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Computational models of motivated action selection in
corticostriatal circuits
Michael J Frank1,2,3

Computational models of the basal ganglia have matured and

received increasing attention over the last decade. This article

reviews some of the theoretical advances offered by these

models, focusing on motor and cognitive action selection,

learning, and the interaction between multiple corticostriatal

circuits in selection and learning.
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Introduction
The last decade has seen an explosion in the devel-

opment of and attention to computational models of

basal ganglia (BG) function. A Google Scholar search

for articles mentioning both ‘computational model’ and

‘basal ganglia’ yields 2960 matches in the last twenty

years, with 2550 of them appearing in the last decade

alone, comprising more than a ten-fold increase. This

surge seems not related to increased attention to either

modeling or BG research by themselves: either

term alone yielded a roughly even distribution across

decades.

What accounts for this selective jump in focus on models

of basal ganglia? A potential clue comes from another

search: the number of articles mentioning the general

term ‘action selection’ — perhaps the primary function

attributed to the BG — has increased sharply from 2000

in the 1990s to 16,100 across decades. Action selection is a

computational problem which, particularly when com-

bined with the notorious complexity of BG circuitry, lends

itself well to modeling. Indeed, the joint terms ‘compu-

tational model’, ‘basal ganglia’, and ‘action selection’ yield

694 results in the last decade, compared with just 29 in the

1990s — comprising a twenty-fold leap.

Several other factors are undoubtedly at play. But as

James [1] noted, ‘selection is the keel on which our

mental ship is built’. The connection between the BG

and action selection has been studied intensively [2–5],

with computational accounts initially and/or most promi-

nently offered by Houk [6,7] and Barto [8], followed by

Doya [9], Gurney [10], and several others [11–13].

Building on these approaches, many BGmodels now exist

at different levels of analysis — from biophysical to algo-

rithmic — each attempting to account for varying degrees

of physiological, behavioral and pharmacological data

across species. Some of the main issues simulated in

network models are: the fundamental disinhibitory mech-

anisms of BG processing which act to ‘gate’ motor pro-

grams [14]; pathological states associated with disease

(e.g. Parkinson’s); the transformations from motivation

to action, from motor to cognitive to affective states, goals

and their interactions. Below is a brief survey.

Basic action selection framework
In 1999, Redgrave and colleagues noted that the BG are

well preserved across species and proposed that, by

implementing a central switchboard-like selection mech-

anism, it constitutes a ‘vertebrate solution to the selection

problem’ [5]. Detailed computational simulations of the

proposal ensued [10]. In these models, the cortex

represents the salience of multiple competing actions

in separate ‘channels’. The primary function of the BG

is to inhibit all of these channels (via tonically active

GABAergic neurons in BG output structures). The stria-

tum can then disinhibit one of these channels by releasing

tonic inhibition and selectively boosting activation of the

most salient channel. Thus the BG do not select the

actions themselves but rather facilitate their execution via

the ‘direct pathway’ from striatum to BG output struc-

tures, consistent with the proposal of Mink [4]. In con-

trast, the classical ‘indirect pathway’, which traverses the

pallidum and subthalamic nucleus before targeting BG

output structures, was generally thought to antagonize the

direct pathway by suppressing unwanted movements

[15,4]. Gurney et al recast this pathway in terms of a

control process to support ‘capacity scaling’ — that is to

ensure that no matter how many channels are active in

cortex, only one will be gated. These models have

evolved substantially in the past decade, and there are

now large scale and more physiologically realistic versions
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[16��], as well as abstract algorithmic approaches linking

the architecture of BG circuitry to optimal decision mak-

ing theories [17].

Learning to select
The above models assume that to-be-selected action is

signaled by the input channels (e.g., cortex) to be most

salient, with this information passed unmodified by the

BG. Other approaches focus on how the BG may learn

which actions are most rewarding by experience. This

literature is influenced by a wide range of evidence that

the BG, and particularly the modulation of its activity

and plasticity by dopamine, plays a key role in

reinforcement learning [2] and is necessary for the

acquisition, but not always expression, of simple

stimulus–response associations [18,19]. Many compu-

tational models have linked the phasic bursts and dips

observed in midbrain dopamine neuron activity [20] to

reward prediction error signals that serve to drive learn-

ing in the BG [8,9,21��].

More recent mechanistic network models have integrated

the selection and learning mechanisms into a single

model including the direct, indirect and hyperdirect path-

ways of the BG, with different model neurons to simulate

physiological properties of the different nuclei [13,12,22].

These models adopt the notion that the cortex generates

candidate actions for a given sensory context, and that the

BG selectively gate one (or a subset) of these actions by

disinhibiting thalamocortical activity for the winning

action(s). However, instead of always gating the most

salient actions, these models assume that the striatum

transforms the cortical representations into reinforcement

values, such that actions with the highest value are most

likely to be gated. Dopamine modifies both activity and

plasticity in the striatum. Phasic bursts of dopamine

enhance corticostriatal synaptic plasticity via D1 receptor

stimulation in the direct pathway [23,13,9,12], such that

high value actions become more strongly represented.

Some models also include a separate function for the

indirect pathway, generally consistent with earlier ideas

that this pathway acts to suppress movement [15,24,4],

but does so in proportion to the learned negative value of

an action [13]. Specifically, midbrain dopamine neurons

reliably pause as a function of negative reward prediction

errors (i.e. when outcomes are worse than expected;

[21��]). In the model striatum, the resulting drop in

dopamine concentration transiently increases excitability

and strengthens corticostriatal synaptic plasticity in indir-

ect pathway striatal cells, by removing the tonic inhibitory

effect of dopamine onto high affinity D2 receptors pre-

dominantly expressed in these cells [13,25]. Conversely,

when positive outcomes occur, dopamine bursts further

inhibit D2 cells and act to weaken these synapses. As a

result, indirect pathway cells differentially respond to

actions that have negative value. Because direct and

indirect pathway cells compete at BG output, the action

most likely to be gated is a function of the difference in

activity in these pathways for each action in parallel.

Evidence for these posited model mechanisms has

mounted over the last decade. Electrophysiological stu-

dies have identified separate populations of striatal cells

associated with action facilitation vs. suppression [26,27]

and that code for positive and negative action values

[28,29]. These studies could not identify whether these

populations correspond to the direct and indirect path-

ways. However, experiments using sophisticated genetic

manipulations have confirmed selective roles of direct

and indirect pathways in the facilitation and suppression

of behavioral output [30��], with opposing modulations of

synaptic plasticity in these pathways as a function of D1

and D2 receptor stimulation [31��], that support reward

and punishment learning, respectively [32��]. When

dopamine levels are elevated pharmacologically, optoge-

netic stimulation of the direct or indirect pathway

enhances or diminishes reward learning [33]. These find-

ings all converge with the above model mechanisms

suggesting that dopamine promotes reward learning by

modulating activity-dependent plasticity in striatal direct

and indirect pathway cells in opposite directions. Analo-

gous findings have been found in humans: striatal dopa-

mine manipulation influences the degree to which

individuals learn more from positive or negative out-

comes, with DA elevations enhancing reward learning

but impairing punishment learning, and vice-versa for DA

depletion [34–36], and these learning modulations are

accompanied by altered striatal responses to reward pre-

diction errors [37��]. Further, genetic variants affecting

striatal D1 and D2 receptor function are predictive of

individual differences in learning from positive and nega-

tive prediction errors [38, for review].

What might be the advantage of having two opposing

pathways instead of just a single pathway that learns a

single probabilistic reward value for each actions? First, it

is possible that the anatomical intermingling of direct and

indirect pathway cells allows the system to act as a

differential amplifier by subtracting away correlated noisy

activity from both projection pathways, so that what is left

at BG output is only the difference in learned value for

each action. Second, simulations showed that the dual

pathway mechanism, together with sufficient dynamic

range in dopamine signals, allows networks to resolve

subtle differences in probabilistic reward values of actions

depending on the combination of stimuli [13]. Here the

indirect pathway can act as a ‘veto’ to prevent actions that

would normally be considered adaptive from being exe-

cuted in a particular stimulus context [13,12,39]. Recent

physiological data provide a novel mechanism by which

this veto function could occur: indirect pathway cells were

found to inhibit their direct pathway neighbors (via

inhibitory recurrent collaterals), but not vice versa [40].

Third, having separate representations of positive and
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negative value across pathways allows these representa-

tions to be differentially emphasized during action selec-

tion. Specifically, tonic dopamine levels can also be

modulated separately from phasic signals, and optimized

as a function ofmotivational state [41]. Because dopamine

modulates striatal activity in opposite directions in the

two pathways, tonic dopamine can act as a knob to

primarily emphasize learned positive or negative prospec-

tive outcomes when making decisions (e.g., higher levels

would suppress the representation of negative value by

inhibiting the indirect pathway). Supporting this depic-

tion, tonic dopamine manipulations influence the degree

to which action selection is sensitive to previously learned

benefits vs. costs [42,43], the latter of which are coded in

the indirect pathway [44]. Finally, the two pathwaymodel

can explain aspects of appetitive and aversive/avoidance

learning due to dopaminergic manipulations that are

quickly renewed after extinction [45��,46].

Although the opposing pathway model has been ques-

tioned [47], the converging evidence for it implies that

when faced with challenging data, parsimonious theories

that explain a range of data need not be replaced

altogether. Instead, they can be refined by new develop-

ments of anatomical and physiological constraints, and

more nuanced dynamics [25]. For example, the subtha-

lamic nucleus (STN), originally conceptualized as part of

the indirect pathway [15,24], now forms the major node of

a third hyperdirect pathway (from cortex to STN to BG

output) which provides global inhibition of all actions.

Simulated STN activity (and hence global inhibition)

unfolds dynamically during response selection, and is

particularly influential in situations of high conflict (i.e.,

when multiple actions are strongly activated simul-

taneously) to prevent premature responding [22] or to

inhibit actions altogether if need be [48]. Thus, the

cortico-STN pathway can modulate the dynamics of

action selection by regulating the amount of striatal

activity needed to gate a response (i.e., the threshold

to disinhibit BG output structures), without interfering

with the striatal valuation process itself. Simulations

suggest that this mechanism is adaptive and can account

for various physiological and behavioral data not con-

sidered in the original direct/indirect pathway model

[22,49,48,50], while not replacing that model altogether.

Cognitive action selection and learning
In many contexts, action selection encompasses much

more than simply facilitating or suppressing motor actions

as a function of learned value in particular sensory con-

texts. For example, action selection may be contextua-

lized by prior states (sensory, motor, or cognitive), which

can be maintained in working memory. In this scenario,

action selection can proceed as usual, but with the

stimulus context expanded to include internal states.

Moreover, the decision of which states to update and

subsequently maintain in memory, and which to ignore, is

itself an action selection process that benefits from ana-

logous gating and learning mechanisms in circuits linking

striatum with prefrontal cortex [51,52]. Recent empirical

data support this scheme [53��–55].

Another example of cognitive influences on action selec-

tion concerns ‘goal-directed behavior’. Both animals and

humans can flexibly decide to select a usually rewarding

action depending on whether the anticipated outcome is

currently desired. With repeated selection, actions can

become ‘habitual’ and thereby insensitive to changes in

valuation of the outcome [56]. Computational models

have described these processes in terms of a competition

between prefrontal and striatal systems for behavioral

control, with the prefrontal cortex representing the

anticipated reward outcome associated with current or

future states, and the striatum implicitly (but less flexibly)

learning probabilistic values of stimulus-response pair-

ings as a function of reward prediction errors [57��,58]. As

behaviors are well learned, the ingrained striatal associ-

ations dominate and habits emerge. Finally, several

repeated pairings of sensory and cortical motor states

gives way to a third stage, in which corticocortical associ-

ations are sufficiently strong to elicit automatized

responding even before striatal gating signals occur

[7,13,58,59].

Although these models have heuristic value, some aspects

will need to be refined. Lesion and pharmacological

studies have shown that the habit and goal-directed

computations are supported by distinct corticostriatal

circuits (with each system having both striatal and frontal

components) rather than by PFC and striatum as two

categorical competitive entities [56]. Recent physiologi-

cal data suggest that learning in these two circuits occurs

in parallel, and that the cognitive circuit simply prevents

the habitual circuit from controlling behavior during

initial task acquisition [60��].

Moreover, cognitive and motor corticostriatal circuits are

not completely segregated. Indeed, anatomical data now

suggest a substantial degree of convergence and crosstalk,

such that prefrontal cortex can influence motor striatum

[61] (Figure 1). Neural models have simulated this sort of

interaction, whereby prefrontal cortical representations of

instructed cognitive rules can directly guide striatal action

selection before procedural learning occurs [62]. Further,

this prefrontal modulation modulates not only striatal

activity, but also activity-dependent plasticity, thereby

sculpting striatal action policies to ingrain rule-like beha-

viors — even when the rule turns out to conflict with

experienced reinforcement contingencies [62]. When

modeled algorithmically, this prefrontal-BG ‘Bias’ model

provided a better quantitative fit to human participant

choices, and the neurogenetic predictors thereof, than did

an alternative model in which the striatum simply com-

petes with (or is overridden by) PFC rules at the level of
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motor output [62,63]. Moreover, this type of inter-circuit

interaction has been extended to include multiple hier-

archically nested corticostriatal circuits, whereby anterior

‘higher level’ circuits select more abstract actions that

constrain attention, action selection and learning in the

more posterior circuits, facilitating the discovery of higher

order abstract rules [64]. Others have proposed a cascad-

ing interactive corticostriatal circuit model that supports

sequencing of linguistic speech productions [65].

Conclusion
Much remains to be explored with models of basal

ganglia, and this review constitutes only a very brief

and selective survey of existing models. For example,

models have begun to investigate the learned responses

of cholinergic interneurons and their modulation of

striatal plasticity [39]. Further work will need to con-

sider the implications of back-projections from palli-

dum and thalamus to striatum, the role of striosomes,

serotonin, adenosine, and a host of other factors. At the

larger scale, models will have to consider communi-

cations not just between multiple corticostriatal cir-

cuits, but from hippocampus, cerebellum, and other

structures to the BG. These interactions are likely

involved in more sophisticated versions of action selec-

tion that will also benefit from formal analysis. As these

complexities are taken into account, computational

models — constrained and refined by emerging

data — are expected to play an increasingly important

role in shaping theorizing.
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Interacting corticostriatal circuits contributing to action selection at various levels of analysis. Colored projections reflect subsystems associated with

value/motivation (red), working memory and cognitive control (green), procedural and habit learning (blue), and contextual influences of episodic

memory (orange). Subregions within the basal ganglia (BG) act as gates to facilitate or suppress actions represented in frontal cortex. These include

parallel circuits linking the BG with motivational, cognitive, and motor regions within the prefrontal cortex (PFC). Recurrent connections within the PFC

support active maintenance of working memory (WM). Cognitive states in dorsolateral PFC (dlPFC) can influence action selection via projections to the

circuit linking BG with the motor cortex. Dopamine (DA) drives incremental reinforcement learning in all BG regions, supporting adaptive behaviors as a

function of experience. Reprinted from Frank et al. (2009). Current Directions in Psychological Science 18:73–77.
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