirect pathway was disconnected: NoGo units in
the striatum no longer projected to the GPe. In these
networks, NoGo units were still activated by synaptic
input and modulated by DA, but had no effect on BG
output. Instead, GPe units tonically inhibited the GPi.
This manipulation eliminates the effects of the indirect
pathway so that all discrimination learning must be ac-
complished by comparing Go associations in the direct
pathway. Although it is technically possible that this ma-
nipulation simply lowers the threshold for gating in the
direct pathway by providing more tonic inhibition to GPi
(i.e., less overall NoGo), this possibility was accounted
for by varying the strength of GPe-GPi inhibitory projec-
tions from zero to maximal inhibition. Results reported
below are for the best of these cases, which is still sub-
stantially worse than the full BG model.

A second test of the indirect pathway was conducted
to evaluate the role of response-specific NoGo represen-

tations. The hypothesis advocated in this paper is that
each response develops both Go and NoGo representa-
tions as a result of positive and negative feedback, and
that these representations compete in order to facilitate
or suppress the response. However, it is also possible
that only Go representations in the striatum are response-
specific, and that the indirect pathway represents a more
global NoGo signal. In the model, this condition was
tested by making GPe units in each column project to
both columns of GPi (rather than to just the correspond-
ing column), so that NoGo units in the striatum had the
same effect on both responses. Because this may amount
to more overall inhibition from GPe to GPi, once again
the strength of these inhibitory projections was varied
from zero to maximal and the best case results reported.

Probabilistic Reversal Simulation

In the probabilistic reversal (PR) task (Swainson
et al., 2000), the participant is presented with two stimuli
on a touch-sensitive computer screen and has to choose
one of them (by touching it). Feedback provided after
each response is probabilistic, with a 80:20% ratio of re-
inforcement for the ‘correct’ stimulus. After a number of
trials, the probabilities of correct feedback are suddenly
reversed, unbeknownst to the participant.

In the model, training involves two stages: acquisi-
tion and reversal. In the acquisition stage, the network
had to learn which of two stimuli to select. The proba-
bilities associated with correct response were 80% for se-
lecting stimulus 1 and 20% for selecting stimulus 2. Pos-
itive feedback was associated with a DA burst, and nega-
tive feedback was associated with a dip. After 50 blocks
of trials, these probabilities were reversed, and the feed-
back effects of DA were necessary to learn NoGo to the
prepotent learned response (figure 6). Once NoGo repre-
sentations are strong enough to suppress gating, random
cortical activity leads to sometimes choosing the oppo-
site response and DA reinforcement of the corresponding
Go representation, enabling reversal.

Further implementational details of the PR task are
described in the Methods section.

Simulated DA Medication
To model DA overdose in the ventral striatum of

medicated patients (Gotham et al., 1988; Swainson et al.,
2000; Cools et al., 2001, 2003), all SNc units remained
intact. This reflects the fact that the ventral striatum,
which is recruited in this task, is relatively spared from
dopaminergic damage in moderate PD. The difference
between intact and “overdosed” networks was simply an
increase in overall level of DA. In the minus phase, the
tonic level of DA was increased from an SNc unit acti-
vation value of 0.5 to 0.65, reflecting the greater baseline



level of DA. Negative feedback in the plus phase resulted
in an activation value of 0.25, instead of zero SNc activa-
tion. This is still a phasic dip relative to the tonic level,
but is meant to simulate the possibility that DA release
has less dynamic range in the overdose case (see above
for elaboration and justification). Positive feedback re-
sulted in SNc unit activation of 1.0.

The DA overdose manipulations degraded networks’
ability to learn NoGo representations during negative
feedback, as NoGo units were suppressed by the in-
creased levels of DA. This selectively impairs reversal
learning, in which “NoGo” must be learned to a prepo-
tent response.

Simulation Results

Probabilistic Classification

Despite not having an explicit supervised training
signal, simulated phasic DA release during error feed-
back allowed intact networks to extract the probability
structure, scoring 77% optimal responding after 200 tri-
als of training (figure 7). “Parkinson” networks were im-
paired, only scoring 64% optimal responding. Statisti-
cal analysis indicated that this difference was highly sig-
nificant (F(1,24) = 20.8, p = 0.0001). Two other condi-
tions were run to evaluate the contribution of response-
specific NoGo representations in the indirect pathway.
Networks with a disconnected indirect pathway were sig-
nificantly impaired relative to intact networks (65% op-
timal responding, F(1,24) = 11.9, p = 0.002). Similarly,
networks that had both direct and indirect pathways but
only had global NoGo representations (i.e., NoGo units
in the striatum affected both responses non-selectively)
were also impaired ( 64% optimal responding, F(1, 24)
= 7.13, p = 0.013). In both these cases, parameters were
searched to ensure that impairments were not simply due
to an overall threshold for responding, by varying the
strength of inhibitory connections from the GPe to the
GPi – results reported here are for the best cases over the
range from zero to maximal inhibition (which for both
cases involved an inhibitory strength of approximately
70% of that in the full model).

Probabilistic Reversal

The results for the PR task were clearcut: “over-
dosed” networks were selectively impaired at reversing
the probabilistic discrimination (figure 8). Both intact
and overdosed networks were able to acquire the ini-
tial 80:20% probabilistic discrimination, with no signifi-
cant differences between performance in the acquisition
phase (97.8 and 98.2 % optimal responding after 200 tri-
als, F(1, 24) = 0.4, n.s.). Intact networks consistently
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Figure 7: Weather prediction task learning curves, averaged
over 25 networks for each condition. Intact: Full BG model
with direct and indirect pathways modulated by phasic changes
in simulated DA during error feedback; PD: simulated Parkin-
son’s disease, modeled by lesioning 75% of dopaminergic units
in SNc; No Indir: BG model with the indirect pathway discon-
nected from the striatum to the GPe; Global NoGo: Full BG
model in which NoGo representations globally suppress all re-
sponses non-selectively. PD networks are impaired at learning
the probabilistic structure, due to impoverished phasic changes
in DA in response to feedback. Models without the indirect
pathway or with global NoGo representations have reduced dis-
criminability because they can only compare the strength of
Go representations to decide which response to facilitate. In
contrast, intact models can use response-specific Go and NoGo
representations that develop over training in order to more se-
lectively facilitate and suppress responses.

learned to reverse this discrimination after a further 200
trials of training, with 78% optimal responding. In con-
trast, overdosed networks were slower to reverse the ini-
tial discrimination, only attaining 64% optimal respond-
ing after the same amount of training. These reversal
learning differences were significant (F(1, 24) = 4.80, p
= 0.038). DA depletion, as is the case for severe PD in
the ventral striatum, resulted in non-selective impairment
in both stages (not shown).

Discussion

This work presents a theoretical basis for cognitive
procedural learning functions of the basal ganglia. A
neural network model incorporating known biological
constraints provides a mechanistic account of cognitive
deficits observed in PD patients. A key aspect of the
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Figure 8: Probabilistic reversal results for intact networks
and for those with simulated dopamine “overdose”, averaged
over 25 networks for each condition. Each block consists of
10 trials; reversal of stimulus-outcome probabilities occurred
at block 20. Overdosed networks were selectively impaired at
learning this reversal, despite performing as well as intact net-
works in the acquisition phase. A smaller phasic dip in DA
during negative feedback resulted in diminished ability to learn
“NoGo” to the prepotent response that was learned in the initial
acquisition.

model is that phasic changes in dopamine during error
feedback are critical for the implicit learning of stimulus-
reward-response contingencies, as in probabilistic classi-
fication and reversal.

In brief, the model includes competitive dynamics
between striatal cells in the direct and indirect pathways
of the BG that facilitate or suppress a given response.
The cells that detect conditions to facilitate a response
provide a “Go” signal, whereas those that suppress re-
sponses provide a “NoGo” signal. Habit learning is sup-
ported by this circuitry because DA release dynamically
modulates the excitability and synaptic plasticity of these
pathways so that the most reinforcing responses are sub-
sequently facilitated, while those that are more ambigu-
ous are suppressed.

Simulated Parkinsonism, by reducing the amount of
DA in the model and thus its modulatory effects on Go
and NoGo representations, produced qualitatively simi-
lar results to those observed in PD patients learning the
weather prediction task (Knowlton et al., 1994; Knowl-
ton et al., 1996). Less DA led to less contrast enhance-
ment and lower ability to resolve Go/NoGo association
differences needed for discriminating between subtly dif-
ferent response reinforcement histories.

Although it could be argued that the simulated indi-

rect pathway is superfluous and that discrimination learn-
ing can happen in the direct pathway alone, networks
with disrupted indirect pathways were substantially im-
paired. These results held even when the threshold for
facilitating responses in the direct pathway was system-
atically varied, ensuring that the indirect pathway does
not simply set an overall threshold that feasibly could
be implemented in the direct pathway alone. Rather, the
indirect pathway makes a genuine contribution by devel-
oping response-specific NoGo representations that com-
pete with Go representations to enhance discriminability.
Without response-specific NoGo representations, the BG
is likely to signal “Go” to whichever response happens to
be slightly more active in premotor cortex.

Medication-Dependent Deficits

The model also offers some insight as to why pa-
tients on medication are impaired at probabilistic re-
versal. Simulated dopamine overdose produced quali-
tatively similar results to those observed in medicated
patients in probabilistic reversal (Gotham et al., 1988;
Swainson et al., 2000; Cools et al., 2001). That is, “over-
dosed” networks were selectively impaired in the rever-
sal stage, but performed as well or better than control
networks in the initial discrimination.

The model provides a mechanistic description of how
DA medication may lead to reversal impairments that is
generally consistent with the “overdose” hypothesis ad-
vocated by authors of the behavioral studies. In intact
networks, negative feedback in the reversal stage was
associated with phasic dips in DA, which led to activa-
tion of striatal NoGo cells by transiently releasing them
from the inhibitory influence of DA. The activation of
these cells led to suppressing the execution of prepotent
responses, allowing networks to learn to reverse respond-
ing. In “overdosed” networks, a residual level of DA dur-
ing negative feedback continued to suppress NoGo cells
(via simulated D2 receptors), leading to response perse-
veration. This account predicts that tonic stimulation of
just the D2 receptor should produce similar reversal im-
pairments, which are indeed observed in both healthy hu-
mans and non-human primates administered D2 agonists
(Mehta, Swainson, Ogilvie, Sahakian, & Robbins, 2000;
Smith, Neill, & Costall, 1999).

The above account is also consistent with event-
related fMRI studies in humans showing caudate activa-
tion during the reception of negative feedback (Monchi,
Petrides, Petre, Worsley, & Dagher, 2001), and ventral
striatum activation during the final reversal error in a
probabilistic reversal task (Cools et al., 2002). Phasic
dips in DA during negative feedback should cause an in-
crease in fMRI signal due to the transient activation of
NoGo cells. In the probabilistic reversal task, striatal ac-



tivation was found specifically during the trial that par-
ticipants used negative feedback to successfully reverse
their behavior on subsequent trials.

Alternative mechanisms are possible to explain rever-
sal learning deficits in patients taking dopaminergic med-
ication. For instance, medication may simply prevent un-
learning in direct pathway Go cells, rather than suppress-
ing the learning of NoGo cells in the current model. In
support of this theory, rats with L-Dopa-induced dysk-
inesia had a selective impairment in the depotentiation
(i.e., reversal of LTP) of corticostriatal synapses (Picconi
et al., 2003), ostensibly due to changes in the D1 receptor
pathway. However, it is not clear whether this depotenti-
ation impairment alone can account for reversal deficits:
normal depotentiation takes in the order of ten minutes
and therefore is not sufficient to induce reversal in a mat-
ter of a few trials. Furthermore, the fact that D2 agonists
impair reversal implicates a role of the indirect pathway
to activate “NoGo” representations and actively avoid sit-
uations. Through its push-pull circuitry, the model sug-
gests that the BG is specialized to quickly learn changes
in rewarding information.

Relation to Other Models of DA in BG

Other computational models of the BG have focused
more on how response selection and reward information
may be implemented in biological circuitry (e.g., Brown
et al., 2004; Gurney et al., 2001; Beiser & Houk, 1998),
but to my knowledge have not attempted to model cog-
nitive implicit learning tasks. Thus it is unclear how
prior BG models would account for medicated and non-
medicated cognitive impairments in PD. Nevertheless, a
comparative analysis of the critical features of the cur-
rent model with that of others may explicitly demonstrate
both consistencies across models as well as novel aspects
of the current model that account for behavioral phenom-
ena.

The model builds on earlier work on the interactions
between the BG and prefrontal cortex in working mem-
ory (Frank et al., 2001), but differs from it in three key
aspects. First, the earlier model only included the di-
rect “Go” pathway, as its “NoGo” responses to task-
irrelevant stimuli were assumed and hand-wired. The
current model includes the competing processes of the
indirect pathway, and whether to gate (Go) or suppress
(NoGo) a response is learned. Second, the current model
includes the SNc/VTA so that the role of dopamine can
be implemented, with simulated D1 and D2 receptors in
the striatum. Third, the current model does not include
the prefrontal cortex or maintenance of information over
time, as the simulated tasks do not involve working mem-
ory. Instead, the cortical layer in the model is a simpler
premotor cortex, representing just two different possible

responses (although in principle it could be extended to
include several responses).

The model is consistent with other models of DA
in the BG (Taylor & Taylor, 1999; Monchi, Taylor, &
Dagher, 2000; Brown et al., 2004), in that dopamine has
a performance effect, by differentially modulating ex-
citability in the direct and indirect pathways. A notable
difference is that in the current model DA also enhances
contrast in the direct pathway by exciting highly active
units and suppressing weakly active units, instead of be-
ing globally excitatory. This modulatory effect is impor-
tant for selecting among competing responses, and is mo-
tivated by the observed D1 receptor activation excitation
of striatal cells in the “up-state”, but inhibition of those
in the “down-state”(Hernandez-Lopez et al., 1997).

Perhaps a more substantial difference is that while
prior models emphasize the tonic effects of DA, the cur-
rent model also incorporates phasic changes in DA re-
lease during positive and negative feedback. Positive
feedback results in a phasic burst of DA, transiently bi-
asing the direct pathway and suppressing the indirect
pathway. Negative feedback results in a phasic dip in
DA, and has the opposite effect. Learning is driven
by these transient changes: weight values are modified
based on the difference between phases of response se-
lection (hypothesized to involve moderate amounts of
DA) and error feedback (hypothesized to involve phasic
increases/decreases in DA). Reinforcement learning ac-
counts of DA in the BG have been suggested by others
(e.g., Doya, 2000; Suri & Schultz, 1999), and allow flex-
ible learning of rewarding and non-rewarding behaviors
that may change over time.

Another distinguishing feature in the current model
is that a particular response is selected by premotor cor-
tex — the BG simply gates this response if it detects
the conditions to be appropriate (i.e. predictive of re-
ward). Thus, the BG is not a stimulus-response mod-
ule, but instead modulates the efficacy of responses being
selected in cortex. This is consistent with observations
that striatal firing occurs after that in premotor cortex
and supplementary motor area (e.g., Crutcher & Alexan-
der, 1990; Alexander & Crutcher, 1990a, see also Mink,
1996).4 Thus, in contrast to the long held assumption
that the BG initiates motor responses, this model sug-
gests that it facilitates or gates responses that are being
considered in premotor cortex. The model further sug-
gests that cortical learning of response selection is me-
diated by way of DA reward system in the BG, but that
once this learning is achieved, the cortex itself selects

4Some, but not all, striatal neurons even fire after the onset of move-
ment. Note that this observation does not conflict with the hypothesized
role of the BG to gate or facilitate responses, because firing that occurs
after the onset of movement could be associated with either terminating
the initiated motor program or suppressing other competing programs.



the response. This is consistent with the observation that
Parkinson’s patients have specific trouble learning novel
motor actions, and with the hypothesis that the BG is
only necessary for the learning of new categories but not
for categorization behavior in experts, which may be me-
diated directly from perceptual to motor areas (Ashby
et al., 1998).

Implications for Frontal Deficits

That PD patients have both implicit learning and
frontal deficits — which are not intuitively related —
suggests that a better understanding of BG specializa-
tion would inform us about how cognition operates as
a functional system. The present work only modeled im-
plicit processes in habit learning, which do not have a
prefrontal component (Knowlton et al., 1996). However,
the same general structure of the model may be extended
to include prefrontal cortex, providing insight into the
roles of DA and the BG in executive and attentional pro-
cesses. Indeed, these roles may be very similar to those
in implicit learning, with the major difference being the
type of representations modulated in the targeted corti-
cal area — motor representations in premotor cortex, and
working memory in prefrontal cortex.

Based on the general suggestions of basal gan-
glia involvement in prefrontal circuits made by Alexan-
der and colleagues (Alexander et al., 1986; Alexander,
Crutcher, & DeLong, 1990; Middleton & Strick, 2000),
we developed a computational model that explicitly for-
mulated the role of the BG in working memory (Frank
et al., 2001). We suggested that just as the BG facilitates
motor command execution in premotor cortex by disin-
hibiting or “releasing the brakes”, it may also facilitate
the updating of working memory in prefrontal cortex.
If a given stimulus was learned to be task-relevant and
therefore suitable for maintenance in PFC, a “Go” signal
would be executed by activation of the BG direct path-
way, thereby disinhibiting the thalamus and “gating” the
updating of PFC.

In the above work (Frank et al., 2001), we briefly dis-
cussed the potential role of dopamine, suggesting that it
would be important for the learning of task-relevant stim-
uli via its reward signaling and modulation of synaptic
plasticity. In ongoing work (O’Reilly & Frank, submit-
ted), we are developing these ideas in a computational
model that integrates ventral and dorsal striatum with
prefrontal cortex maintenance to demonstrate how com-
plex working memory tasks may be learned. Consistent
with the present model, DA bursts in the BG preferen-
tially activate cells in the direct pathway via D1 recep-
tors, while suppressing cells in the indirect pathway via
D2 receptors. Thus, DA in the BG may have the effect
of boosting the updating of working memory by biasing

the direct pathway to win the competition for BG output.
A phasic dip in DA allows the BG to learn not to update
task-irrelevant information. The role of DA in the PFC
may be quite different, helping to robustly maintain in-
formation over time and in the face of interfering stimuli
(Durstewitz, Seamans, & Sejnowski, 2000), depending
on optimal levels of DA (Goldman-Rakic, 1996).

With the above model in mind, consider the effect of
dopaminergic dysfunction in the BG or PFC. A lack of
DA in the BG would lead to too little updating of rel-
evant information into PFC, just as it leads to too little
execution of motor commands. Conversely, too much
DA in the BG would lead to excessive updating of PFC,
as observed in L-Dopa induced motor tics and dyskine-
sia in Parkinson’s disease. Finally, a suboptimal level of
DA in the PFC would lead to insufficient maintenance of
task-relevant information. Any of these DA dysfunctions
would lead to “frontal-like” cognitive deficits.

While it is well accepted that the integrity of the
PFC is necessary for attentional processes, it is not clear
whether attentional deficits seen in PD patients are due
to dopaminergic pathology within the PFC itself, or
whether DA damage in the BG is sufficient to produce
frontal-like deficits due to its interconnections with PFC.
In support of the latter possibility, a positive correla-
tion was found between measures of attention and work-
ing memory and the level of L-Dopa accumulation in
the striatum of PD patients (Remy, Jackson, & Ribeiro,
2000). In monkeys, D2 agents have effects on working
memory tasks when applied systemically, but not when
directly infused into PFC (Granon, Passetti, Thomas,
Dalley, Everitt, & Robbins, 2000; Arnsten, Cai, Mur-
phy, & Goldman-Rakic, 1994; Arnsten, Cai, Steere, &
Goldman-Rakic, 1995), suggesting that D2 receptors are
only indirectly involved in frontal processes.

The current framework holds that D2 effects on
working memory are due to modulation of the BG
threshold for updating PFC. With high D2 stimulation
there is less “NoGo” so the threshold is lowered, and
with low D2 stimulation the threshold is raised. Note
that a raised threshold means that task-irrelevant stim-
uli are less likely to get updated. This is consistent
with observations that DA depletion to the BG (which
should raise the threshold for updating PFC) actually
makes monkeys less distractible to task-irrelevant stim-
uli during acquisition of an attentional set (Crofts, Dal-
ley, Collins, Van Denderen, Everitt, Robbins, & Roberts,
2001). However, this higher threshold may also make
them more rigid in what to pay attention to, so that they
are impaired in task-set switching.



Model Predictions

The main assumption built into the model (sup-
ported by data reviewed above) is that positive and neg-
ative feedback lead to transient bursts and dips in DA.
The model shows that these phasic changes can lead to
systems-level effects that modulate the BG threshold for
facilitating/suppressing cortical commands. Bursts of
DA suppress the NoGo pathway and sharpen represen-
tations in the Go pathway. Phasic dips of DA have the
opposite effect, releasing the indirect pathway from sup-
pression and allowing the model to learn “NoGo” to the
incorrect response. A number of testable predictions can
be derived from this model at both neural and behavioral
levels.

At the neural level, the model predicts that phasic
changes in DA support “Hebbian” learning by modulat-
ing neuronal excitability in the indirect pathway via D2
receptors. By transiently suppressing NoGo cells, DA
bursts should lead to LTD. Conversely, by transiently
exciting NoGo cells, DA dips should lead to LTP. This
prediction has not yet been tested directly (during en-
dogenous DA bursts/dips), but is consistent with obser-
vations that selective stimulation of D2 receptors leads to
LTD, whereas D2 blockade leads to LTP (Calabresi et al.,
1997).

The model suggests that a large dynamic range in
DA release is necessary for learning subtle differences
between positive and negative reinforcement values of
responses. Dopamine agonists and antagonists may re-
strict this range to be at the high and low ends of the DA
spectrum, respectively. In a probabilistic reinforcement
paradigm, participants administered D2 agonists should
easily learn to respond to stimuli having greater than
50% reinforcement probabilities, whereas those taking
D2 antagonists (and PD patients) should have an easier
time learning to avoid stimuli with lower reinforcement
probabilities. This is because D2 agonists bias the direct
pathway to be more active (by suppressing the indirect
pathway), enhancing the learning and execution of Go
responses. Parkinson’s disease or D2 antagonists should
bias the indirect pathway, enabling the learning of NoGo
responses.

In addition to modulating the threshold for learning
and executing responses, DA should play a similar role in
modulating the threshold for updating working memory,
discussed in the previous section. D2 agonists should
lower this threshold, increasing the amount of updating,
whereas D2 antagonists should reduce the amount of up-
dating. Whether these drugs improve or worsen working
memory performance should depend on both the base-
line level of updating in the individual (see Kimberg,
D’Esposito, & Farah, 1997), and the amount of con-
flict/interference in the particular task. Specifically, if

a working memory task involves distracting information,
a lower threshold for updating may result in increased
distractibility and impulsiveness because the participant
may have trouble ignoring task-irrelevant stimuli. Con-
versely, if the task simply involves recalling a previously
stored memory in the absence of distracting information,
D2 agonists should improve performance because they
should cause more updating and subsequent maintenance
of working memory.

Model Limitations and Future Directions

The model does not differentiate between different
parts of the striatum. In fact, the same model is used
to simulate probabilistic classification and reversal tasks,
which are thought to depend on the dorsal and ventral
striatum, respectively. It is at present unclear why these
two tasks, which both involve learning response selec-
tion via trial-and-error feedback, should involve sepa-
rate striato-cortical circuits. However, one possibility is
that the differences lie in the content of cortical targets:
dorsal striatum modulates motor information in premo-
tor cortex, whereas ventral striatum targets reward infor-
mation in orbitofrontal cortex (OFC) (Alexander et al.,
1986; Gottfried, ODoherty, & Dolan, 2003). In rever-
sal learning, a stimulus that has a prepotent reward value
suddenly becomes non-rewarding, and OFC representa-
tions may be especially important to support top-down
activation of “NoGo” representations in the ventral stria-
tum. In probabilistic classification, response selection
processes for discriminating among multiple cues may
more heavily tax the dorsal striatum. The functional con-
tributions of these two circuits working in tandem will be
more explicitly explored in future work.

The present model highlights the importance of dy-
namic DA modulation in the BG. However, it does not
address the brain mechanisms which cause phasic bursts
and dips in DA during positive and negative feedback.
Instead, this was assumed, and phasic changes in DA
were simply set, depending on probabilistic feedback.
This implementation does not capture the fact that as
learning progresses and rewards become expected, pha-
sic bursts of DA no longer occur during reward but are
instead transferred to an earlier stimulus that predicts
reward (Ljungberg, Apicella, & Schultz, 1992), as im-
plemented in temporal differences (TD) reinforcement
learning algorithms (Sutton, 1988). The simple imple-
mentation described in this paper is sufficient for two rea-
sons: a) the tasks are probabilistic, so that positive feed-
back is never fully predicted (and may therefore always
result in a DA burst), and b) even if phasic changes in DA
are reduced as outcomes are more expected, this would
simply lead to stable performance once the probabilis-
tic structure is learned. A TD-like mechanism is critical



in more complex working memory tasks, in which the
model has to update and maintain information in one trial
to obtain positive reinforcement a few time steps later.

The above discussion makes it clear that the role of
DA in the BG in modulating prefrontal function is more
complex and needs to be further investigated. While
it was briefly considered how DA might modulate the
threshold for updating information in PFC, it has not yet
been tested whether this would allow for selective updat-
ing of task-relevant information, but not that of irrelevant
distracting information. By merging aspects of our initial
BG-PFC model of working memory (Frank et al., 2001)
with that of the current model, we are currently exploring
these issues (O’Reilly & Frank, submitted).

Conclusion

When systems level interactions of multiple brain re-
gions are involved, computational investigations provide
a valuable complement to experimental brain research.
The current model of DA in the BG provides a working
hypothesis that can be tested experimentally and behav-
iorally.

Methods

Implementational Details

The model is implemented using a subset of
the Leabra framework (O’Reilly & Munakata, 2000;
O’Reilly, 1998). The two relevant properties of this
framework for the present model are a) the use of a point
neuron activation function; and b) the k-Winners-Take-
All (kWTA) inhibition function that models the effects
of inhibitory neurons. These two properties are described
in detail in the above references, and also in Frank et al.
(2001). Only specific methods related to the present
model are described below.

Probabilistic Classification Simulation

For the weather prediction task, the same probabilis-
tic structure was used as in the original study (Knowl-
ton et al., 1994), in terms of both frequency of presenta-
tion of individual cue combinations, and their probability
of being associated with an outcome of “rain” or “sun”.
Thus, patterns were presented to the network consisting
of one to three cues in blocks of 100 trials. Each cue
was represented by a single column of units in the input
layer. Thus, a trial that includes cues 1 and 3 together
was simulated by activating the first and third column of
units in the input (figure 4). This cue combination was
presented in six out of 100 trials (for frequency of 6 %),

of which five of them would involve positive feedback
for a rain response, and negative feedback for a sun re-
sponse (for a probability of 83.3 % rain). The two poten-
tial responses in premotor cortex were left and right, cor-
responding to buttons pushed by participants to respond
“sun” or “rain”.

Probabilistic Reversal Simulation

Just as in the WP task, each of the two stimuli in
the PR task were represented by a column of units in
the input layer. Unlike the WP task, the potential re-
sponses involve directly selecting one of the two stim-
uli in the input (i.e. two alternative forced choice). The
actual motor response (i.e., left/right) is not as relevant
in this case, because the correct stimulus appears just as
often on the left and right sides of the screen. Instead,
responses are likely selected relative to a particular stim-
ulus that is being considered; the participant can either
select it, or switch to the other stimulus. To address this
in the model, a stimulus selection process was imple-
mented. In any given trial, attention is randomly directed
to one stimulus with only contextual information about
the other. Potential responses were simply to “approach”
the attended stimulus, or to “switch” to the context stim-
ulus. This was modeled by making one of the stimuli
more salient: the attended stimulus had all five units in
its column fully activated, whereas the context stimulus
had only 3 (randomly selected) units weakly activated,
with a mean activation of 0.25 and a variance of 0.35. A
similar method was implemented to model a two alterna-
tive forced choice task in previous work (Frank, Rudy, &
O’Reilly, 2003).

Parameters for D1 Contrast Enhancement

A simplified version of the Leabra activation function
is presented here, to provide context for the parameters
associated with contrast enhancement.

Activation communicated to other cells (yj) is a
thresholded (Θ) sigmoidal function of the membrane po-
tential with gain parameter γ:

yj(t) =
1

(

1 + 1
γ[Vm(t)−Θ]+

) (1)

where [x]+ is a threshold function that returns 0 if x < 0
and x if X > 0. In actual implementation, a less discon-
tinuous deterministic function with a softer threshold is
used (see O’Reilly, 1998; O’Reilly & Munakata, 2000),
but the differences do not effect the contrast enhance-
ment manipulations.

The default activation gain, γ, is 600. The default
membrane potential firing threshold, Θ, is 0.25. These



parameters were used for tonic levels of DA. For con-
trast enhancement during phasic DA spikes, the activa-
tion gain was increased to 10000*k, and the threshold
was increased to 0.25 + 0.04*k, where k is the percent-
age of intact SNc units (k = 1 for control networks;
k = 0.25 for PD networks). This has the effect of sup-
pressing units that do not meet the higher threshold, but
enhancing activity in units that are above this threshold.
During phasic dips of DA, the activation gain was re-
duced to 600 - k*300, and the threshold was 0.25.
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