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The authors explore the division of labor between the basal ganglia–dopamine (BG-DA) system and the
orbitofrontal cortex (OFC) in decision making. They show that a primitive neural network model of the
BG-DA system slowly learns to make decisions on the basis of the relative probability of rewards but is
not as sensitive to (a) recency or (b) the value of specific rewards. An augmented model that explores
BG-OFC interactions is more successful at estimating the true expected value of decisions and is faster
at switching behavior when reinforcement contingencies change. In the augmented model, OFC areas
exert top-down control on the BG and premotor areas by representing reinforcement magnitudes in
working memory. The model successfully captures patterns of behavior resulting from OFC damage in
decision making, reversal learning, and devaluation paradigms and makes additional predictions for the
underlying source of these deficits.
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What enables humans to make choices that lead to long-term
gains, even when having to incur short-term losses? Such decision-
making skills depend on the processes of action selection (choos-
ing between one of several possible responses) and reinforcement
learning (modifying the likelihood of selecting a given response on
the basis of experienced consequences). Although all mammals
can learn to associate their actions with consequences, humans are
particularly advanced in their ability to flexibly modify the relative
reinforcement values of alternative choices to select the most
adaptive behavior in a particular behavioral, spatial, and temporal
context.

The behavioral and cognitive neurosciences have identified two
neural systems that are involved in such adaptive behavior. On the
one hand, the basal ganglia (BG) and the neuromodulator dopa-
mine (DA) are thought to participate in both action selection and
reinforcement learning (Beiser & Houk, 1998; Brown, Bullock, &
Grossberg, 1999, 2004; Frank, 2005; Frank, Loughry, & O’Reilly,
2001; Gurney, Prescott, & Redgrave, 2001; Mink, 1996; O’Reilly
& Frank, 2006). Patients with Parkinson’s disease (PD), who have
low levels of DA in the BG, are impaired at making choices that
require learning from trial and error (Cools, 2005; Knowlton,
Mangels, & Squire, 1996; Shohamy et al., 2004). Biologically
based computational models demonstrate how the BG-DA system
can learn to make adaptive choices (Brown et al., 2004; Frank,

2005) and provide an account for how this is impaired in PD
(Frank, 2005).

On the other hand, various lines of evidence suggest that ven-
tromedial and orbitofrontal cortices are critical for adaptive deci-
sion making in humans and that homologous areas support more
primitive forms of this behavior in animals (Kringelbach & Rolls,
2004; Rolls, 1996; Schoenbaum, Setlow, Saddoris, & Gallagher,
2003; Tremblay & Schultz, 2000). Patients with orbitofrontal
cortex (OFC) damage exhibit decision-making deficits in their
everyday lives, which have also been documented in the laboratory
(Bechara, Damasio, Tranel, & Anderson, 1998). Drug abusers,
who are almost by definition poor decision makers, have reduced
OFC metabolism and gray matter volume (Milham et al., 2006;
Volkow, Fowler, & Wang, 2003). Finally, OFC lesions impair
one’s ability to learn when previous reward associations no longer
apply, as in reversal learning (Chudasama & Robbins, 2003; Jones
& Mishkin, 1972). Thus, both the BG-DA and OFC systems have
been implicated in decision making and reinforcement and reversal
learning, but surprisingly little theoretical work addresses how
these systems are related or interact. Given that the OFC is a recent
structure phylogenetically, a reasonable question to ask is “What
unique function does the OFC contribute to decision making that
is not supported by the more primitive BG-DA system?”

In this article, we extend a previous neural network model of the
BG-DA system (Frank, 2005) to explore additional contributions
of the OFC that enable adaptive and flexible decision making. In
brief, this account is consistent with the idea that the BG system is
specialized to slowly integrate positive and negative outcomes
over multiple trials, resulting in the ingraining of motor habits
(Jog, Kubota, Connolly, Hillegaart, & Graybiel, 1999). The model
accomplishes this by learning go to facilitate responses that gen-
erally lead to positive outcomes while concurrently learning no-go
to suppress inappropriate responses (Frank, 2005). In contrast, the
prefrontal cortex (PFC) actively maintains information in working
memory via persistent neural firing (Fuster, 1997; Goldman-Rakic,
1995; Miller, Erickson, & Desimone, 1996), and this has a top-

Michael J. Frank and Eric D. Claus, Department of Psychology and
Center for Neuroscience, University of Colorado at Boulder.

This research was supported by Office of Naval Research Grant
N00014-03-1–0428 and National Institutes of Health Grant MH069597-
01. We thank Seth Herd and Randy O’Reilly for helpful discussion of these
ideas.

Correspondence concerning this article should be addressed to Michael
J. Frank, who is now at the Laboratory for Neural Computation and
Cognition, Department of Psychology and Program in Neuroscience, Uni-
versity of Arizona, 1503 East University Boulevard, Building 68, Tucson,
AZ 85721. E-mail: mfrank@u.arizona.edu

Psychological Review Copyright 2006 by the American Psychological Association
2006, Vol. 113, No. 2, 300–326 0033-295X/06/$12.00 DOI: 10.1037/0033-295X.113.2.300

300



down biasing effect to guide behavior (J. D. Cohen, Dunbar, &
McClelland, 1990; Miller & Cohen, 2001). This active incorpora-
tion of recent contextual information can both complement and
compete with more latent habitual representations (e.g., Morton &
Munakata, 2002). Further, this model adheres to a dominant theory
of PFC function, suggesting that separate areas within the PFC are
distinguished primarily by the type of information maintained in
working memory (Goldman-Rakic, 1995), with the OFC repre-
senting reward values (Elliott, Dolan, & Frith, 2000; Schoenbaum
& Roesch, 2005; Schoenbaum & Setlow, 2001; Tremblay &
Schultz, 1999). More specifically, medial and lateral areas of the
OFC represent positive and negative outcomes of decisions, re-
spectively (Gottfried, O’Doherty, & Dolan, 2002; O’Doherty,
Kringelback, Rolls, Hornak, & Andrews, 2001; Rolls & Krin-
gelbach, 2003; Ursu & Carter, 2005). By actively maintaining this
information in working memory, these OFC areas have a top-down
biasing effect on response selection processes of the BG and
premotor cortex.

The net result is that the BG-DA system is well suited to learn
to make choices based on their relative probability of resulting in
a positive outcome, but the OFC is necessary to provide active
working memory of the relative magnitudes of gain–loss informa-
tion. The combination of the two systems results in an improved
representation of the true expected value of a given decision.
Through explicit simulations, our augmented model accounts for
decision-making deficits in OFC patients, making specific predic-
tions for different patterns of lateral versus medial lesions. Further,
the same OFC mechanisms are leveraged to be able to quickly
modify reward associations when these suddenly change, as in
reversal learning. Finally, simulation of OFC and striatal damage
in our model produces qualitatively similar behavioral deficits
observed in these clinical populations.

Because our primary goal is to develop a theoretical framework
for understanding the differential neural system contributions to
decision making, we review studies with relevant neural data
across rats and nonhuman primates (for which direct neural re-
cording and lesion data are abundant) and humans (providing
assurance that similar neuronal functions hold across species).
These converging data constrain the mechanisms simulated in our
model, so that it is not dependent on a single result from any
particular study but rather includes results that have been observed
across multiple studies and species.

Anatomy of a Decision

Several interacting brain regions participate in decision-making
processes, including but not limited to the BG, parietal cortex,
PFC, and subdivisions therein, and both the anterior and posterior
cingulate cortices (McCoy & Platt, 2005; Platt, 2002). Here we
focus on (a) the subcortical BG-DA system and its interactions
with the premotor cortex and (b) the ventromedial and orbitofron-
tal cortices and their top-down influence on (a).

BG-DA

Our framework for conceptualizing the role of the BG in deci-
sion making builds on suggestions by Mink and others (O. Hiko-
saka, 1998; Mink, 1996) about the role of the same structures in
motor control. In particular, the BG are thought to modulate the
selection of actions being considered in the frontal cortex (Brown

et al., 2004; Frank, 2005; Frank et al., 2001; Gurney et al., 2001;
O. Hikosaka, 1998; Mink, 1996; Rubchinsky, Kopell, & Sigvardt,
2003). More specifically, two main projection pathways from the
striatum proceed through different BG output structures on the
way to the thalamus and up to the cortex (Alexander & Crutcher,
1990a; Alexander, Crutcher, & DeLong, 1990; see Figure 1a).
Activity in the direct pathway sends a go signal to facilitate the
execution of the most appropriate cortical response, whereas ac-
tivity in the indirect pathway sends a no-go signal to suppress
competing responses.

We do not intend to suggest that the BG act as a homunculus,
somehow magically pulling the levers to decide which action is
most appropriate. Rather, our account of how the BG learn the
distinction between adaptive and maladaptive responses incorpo-
rates findings by Schultz and others that phasic changes in DA
release are critically involved in reinforcement learning processes
that can train the BG to function adaptively (e.g., Schultz, 1998,
2002; Schultz, Dayan, & Montague, 1997; Wickens, 1997). Under
normal conditions, DA cells fire at intrinsic baseline levels. When
animals (both rats and primates) make choices that lead to unex-
pected rewards (i.e., rewards that were not predicted on the basis
of previous experience with the chosen option), transient bursting
of dopaminergic cells and DA release are observed. Conversely,
choices that do not lead to reward when a reward is expected are
associated with dips in DA firing that drop below baseline (Holler-
man & Schultz, 1998; Pan, Schmidt, Wickens, & Hyland, 2005;
Satoh, Nakai, Sato, & Kimura, 2003; Schultz, 2002).

Computational models have suggested that the primary effect of
DA in the BG is to enhance go firing and suppress no-go firing
(Brown et al., 2004; Frank, 2005). This is supported by the
observation that go and no-go cells primarily express D1 and D2

receptors, respectively (Aubert, Ghorayeb, Normand, & Bloch,
2000; Gerfen, 1992; Wise, Murray, & Gerfen, 1996). Given that
DA is excitatory to synaptic input on D1 receptors (Hernandez-
Lopez, Bargas, Surmeier, Reyes, & Galarraga, 1997), its effect is
to increase go activity. And given that DA is inhibitory on D2

receptors (Hernandez-Lopez et al., 2000), its effect is to suppress
no-go activity. Thus, increases in DA during positive reinforce-
ment lead to transient changes in go/no-go activity, which in turn
drive Hebbian learning in opposite directions in the two types of
cells so that the animal is more likely to facilitate the action that
led to reinforcement (Frank, 2005; Houk & Wise, 1995; Joel &
Weiner, 1999). This is consistent with observations that DA en-
hances synaptic plasticity and promotes long-term potentiation via
D1 receptors (go pathway) while promoting long-term depression
via D2 receptors (no-go; Centonze, Picconi, Gubellini, Bernardi, &
Calabresi, 2001; Nishi, Snyder, & Greengard, 1997). Conversely,
DA dips during negative reinforcement may also be adaptive, in
that they can drive no-go learning to avoid selecting the nonrein-
forced response in the future (Frank, 2005).1 Specifically, low

1 Although the change in firing rate associated with DA dips is smaller
than that of the bursts (due to already low baseline firing rates of DA cells;
Bayer & Glimcher, 2005), this asymmetry does not mean that dips are less
effective in driving learning. For example, the smaller range of DA dips is
likely compensated for by a counteracting asymmetry in the receptor
sensitivity to dips versus bursts. In particular, because DA has greater
affinity for the D2 than for the D1 class of receptors (Creese et al., 1983),
D2 receptors are very sensitive to low tonic DA levels, whereas large
increases in DA are required to functionally stimulate D1 receptors (e.g.,
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levels of DA release no-go cells from inhibition (via lack of
binding to D2 receptors), allowing them to become more excited
than their go counterparts and driving Hebbian learning in the
opposite direction of DA bursts. Supporting this hypothesis, block-
ade of D2 receptors is associated with enhanced no-go activity and
associated increases in long-term potentiation (Calabresi et al.,
1997; Finch, 1999; Robertson, Vincent, & Fibiger, 1992).

As DA bursts and dips reinforce go and no-go representations in
the BG, the previous model showed that the most adaptive (i.e.,
rewarding) responses represented in premotor areas tend to be
facilitated, whereas less adaptive ones are suppressed. Further, as
the BG learn to facilitate adaptive responses, the associated adap-
tive representations may become enhanced in premotor cortical
areas. In this way, DA reward processes within the BG may
ingrain prepotent motor habits in cortical areas (Frank, 2005).
Once these habits are ingrained, there is less need for selective
facilitation by the BG. This is consistent with observations that
dopaminergic integrity within the BG is much more critical for the
acquisition rather than the execution of instrumental responses
(Parkinson et al., 2002; Smith-Roe & Kelley, 2000) and with
recent physiological observations that learning-related activity is
initially seen in the BG and is observed only later in the frontal

cortex (Delgado, Miller, Inati, & Phelps, 2005; Pasupathy &
Miller, 2005).

OFC

Several lines of evidence suggest that the OFC is critical for
more flexible, advanced forms of representing expected value
(Rolls, 2004; Schoenbaum & Roesch, 2005; Tremblay & Schultz,
1999, 2000). In particular, we suggest that the OFC participates in
decision making much in the same way as the dorsolateral PFC is
thought to subserve cognitive control processes, via maintenance
of goal-directed actions (Frank et al., 2001; Miller & Cohen, 2001;
O’Reilly, Noelle, Braver, & Cohen, 2002; Schoenbaum & Setlow,
2001). Although dissociations have been found between the dor-
solateral PFC and the OFC for the processes of working memory
and decision making, respectively (Bechara et al., 1998), we
suggest that the difference in these two regions is not in function
but in the content of working memory representations (e.g.,
Goldman-Rakic, 1995). Specifically, we argue that the OFC is
specialized to maintain recent gain–loss information in working
memory and that this can have a top-down biasing effect on the
more primitive BG system, as well as having direct effects on
motor responding in frontal motor areas (Wallis & Miller, 2003).
The firing of OFC neurons is thought to represent the current
behavioral strategy; this is particularly evident when the outcome
predicted by a stimulus is altered or reversed (Schoenbaum, Chiba,
& Gallagher, 2000). The need for such a system in decision
making would be particularly evident in cases for which the best
decision depends on rapidly changing factors along with consid-
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Figure 1. a: The cortico-striato-thalamo-cortical loops, including the direct and indirect pathways of the basal
ganglia. The cells of the striatum are divided into two subclasses based on differences in biochemistry and
efferent projections. The go cells project directly to the the internal segment of the globus pallidus (GPi)–
substantia nigra pars reticulate (SNr), and their activity disinhibits the thalamus, thereby facilitating the
execution of a cortical response. The no-go cells are part of the indirect pathway to the GPi-SNr and have an
opposing effect, suppressing actions from being executed. Dopamine from the substantia nigra pars compacta
(SNc) projects to the dorsal striatum, differentially modulating activity in the direct and indirect pathways by
activating different receptors: The go cells express the D1 receptor, and the no-go cells express the D2 receptor.
b: The same circuit with additional influence from the orbitofrontal cortex, which can maintain reinforcement-
related information in working memory and provide top-down biasing on the more primitive basal ganglia
system, in addition to direct influencing of response selection processes in the premotor cortex. The orbitofrontal
cortex receives information about the relative magnitude of reinforcement values from the basolateral nucleus
of the amygdala (ABL), which it can also maintain in working memory. Dopamine from the ventral tegmental
area (VTA) projects to the ventral striatum (not shown) and the orbitofrontal cortex. GPe � external segment
of the globus pallidus.

Goto & Grace, 2005). Thus, smaller decreases in DA firing may be
sufficient to functionally affect D2 receptors, which drives no-go learning
in our model. Further, recent evidence shows that information within DA
dips is carried by the duration of these dips rather than their magnitudes
(Bayer, 2004).
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erations of relative magnitudes of gains and losses, rather than
simply choosing on the basis of the usual outcome of a particular
decision.

Medial and lateral OFC functional distinctions. We suggest
that the OFC represents both positive and negative reinforcement
values. Although in principle these representations need not be
separated anatomically, several investigations have provided evi-
dence for a functional distinction between medial and lateral
subregions within the OFC, complementing previous anatomical
distinctions (Carmichael & Price, 1995; Cavada, Company, Teje-
dor, Cruz-Rizzolo, & Reinoso-Suarez, 2000). First, Iversen and
Mishkin (1970) found that primates with either medial or lateral
OFC lesions were impaired in a reversal learning paradigm and
that there was a dissociable pattern of deficits. Specifically, medial
lesions impaired the ability to learn to associate previously non-
rewarding stimuli with reward, whereas lateral lesions resulted in
failure to withhold responding to previously rewarding stimuli.
Neuroimaging studies have since shown that the medial OFC
becomes active when participants learn to choose rewarding stim-
uli, whereas the lateral OFC is more active when learning about
punishing stimuli (O’Doherty et al., 2001). Further, the amplitude
of the activity within the medial or lateral OFC significantly
correlated with the magnitude of the reward or punishment, re-
spectively. A correlation has also been found between medial OFC
activity and subjective ratings of odor pleasantness, whereas lateral
activity was correlated with unpleasantness (Rolls & Kringelbach,
2003). This anatomical distinction also seems to apply to neutral
stimuli that predict positive and negative valence. For example,
medial OFC activation was observed when neutral visual stimuli
(faces) were paired with pleasant odors, whereas the lateral OFC
became active during association with unpleasant odors (Gottfried
et al., 2002). Finally, the same distinction has been observed
during the retrieval of autobiographical memories, with happy
memories activating the medial OFC and sad memories activating
the lateral OFC (Markowitsch, Vandekerckhovel, Lanfermann, &
Russ, 2003). On the basis of much of this evidence, it has been
suggested that the medial OFC monitors the association between
stimuli and correct or rewarded responses, whereas the lateral OFC
overrides choices based on previous but no longer applicable
reward values (Elliott et al., 2000).

The OFC receives reinforcement information from the amyg-
dala. How does the OFC, a higher order frontal cortical struc-
ture, encode information about reinforcement? Substantial evi-
dence suggests that the ability of the OFC to predict outcome
values depends on input from the basolateral nucleus of the amyg-
dala (ABL; Holland & Gallagher, 2004). First, experimental evi-
dence shows that both negative (aversive) and positive (rewarding)
outcomes are encoded in the ABL (Baxter & Murray, 2002).
Whereas the ABL and OFC each receive sensory information from
sensory cortical areas, the OFC is thought to learn the affective
nature of sensory information via dense projections from the ABL
(Cavada et al., 2000). Single-cell recording demonstrates that ABL
lesions prevent OFC neurons from responding to expected out-
comes (Schoenbaum et al., 2003), and disconnection of the ABL
from the OFC impairs control of response selection by reinforcer
value (Baxter, Parker, Lindner, Izquierdo, & Murray, 2000). Com-
plementary roles have been proposed for the ABL and OFC, such
that the ABL acquires associations between cues and outcomes,
whereas the OFC subsequently maintains these associations in
memory, updates them with newly experienced information, and

uses them to guide behavior (Pickens et al., 2003). Similarly, Rolls
(2004) suggested that the OFC takes over some of the role of the
amygdala in primates, enabling faster adaptation to changing re-
ward values to implement behavioral control. In other words,
whereas the amygdala may require multiple trials with a negative
outcome before reversing its bias on responses, the OFC is able to
maintain outcome information from the amygdala and then use this
information to bias response processes on the next trial.

The OFC maintains reinforcement information in working mem-
ory. The notion that the OFC maintains working memory for
reward information is well supported. For example, single-cell
recordings in rats showed that neurons in the OFC reliably fire
once a behavioral strategy is adopted, suggesting that the OFC
biases a motor response on the basis of reward information cur-
rently being held online (Schoenbaum, Chiba, & Gallagher, 1999).
In primates, single-cell OFC recordings show increased firing
during a delay period for cues that predict reward (K. Hikosaka &
Watanabe, 2000), and the magnitude of this firing is correlated
with predicted reward magnitude (Roesch & Olson, 2004).
Reward-related delay period activity has also been observed in the
OFC, where activity in some cells increases to predictors of
positive reinforcement, whereas other cells respond to negative
reinforcement, with some evidence for a medial–lateral distinction
(Rosenkilde, Bauer, & Fuster, 1981).

Differential responding has also been observed in the primate
OFC for short- and long-range reward expectancy (K. Hikosaka &
Watanabe, 2004), such that some neurons coded for rewards
expected within the current trial, whereas others fired in anticipa-
tion of a preferred reward that would occur within the next four
trials (a 50-s duration). Further, lesions to the OFC in rats resulted
in impulsive choices in a delay discounting paradigm, such that
lesioned animals were more likely to choose a smaller immediate
reward over a larger delayed reward, over delay periods that
ranged from 1 s to 30 s (Mobini et al., 2002). These results are
consistent with the idea that the OFC is required to maintain
reward associations in working memory over time and for repre-
senting differential reward magnitudes. Finally, in humans, pa-
tients with OFC damage failed to learn to choose advantageously
in a gambling task. Specifically, these patients not only made
choices that led to long-term losses but also failed to show in-
creased skin conductance response associated with the emotional
value of choices in control participants (Bechara, Tranel, Damasio,
& Damasio, 1996). In addition, many of these patients could
verbalize whether a deck of cards was good or bad but did not
appropriately apply this information when performing the task,
suggesting that they were unable to hold reward information online
to bias an appropriate motor response.

Top-down OFC effects on the BG and adaptive responding.
Given that the OFC is important for encoding and holding online
reward-related information, it is reasonable to explore how it
interacts with the lower level reinforcement-learning BG system.
First, it is important to consider anatomical projections between
the OFC and BG (Haber, Kunishio, Mizobuchi, & Lynd-Balta,
1995; Kemp & Powell, 1970). As mentioned above, the OFC is
part of a BG circuit that also includes the ventral striatum, globus
pallidus, and the dorsomedial nucleus of the thalamus (Alexander
et al., 1990). The medial OFC projects to the medial ventral
striatum, whereas the lateral OFC projects more densely to the core
of the nucleus accumbens (NAc; Haber et al., 1995). Of interest,
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Haber et al. (1995) suggested that neurons within the striatum may
be influenced by disparate parts of the OFC.

There is also functional evidence for interactions between the
OFC and BG. Like the OFC, striatal neurons reverse their reward-
related responses in reversal learning paradigms (Setlow, Schoen-
baum, & Gallagher, 2003; Watanabe & Hikosaka, 2005). Activity
in ventral caudate and striatal areas during reversal is thought to
reflect top-down activity from the OFC (Rolls, 1999). In humans,
concurrent ventral striatal and orbitofrontal activation were shown
to coincide with reversal behavior in a probabilistic reversal par-
adigm (Cools, Clark, Owen, & Robbins, 2002). Further, medial
OFC activity was associated with maintenance of the current
behavioral strategy activated, whereas lateral OFC and ventral
striatal activity predicted a switch in behavior (O’Doherty, Critch-
ley, Deichmann, & Dolan, 2003). Finally, ventral striatal lesions in
monkeys led to reversal learning impairments (Annett, McGregor,
& Robbins, 1989; Rolls, 1999; Schoenbaum & Setlow, 2003), and
medication caused these same deficits in human patients with PD,
which are thought to stem from an “overdose” of DA in the ventral
striatum (Cools, Barker, Sahakian, & Robbins, 2001; Swainson,
Rogers, Sahakian, Summers, Polkey, & Robbins, 2000).

The above evidence suggests that the BG and OFC intimately
interact in reinforcement learning and decision making. Given that

medial OFC areas tend to be activated by positive outcomes and
maintenance of current strategies, it is plausible that these areas
have a top-down biasing effect on go responding within the BG.
Conversely, lateral OFC areas respond to negative events and are
predictive of a switch in behavior, supporting the possibility that
they support no-go BG responding (see the Discussion section for
possible additional interactions with the anterior cingulate [ACC]).
Next, we formally explore this division of labor between the
systems via explicit computational simulations to determine
whether their emergent dynamics can learn to make decisions
based on their true expected value (e.g., a combination of fre-
quency and magnitude of gains and losses).

Neural Network Simulations

All models described in this article are implemented in the
Leabra framework, which combines Hebbian learning and a bio-
logically plausible version of error-driven learning, together with
inhibitory competition, into one coherent framework (see the Ap-
pendix; see also O’Reilly, 1998; O’Reilly & Munakata, 2000).

We begin with a short description of the previous model of
striatocortical circuits in decision making (Figure 2; Frank, 2005).
This model learns to make choices that are likely to lead to positive

_

_

_

_ _ _

_
_

Figure 2. a: The Frank (2005) neural network model of the primitive basal ganglia–dopamine (BG-DA) system
depicted in Figure 1a. Rectangles represent units, with height and color reflecting neural activity. The premotor
cortex selects an output response via direct projections from the sensory input and is modulated by the BG
projections from thalamus. Go units are in the left half of the striatum layer, and no-go units are in the right half,
with separate columns for the two responses (R1, Response 1; R2, Response 2). In the case shown, the striatum
go is stronger than the no-go for R1, inhibiting the internal segment of the globus pallidus (GPi), disinhibiting
the thalamus, and facilitating execution of the response in the cortex. A tonic level of DA is shown in the
substantia nigra pars compacta (SNc); a burst or dip ensues in a subsequent error feedback phase (not shown),
causing corresponding changes in go/no-go unit activations, which drive learning. This model learns to select
responses that are more likely to result in positive than in negative reinforcement. b: The augmented model,
including orbitofrontal contributions. The BG circuitry is as in panel a. The orbitofrontal cortex (OFC) is
modeled in two separate layers, both of which have medial and lateral subdivisions. In OFC_med_lat, a
distributed pattern of activity in the left-hand side reflects a medial representation about previously positive
associations for the input stimulus. This activity has a top-down effect on responding within the striatum, as well
as an effect directly on the premotor cortex. OFC_ctxt is a context layer that maintains recent reinforcement
information in working memory and biases activity in OFC_med_lat for use in behavioral decisions. The lateral
representation in the context layer depicts memory for a negative outcome of an alternate stimulus in a previous
trial but does not influence OFC_med_lat or behavior in this trial (see text for details). ABL � basolateral
nucleus of the amygdala; GPe � external segment of the globus pallidus; VTA � ventral tegmental area.
SNc_VTA � combined layer representing DA cells in both SNc and VTA.
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reinforcement while suppressing those that have overall negative
associations. We then show that this model fails to make adaptive
decisions in a gambling task in which good choices are associated
with a low probability of large gains and a high probability of
small losses, whereas bad choices are associated with a high
probability of small gains and a low probability of large losses.
Thus, this model does not optimize choices on the basis of ex-
pected values of alternative decisions but largely capitalizes only
on frequencies. We then demonstrate that an augmented model that
includes medial and lateral areas of the OFC and the amygdala can
successfully solve this difficult decision-making task. The same
model is also shown to outperform the primitive model in a
reversal learning task, providing a unified framework for OFC
involvement in complex decision making (gambling tasks) and
reversal learning. Next, we apply the models to a devaluation
procedure to examine the contributions of the different areas in
habit learning versus cognitive action–outcome expectancy and
show that lesions of the striatum or OFC produce results qualita-
tively similar to those observed in animals with the two types of
lesions. Finally, we use the models to explain the classic framing
effect reported in the behavioral decision-making literature, by
leveraging the medial–lateral distinction in the OFC to show how
risk aversion for gains and risk seeking for losses may be ac-
counted for at the neural level.

Primitive BG-DA Model

The details of the BG model are described in Frank (2005). In
brief, the premotor cortex represents and considers two possible
responses (R1 and R2) for each input stimulus. The BG system
modulates which one of these responses is facilitated and which is
suppressed by signaling go or no-go to each of the responses. The
four columns of units in the striatum represent, from left to right,
go-R1, go-R2, no-go-R1 and no-go-R2. Go and no-go representa-
tions for each response compete at the level of the internal segment
of the globus pallidus, such that stronger go representations lead to
disinhibition of the corresponding column of the thalamus, which
in turn amplifies and facilitates the execution of that response in
the premotor cortex. Concurrently, the alternative response is
suppressed.

Striatal go/no-go representations are learned via phasic changes
in simulated DA firing in the substantia nigra pars compacta layer
during positive and negative reinforcement. After correct re-
sponses, increases in DA firing excite go units for the response just
selected while suppressing no-go units, via simulated D1 and D2

receptors. Conversely, decreases in DA after incorrect responses
result in increased no-go activity for that response. This DA
modulation of go/no-go activity drives learning as described
above.

This model can successfully learn to make choices that are more
often reinforced than not in challenging probabilistic tasks, dis-
criminating between subtle differences in reinforcement value
(Frank, 2005). Further, this model has shown that both the go and
no-go learning mechanisms are necessary to learn subtle discrim-
inations between reinforcement values of decisions. Networks with
the no-go pathway disconnected were impaired at learning prob-
abilistic discriminations relative to networks that could compare
both go and no-go learning for multiple possible responses. More
recent simulations explored additional contributions of the subtha-
lamic nucleus in the overall BG circuitry, showing that this brain

area can dynamically modulate the threshold for executing re-
sponses depending on the degree of response conflict present
(Frank, in press). This model also showed that BG network dy-
namics during response selection are consistent with available data
in both intact and PD states.

Empirical confirmation of the model’s mechanisms comes from
behavioral studies showing that differing levels of BG DA are
associated with differential go and no-go learning from positive
versus negative reinforcement in medicated and nonmedicated PD
patients (see Figure 3; Frank, Seeberger, & O’Reilly, 2004). Sim-
ilar predictions were borne out in young healthy participants taking
dopaminergic medications (Frank & O’Reilly, in press) and in
electrophysiological studies of individual differences in reinforce-
ment learning (Frank, Woroch, & Curran, 2005).

Despite this positive evidence, the BG model as it stands is not
adequate to account for more complex real-world decisions. In
particular, it is not equipped to incorporate relative magnitudes of
gains and losses together with their probability of occurring to
choose the most adaptive option. As shown below, this is because
there is not sufficient information in the DA signal (or in its
postsynaptic effects) to allow graded differences in gain–loss
magnitudes to significantly affect striatal learning. Although the
size of DA bursts was recently reported to scale with increasing
reward magnitude (Tobler, Fiorillo, & Schultz, 2005), we hypoth-
esize that a single large DA burst (or dip) may not be sufficient to
counteract the learning effects of several smaller DA dips (or
bursts). In contrast, a differential DA magnitude effect may have
substantial effects on frontal activity, because the effects of a
single large DA burst persist over time (Seamans & Yang, 2004)
as reward representations are maintained in working memory. The
simulations reported below more strongly support this notion.

Augmenting the Model: Orbitofrontal Contributions

In the augmented BG-OFC model (see Figure 2b), the BG-DA
system is the same as in the prior primitive model and continues to
integrate positive and negative decision outcomes via go and no-go
learning. The OFC is divided into two layers, OFC_med_lat and
OFC_ctxt, each of which has corresponding medial and lateral
subdivisions displayed on the left- and right-hand sides, respec-
tively. The OFC_med_lat layer represents current positive/nega-
tive outcome expectancy and has top-down biasing effects on
response selection processes in both the premotor cortex and
striatum. The OFC_ctxt layer represents contextual information
about previously experienced gains and losses by maintaining
these in working memory. The division of the OFC by function
into two layers is consistent with observations that different parts
of the OFC are activated during behavioral control and memory for
reinforcement outcome (O’Doherty et al., 2003). Alternatively, the
two layers could reflect laminar divisions within a region of the
OFC, with OFC_ctxt representing superficial cortical layers (2 and
3), and OFC_med_lat representing output projection neurons in
deep layers (5 and 6).

The two OFC layers are interconnected in a one-to-one fashion,
such that current expectations about a particular stimulus in
OFC_med_lat are influenced by working memory about their
previous outcomes maintained in OFC_ctxt. When positive or
negative outcomes are actually experienced following a decision,
they reciprocally update working memory in OFC_ctxt on the
subsequent trial. Recurrent connections in OFC_ctxt result in
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persistent maintenance of recent stimulus–reinforcement-related
information. There is some hysteresis in OFC_ctxt, so that work-
ing memory representations decay over time, but as a result of
nonlinear activation dynamics, large magnitude gains–losses tend
to be less subject to this decay than are smaller gains–losses. The
parameters chosen for the decay of working memory activity (see
the Appendix for details) are generally consistent with available
neurophysiological data (Major & Tank, 2004) and other biolog-
ically detailed computational models of persisting PFC activity
over delays (Durstewitz, Seamans, & Sejnowski, 2000), both
showing that PFC maintenance activity is robust over tens of
seconds.2

Note that OFC stimulus–reinforcement representations are dis-
tributed and learned. The OFC_med_lat layer receives direct sen-
sory projections from the input layer, with random initial weights.
Thus, the first time the network encounters a particular input
stimulus, it will randomly activate a subset of medial and lateral
OFC neurons. Depending on the outcome of the model’s response
to that stimulus, either the medial or the lateral associations will be
strengthened (see Figure 4). In any subsequent exposure to that
stimulus, the OFC representation is determined by a combination
of input projections and projections from the OFC_ctxt. In this
manner, the currently relevant stimulus is activated in OFC_med-
_lat in conjunction with its contextual influences. Contextual
memory for reinforcement values of other stimuli not currently
present in the input tend to be suppressed via local inhibitory
competition (as they have to compete with representations having
additional activation from sensory input) and therefore do not
influence responding in that trial.

Outcome magnitude from the ABL is represented in the OFC.
Reinforcement magnitude information arrives to the OFC from the
ABL layer, where gain–loss magnitude is encoded in proportion to
overall activity levels. For simplicity, we apply these magnitudes

directly onto the ABL layer during positive and negative out-
comes; this work does not address how the ABL comes to repre-
sent magnitude information but simply explores the magnitudes’
effects on the OFC and striatal function. Greater magnitudes in the
ABL have a stronger effect on OFC activity, as is observed
empirically (see above).

The balance between medial and lateral OFC representations
during positive or negative reinforcement is determined by two
factors. First, the weights between the ABL units and medial–
lateral OFC units are dynamically adjusted depending on whether
the reinforcement is positive or negative.3 Second, increases in DA
firing during positive outcomes activate medial representations
and deactivate lateral representations. This feature of the model
was motivated by the dense projections from midbrain DA cells to
medial areas of the PFC (Lindvall, Bjorklund, & Divac, 1978) and
by observations that DA increases excitability of synaptically

2 This decay activity refers to the passive decay of neural activity in the
PFC. The length of persistence of activity can theoretically be shorter
depending on subsequent input (i.e., if the contents of working memory are
updated; Frank et al., 2001; O’Reilly & Frank, 2006) or longer (if the
working memory representations are refreshed because they continue to be
task relevant).

3 During positive outcomes, weights are zeroed out between the ABL
and the lateral OFC, whereas during negative outcomes, weights are zeroed
out for connections between the ABL and the medial OFC. This is an
implementational detail that was motivated by the fact that the ABL seems
to activate to both positive and negative magnitudes in imaging studies
(Anderson et al., 2003). However, in reality, there are likely different
populations of cells within the ABL that represent positive and negative
valence, and these could potentially have differential projections to the
medial and lateral OFC. The present implementation is therefore not
critical to the functioning of the network.
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Figure 3. Empirical support for a neural network model of the basal ganglia–dopamine (BG-DA) system. a:
Example stimulus pairs used in a cognitive probabilistic learning task designed to minimize verbal encoding.
One pair is presented per trial, and the participant makes a forced choice. The frequency of positive feedback
for each choice is shown. b: Performance in patients with Parkinson’s disease (PD) on and off medication in a
test phase in which Stimuli A and B were re-paired with more neutral stimuli (Frank et al., 2004). Patients on
medication more reliably chose Stimulus A (which depends on having learned from positive feedback) than
avoided Stimulus B (which depends on negative feedback learning). Patients off medication showed the opposite
pattern. Findings for Seniors not addressed in this article. c: This pattern of results was predicted by the Frank
(2005) model. The figure shows go/no-go associations for Stimulus A and no-go/go associations for Stimulus
B, recorded from the model’s striatum after having been trained on the same task used with patients off and on
DA medication (Sim PD and Sim DA Meds, respectively). Error bars reflect standard error across 25 runs of the
model with random initial weights.
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Figure 4. Gambling task: Positive and negative feedback. a: Deck A is presented to the network, represented
by the first row of units in the input. Early in training, the basal ganglia (BG) has not learned to gate either
response. The orbitofrontal cortex (OFC) receives direct sensory projections from the input and forms a
distributed representation of Deck A in medial and lateral areas. A random greater initial medial (left) than lateral
(right) OFC association leads to top-down selection of the play (R1) response. b: The network receives a small
gain for its play response, as can be observed by an increase in dopamine firing in the SNc-VTA and moderate
magnitude activity in the basolateral nucleus of the amygdala (ABL). The dopamine increase enhances go firing
and suppresses no-go firing in the BG, driving learning as in the primitive BG model (Frank, 2005). The OFC
receives magnitude information from the ABL and reflects this moderate gain with increased medial and
decreased lateral activity, relative to the choice phase. In the subsequent trial, the network will update its
OFC_ctxt representations to maintain this reinforcement information in working memory. c: The network is
again presented with Deck A in a later trial. Now the BG go representation for play is greater than the no-go
representation, facilitating the selection of R1. d: The network receives a large loss, as shown by a large amount
of ABL activity and zero dopaminergic firing in SNc-VTA. The resulting lateral OFC representation reflects this
large magnitude loss. The network will maintain this loss information in lateral OFC_ctxt in subsequent trials,
so that the next time Deck A is presented, OFC_med_lat can reflect this negative experience and can bias
responding in the BG and premotor cortex to not play Deck A, even if it often results in small gains. Conversely,
Deck B is associated with infrequent large gains, which are the represented in a distributed fashion in medial
OFC_ctxt areas together with the lateral representation for Deck A (not shown). POS � positive; NEG �
negative; OFC_med_lat � layer that represents current positive/negative outcome expectancy and has top-down
biasing effects on response selection processes in both the premotor cortex and striatum; OFC_ctxt � layer that
represents contextual information about previously experienced gains and losses by maintaining these in working
memory; R1 � Response 1; R2 � Response 2; SNc � substantia nigra pars compacta; VTA � ventral tegmental
area; GPe � external segment of the globus pallidus; GPi � internal segment of the globus pallidus.
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driven input in prefrontal cortical layer 5 (Seamans, Durstewitz,
Christie, Stevens, & Sejnowski, 2001; Wang & O’Donnell, 2001).
Moreover, it has also been shown that medial PFC activity in-
creases during the receipt of monetary rewards but decreases when
participants do not get the reward that they anticipated (Knutson,
Fong, Bennett, Adams, & Hommer, 2003). As elaborated in the
Discussion section, the representation of negative reinforcement
value in the lateral OFC may also depend on cortical serotonin
(5-HT) levels, but we do not consider these here for simplicity.

Top-down modulation of decisions. In addition to representing
outcome expectancy, the OFC_med_lat layer has a top-down bi-
asing effect on response selection processes. First, it directly
projects to the premotor cortex, which can learn to associate
particular medial–lateral representations with output responses
(e.g., Wallis & Miller, 2003). Second, OFC reinforcement repre-
sentations can bias the striatal system to respond go or no-go,
allowing the reinforcement representations to take into consider-
ation OFC magnitude representations and not just the simple
frequencies of positive/negative reinforcement. Because medial
OFC representations co-occur with go activity in the striatum
during positive outcomes, Hebbian learning processes result in
medial OFC representations tending to bias striatal go responses.
Similarly, lateral OFC representations bias striatal no-go respond-
ing, preventing the execution of responses that would lead to
negative outcomes. There is ample evidence for lateral OFC acti-
vation during response inhibition, including no-go trials in go/
no-go tasks (Arana et al., 2003; Bokura, Yamaguchi, & Kobayashi,
2001; Horn, Dolan, Elliott, Deakin, & Woodruff, 2003). However,
as discussed later, it is likely that some of this no-go behavioral
control also depends on interactions with the ACC.

In this manner, magnitude information maintained in medial and
lateral OFC working memory representations can exert top-down
control over decision-making processes. This control is especially
evident when the best decision in a given context is different from
what it had been in the past, so that active context information in
the OFC can bias the motor system to respond differently from
how it had learned by habit. For a schematic of how the different
parts of the model contribute to decision making, see Figure 5.

Next, we show that the principles implemented in the model
hold in the context of tasks known to depend on OFC integrity:
decision making under uncertainty, reversal learning, and devalu-
ation of a conditioned stimulus. The same model parameters were
used across all simulations. In addition, the cognitive mechanisms
proposed to emerge from the model are able to account for risk-
seeking/aversion behavior typically observed in the framing effect.

Results

Decision-Making/Gambling Task

In our gambling task, we tested the model’s ability to make
decisions based on combined frequency and magnitude of gains
and losses. We used a variant of the Iowa Gambling Task (IGT;
Bechara, Damasio, Damasio, & Anderson, 1994), in which the
option on each trial is to play or pass the next card in a particular
deck. This version of the task, based on a previous modification
(Peters & Slovic, 2000), has been tested with neurologically intact
individuals and gives the same pattern of results as does the
original IGT (Claus, 2005).

The model’s task was to consider a single input stimulus (deck)
at a time and to play (R1) or pass (R2). After play responses, the

gain–loss outcome was applied to the ABL and DA layers. In all
simulations, Deck A was associated with a gain on 70% of trials
and a loss on the remaining 30%, and vice versa for Deck B.

In the just frequency condition, the model had to learn to play to
Deck A, which is most often associated with a gain, and pass to
Deck B, most often associated with a loss. All gains and losses in
this condition were set to a magnitude of 1.0. In the magnitude
versus frequency condition, the magnitudes of low-frequency out-
comes (3.5) were larger than those of high-frequency outcomes
(1.0), such that overall expected values were negative for Deck A,
despite frequent gains, and positive for Deck B, despite frequent
losses.

As expected, the intact model successfully performed across
both gambling tasks, always playing the good deck more often
than the bad deck (see Figures 6a and 6b). In contrast, when the
OFC layer was lesioned, the more primitive BG model success-
fully performed only in the just frequency condition. In the more
challenging task, this model continued to rely largely on frequency
information, resulting in greater playing of overall bad than good
decks. This result suggests that the BG-DA system is unable to
adequately weight the magnitudes of rewards and punishments
when making decisions, which are better handled by the more
flexible and advanced OFC.

It could be that the BG model’s failure to make use of reward
magnitude information was due to our use of binary DA signals
(i.e., a burst for all positive outcomes and a dip for negative
outcomes, regardless of outcome magnitude). This is especially
relevant given recent observations that DA neurons fire more with
increasing reward value (Tobler et al., 2005), which could poten-
tially provide the BG system with magnitude information. How-
ever, there are several reasons to believe that these low-level DA
signals are insufficient to precisely encode magnitude information
for adaptive behavior, especially when it conflicts with reinforce-
ment frequency information. First, although DA firing increased
monotonically with increasing reward value, this effect was not
linear: An increase in reward value by 233% elicited a change in
DA firing of roughly 130% (see Figure 2 in Tobler et al., 2005).
Second, for the BG to adaptively use these DA magnitude values,
it would have to be shown that there is a monotonic relationship
between the degree of striatal learning and the DA levels. But
although the presence of DA is critical for corticostriatal plasticity
(Centonze et al., 2001; Kerr & Wickens, 2001), we know of no
evidence to support such a monotonic, linear relationship. Because
Tobler et al. (2005) recorded DA neurons from intact monkeys, the
possibility remains that the increased DA firing for larger reward
magnitudes reflects top-down projections from OFC magnitude
representations onto DA neurons. This possibility is consistent
with the authors’ observations that DA neurons encoded not ab-
solute but relative reward values, a property that has also been
observed in OFC neurons (Tremblay & Schultz, 1999). Finally, the
full range of DA magnitude signals may not be provided by the
DA system, especially for negative magnitudes (Bayer & Glim-
cher, 2005).

Nevertheless, to explicitly address this issue, we also ran a
condition in which the magnitude of the DA signal was scaled by
the magnitude of outcomes. In these simulations, large magnitude
outcomes were associated with maximal positive and negative DA
firing (SNc-VTA values of 1.0 and 0.0, respectively, a change
of � 0.5 from tonic 0.5 DA values), whereas small magnitude
outcomes were associated with more modest bursts and dips (0.7
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Figure 5. Schematic of model dynamics: Hypothetical sequence of decision trials. a: Stimulus A is presented
in the first trial of a new session. Prior ingrained stimulus–response associations lead to Response 1 (R1)
selection via strong connection weights from the input and basal ganglia (BG) go cells. b: The outcome is
negative (punishment), represented by a dip in dopamine (DA) firing and a negative magnitude representation
in the basolateral nucleus of the amygdala (ABL). The DA dip drives no-go learning so that R1 is less likely to
be selected in response to Stimulus A on subsequent trials (b1). The lateral OFC encodes the negative magnitude
outcome from the ABL together with the stimulus (b2) and also enhances no-go BG firing and learning (not
shown). c: Stimulus B is presented, and prior ingrained associations lead to selection of Response 2 (R2). Note
that the lateral OFC continues to maintain the negative outcome associated with Stimulus A, but this does not
influence responding in this trial because the associated stimulus context (A) is not present in the input. d: The
outcome is positive (reward), represented by a burst of DA and increased ABL firing. The DA burst enhances
go learning to reinforce the selection of R2 in Stimulus Context B (d1). The medial OFC encodes the reward
associated with the stimulus context (d2) and additionally reinforces go firing in the BG (not shown). e: When
Stimulus A is presented again, habitual BG–motor responding begins to activate R1 (e1), but then the active
lateral OFC representation is retrieved (e2) and exerts a top-down bias on no-go cells in the BG (e3), which, if
strong enough, can override (e4) the ingrained BG go-R1 association (e1). The alternative response (R2)
becomes more likely to be executed. The Stimulus B–reward association continues to be maintained in the
medial OFC and can bias go responding to R2 in subsequent Stimulus B trials. NEG � negative; POS �
positive; OFC_med_lat � layer that represents current positive/negative outcome expectancy and has top-down
biasing effects on response selection processes in both the premotor cortex and striatum; OFC_context � layer
that represents contextual information about previously experienced gains and losses by maintaining these in
working memory.
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and 0.3, � 0.2 from tonic values). Thus, the BG model now had
access to magnitude information and could potentially use this to
counteract the frequency information. However, as shown in Fig-
ure 6c, scaled DA values produced the same qualitative pattern of
results, with the OFC-lesioned model continuing to make maladap-
tive decisions. This is because infrequent large DA bursts and dips
were insufficient to counteract the effects of several instances of
smaller DA values in the opposite direction.4 Of interest, the full
model performed modestly better with scaled DA values, as these
had concomitant effects on OFC working memory activity for
good and bad outcomes.

To explore how these divergent decision-making behaviors
evolve across learning, we plotted the difference curves (good–bad
deck playing) as a function of trials (see Figure 7). In the just
frequency condition, the OFC-lesioned model slowly integrated
positive and negative outcomes, eventually outperforming even the
full model. In contrast, OFC working memory representations
allowed the full model to quickly respond adaptively. However,
these same working memory representations caused the model to
be more likely to probability match rather than to optimize re-
sponding, as is observed in healthy human participants (Estes,
1961). That the OFC-lesioned model is eventually more optimal in
this task than is the full model provides an intriguing account for
why, after having been trained, rats (with a less developed frontal
cortex) are more optimal in their responding than are humans
(Hinson & Staddon, 1983). Although people can be induced to
respond optimally under some conditions (Shanks, Tunney, &
McCarthy, 2002), our model predicts that active maintenance of
recent reinforcement values may cause people to probability match
more than they would otherwise. Finally, Figure 7 shows that
when reinforcement magnitude is in opposition to frequency, the
intact model progressively learned the expected value of each
deck, whereas the more primitive model increasingly capitalized
only on frequency and therefore failed to extract the true expected

value of decisions. Again, scaled DA values reproduce the same
pattern of results, albeit with slightly better performance for both
intact and lesioned models.

Reversal Learning

As discussed earlier, the OFC is consistently implicated in
reversal learning tasks (Rolls, 1999). In our simulations, we pre-
sented one of two input stimuli (A or B) to the model, which had
to either select this stimulus (R1) or switch to the alternative
stimulus (R2). A similar method was implemented to model a
two-alternative forced-choice task in previous work (Frank, 2005;
Frank, Rudy, & O’Reilly, 2003). Networks had to learn to choose
Stimulus A and avoid Stimulus B. After 200 trials, the contingen-
cies were reversed, such that Stimulus A resulted in negative
reinforcement and Stimulus B was now associated with positive
reinforcement.

Results were consistent with the hypothesized OFC role in
reversal learning (see Figure 8). Although both the primitive and

4 Theoretically, a perfect Rescorla–Wagner integrator should be able to
use counteracting magnitude–frequency information. However, this as-
sumes that larger DA magnitude values are linearly translated into more
learning with a one-to-one relationship. But in the BG model (and likely in
the brain), these effects are somewhat nonlinear: Large magnitude DA
signals do drive more learning than do small magnitude signals, but the
differences in weight changes are not one-to-one. This nonlinearity can
arise from a combination of (a) a restricted dynamic range of neural firing
or learning (e.g., some go neurons may already be firing close to their
maximal rate; large DA bursts could then drive them only to maximal
firing, resulting in a loss of information) and (b) the weight contrast
enhancement function used in our simulations (O’Reilly & Munakata,
2000), corresponding to nonlinear effects on second messenger systems
that drive plasticity.

Figure 6. Gambling task results after 140 trials of training. a: In the just frequency condition, both intact and
OFC-lesioned models were successful at playing to the good deck (which resulted in a gain 70% of the time)
and passing on the bad deck (which resulted in a loss 70% of the time). b: When magnitude information was in
opposition to frequency, the full model was nevertheless able to maximize expected value by playing on the
infrequent high-gain deck and passing on the infrequent high-loss deck. In contrast, the OFC-lesioned networks
continued to respond on the basis of frequency and therefore make maladaptive decisions. c: These results held
up even when the dopamine signal was scaled such that high-magnitude gains–losses were associated with larger
dopamine changes than were low-magnitude outcomes. Thus, even though the striatum had access to scaled-
magnitude dopamine signals, it was still unable to use these signals to override the effects of more frequent
dopamine signals in the reverse direction. OFC � orbitofrontal cortex.
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augmented models were successful at discriminating between the
positive and negative stimuli, OFC lesions resulted in selective
impairment in the reversal stage, mirroring the results observed
behaviorally in humans with OFC damage (Fellows & Farah,
2003). Thus, as in the gambling task, OFC working memory
representations are critical for counteracting habitual responses
that have been ingrained over multiple experiences. In the gam-
bling task, OFC magnitude representations are necessary to over-

ride conflicting frequency information within the same segment.
Although magnitude is not a factor in the reversal task, OFC
representations nevertheless support adaptive, flexible behavior by
enabling rapid shifting of previously ingrained associations.

Devaluation

Another common function attributed to the OFC is representing
goal-directed action–outcome contingencies that can override

Figure 8. a: Reversal learning impairments in humans with damage to ventromedial and orbitofrontal cortices,
showing number of errors made in the learning and reversal phases. Modified from Fellows and Farah (2003)
with permission. b: Model reversal learning results. Acquisition refers to performance (error percentages) after
200 trials; reversal refers to performance after a further 200 reversal trials. Error bars reflect standard errors of
the means. OFC � orbitofrontal cortex; CTL � control participants, VMF�patients with ventromedial
prefrontal cortex lesions.

Figure 7. Model performance (good–bad deck playing) in the gambling task across training trials. a: In the just
frequency condition, the full model was able to make use of active working memory representations to respond
adaptively early in training. Nevertheless, these same working memory representations resulted in increased
probability matching as training progressed. In contrast, the OFC-lesioned networks were slower to integrate
frequency information over time but responded more optimally later in training. This result is consistent with
observations that rats with less frontal cortex are more optimal in their responding than are humans in
probabilistic tasks (Hinson & Staddon, 1983). b: The full model takes advantage of magnitude information to
respond more to decks with overall higher expected value. In contrast, the OFC-lesioned model progressively
incorporates frequency information and therefore makes more maladaptive decisions as training progresses. c:
Again, scaling dopamine values by magnitudes of gains and losses produces the same qualitative pattern of
results when magnitude information is the more informative decision attribute. Error bars reflect standard error
of the mean across 25 networks with different random initial weights. OFC � orbitofrontal cortex.
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stimulus–response habits (Balleine & Dickinson, 1998; Holland &
Gallagher, 2004). This is typically studied in the context of a
devaluation paradigm. In this procedure, animals must learn to
respond to a conditioned stimulus to obtain reward. Once this
learning is achieved, the reinforcer is subsequently devalued (ei-
ther by means of satiation or by making the animal sick with
lithium chloride). Instrumental performance is typically goal-
directed early in training and is therefore sensitive to outcome
devaluation. However, extensive training results in stronger influ-
ences of the stimulus–response ingrained habit, and behavior is no
longer sensitive to devaluation (i.e., animals will continue to press
a lever that leads to the devalued outcome).

Several lines of evidence suggest that the OFC supports goal-
directed behavior and is critical for devaluation, whereas the
striatum supports habitual responses. First, rats and monkeys with
OFC lesions are not sensitive to devaluation (Gallagher, McMa-
han, & Schoenbaum, 1999; Izquierdo, Suda, & Murray, 2004;
Pickens, Saddoris, Gallagher, & Holland, 2005). In contrast, rats
with dorsolateral striatal lesions are more sensitive than control
rats (Yin, Knowlton, & Balleine, 2004). Second, there is evidence
that the OFC learns action–outcome representations via input from
the amygdala (Pickens et al., 2003). Third, neuroimaging studies
show changes in OFC activity following devaluation in humans
(Gottfried, O’Doherty, & Dolan, 2003; Small, Zatorre, Dagher,
Evans, & Jones-Gotman, 2001). In one of these studies, medial
OFC activity was observed when participants began eating choc-
olate, but as a sated state was reached, the lateral OFC became
more active (Small et al., 2001).

To explore whether the same principles that explain BG-OFC
function in gambling and reversal learning tasks could also be
applied to devaluation, we trained the models with a devaluation
procedure. All models were presented with 100 trials of an input
stimulus followed by positive reinforcement for selecting R1.
Subsequently, this stimulus was devalued by pairing it with five
trials of negative ABL magnitude signals and DA dips, in the
absence of motor responding. Finally, the models were tested to
see whether they would continue to respond with R1 in the
presence of the stimulus.

Results were consistent with available data (see Figure 9). After
100 trials of training, all models responded with 100% accuracy to
the conditioned stimulus. Following devaluation, intact networks
were less likely to respond to the stimulus, showing sensitivity to
action–outcome contingencies. This sensitivity was abolished in
OFC-lesioned networks and in intact networks with more extended
training (300 trials) prior to devaluation, both showing habitual
responding to the stimulus. Finally, networks with striatal lesions
were more sensitive to devaluation, consistent with results ob-
served empirically (Yin et al., 2004). Thus, our model formally
shows that the OFC can support flexible action–outcome behavior,
whereas the striatum is important for ingraining stimulus–response
habits into motor cortical areas. We return to the issue of how these
systems compete for behavior in the Discussion section.

Risk Aversion and Risk Seeking

Although the above simulations successfully simulated the ef-
fects of localized brain lesions on learning and decision making, it
may not be readily apparent how this model could account for
traditional decision-making patterns observed in healthy individ-
uals. Here we apply the model to provide a neurocomputational

account of classical risk-seeking/aversion behaviors, as described
by the framing effect (Tversky & Kahneman, 1981; see Fig-
ure 10a). Decision makers are asked to choose among two options,
for which the first has a certain outcome but the second has a
probabilistic outcome. The expected value of each option is typi-
cally the same. But depending on how the decision is framed (in
terms of gains or losses), different choice patterns are observed. If
the outcomes are potential gains, the certain option is preferred
over the probabilistic option (e.g., people choose a certain gain of
$100 instead of a 50% chance of $200); this phenomenon is
referred to as risk aversion (Kahneman & Tversky, 1979). But
when the decision options are framed in terms of losses, partici-
pants generally prefer the risky option (e.g., they choose a 50%
chance of losing $200 over a certain loss of $100); that is, they
show risk-seeking behavior.

These differences in risk seeking for losses and gains have been
accounted for by prospect theory (Kahneman & Tversky, 1979).
The central tenets of prospect theory with respect to magnitudes of
gains and losses are that (a) losses have a larger effect on under-
lying value than the equivalent magnitude gains and that (b) people
evaluate gains or losses from some neutral or reference point (in
this case, the certain outcome). For example, when compared with
a certain outcome of $100, the probabilistic option of gaining $200
or $0 is rerepresented as a relative gain of $100 and a relative loss
of $100 rather than only a potential gain. That prospect theory
posits relative reward values in decision-making computations
lends itself naturally to an OFC mechanism: As discussed previ-
ously, OFC neurons are known to represent relative, rather than

Figure 9. Orbitofrontal cortex (OFC) and basal ganglia contributions to
representing stimulus–response habits versus higher order action–outcome
contingencies. After 100 trials of positive reinforcement to a stimulus, all
networks (Nets) successfully responded to this stimulus in 100% of cases.
After devaluation, only 44% of intact networks responded to the stimulus,
showing devaluation. Networks with OFC lesions continued to respond on
the basis of habitual associations. In contrast, networks with striatal lesions
showed enhanced sensitivity to devaluation, with only 28% responding to
the stimulus. Finally, after more extended training, even intact networks
responded habitually and were insensitive to devaluation. This pattern of
results is consistent with those observed empirically in animals with OFC
and striatal damage (Gallagher et al., 1999; Izquierdo et al., 2004; Yin et
al., 2004). CS � conditioned stimulus.
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absolute, reward preferences (Tremblay & Schultz, 1999). As
described by Plous (1993),

If the reference point is defined such that an outcome is viewed as a
gain, then the resulting value function will be concave and decision
makers will tend to be risk averse. On the other hand, if the reference
point is defined such that an outcome is viewed as a loss, then the
value function will be convex and decision makers will be risk
seeking. (p. 97)

When simulated in our model, these same decision-making
framing effects were observed (see Figure 10b). For gains, we
trained networks with two decks, one of which was associated with
a positive outcome on 100% of trials (certain gain, i.e., the refer-
ence point) and another of which was associated with a relative
gain on 50% of trials and a relative loss on the remainder of trials
(these relative gains–losses were of equivalent magnitudes to the
certain gain, as in the example described above). Options that led
to certain gains became associated with medial OFC representa-
tions, causing the networks to be biased toward selecting that
option. When faced with the alternative, more risky option, net-
works represented the relative OFC outcomes as partially medial
and partially lateral, owing to the ambiguous chances of winning
or losing relative to the sure outcome. The net result was that the
networks were risk aversive; that is, they were more likely to
choose options leading to the certain gain.

Similar reasoning explains why the model was actually risk
seeking for losses. These simulations were identical to those
above, except that the deck with a certain outcome resulted in a
loss (instead of a gain) in 100% of trials. This option became
associated with a lateral OFC representation, causing networks to
be biased toward avoiding that option. The alternative, more risky
option was again associated with a more ambiguous medial and

lateral OFC representation. The net result was that the model
avoided the certain loss so that it had some potential of losing
nothing, even though it could potentially incur a larger loss. Note
that this explanation implies that the risk-seeking behavior ob-
served in humans under the prospect of losses stems from their
tendency to avoid certain losses rather than a propensity for risky
choices per se. This is consistent with observations that partici-
pants are slower to make choices in negative compared with
positive framings (Gonzalez, Danda, Koshino, & Just, 2005;
Payne, Bettman, & Johnson, 1993), because it should take longer
to avoid the certain (negative) option and then consider the alter-
native option than to just directly choose the certain (positive)
option.

Finally, we explored whether our model could account for more
nuanced effects showing that people are relatively more risk averse
for gains than they are risk seeking for losses (e.g., Gonzalez et al.,
2005; Tversky & Kahneman, 1986; Figure 10a). We hypothesized
that this asymmetrical effect could result from a relatively greater
sensitivity to negative compared with positive affective values
(Tversky & Kahneman, 1991), which could in turn stem from a
greater representation of negative than of positive information in
the amygdala. Although the amygdala is now known to be in-
volved in reward processing (Baxter & Murray, 2002), its classic
and well-established role in negative affect (LeDoux, 2000) sug-
gests that negative value might be better represented than is
positive value. This bias could also be a result of the more dense
amygdalar projections to the lateral than to the medial OFC (Car-
michael & Price, 1995; Cavada et al., 2000). To explore this
account, we reran the simulations reported above but with all
negative outcomes represented with two times greater amygdalar
magnitudes than those of positive outcomes.

Figure 10. a: Classical framing effects show that humans are risk aversive for gains (e.g., they tend to choose
a certain $100 win over a 50% chance to gain $200 and a 50% chance to gain nothing) but are risk seeking for
losses (they avoid a certain loss of $100 in favor of a 50% chance to lose nothing and a 50% chance to lose $200).
Data plotted from numerical results described in Tversky and Kahneman (1986). b: Intact networks replicated
this pattern of results: They were risk averse for gains and risk seeking for losses. Plots show percentages of
certain option choices subtracted from percentages of risk option choices for gains and losses, respectively.
When networks were made more sensitive to losses than to gains by increasing relative amygdala magnitude
representations for negative compared with positive outcomes (Neg Amyg Bias), they showed the asymmetrical
effect observed in the literature, in which participants are more risk aversive for gains than they are risk seeking
for losses.
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Simulation results under these conditions reproduced the asym-
metrical effects: Networks showed greater risk aversion for gains
than they did risk seeking for losses (see Figure 10b). This was
because greater negative magnitude amygdala representations re-
sulted in a lateral OFC bias when processing risky options. (Recall
that under standard model parameters, these risky options were
associated with offsetting medial and lateral values.) This lateral
bias caused enhanced risk aversion for gains, because networks
were now more likely to avoid the potential (relative) loss asso-
ciated with the risky option, and this effect was additive with the
networks’ continued tendency to be biased toward the certain
option (which still had a purely medial representation). Further, the
same amygdala manipulation diminished the risk-seeking effect
for losses: The lateral OFC bias caused networks to now have a
greater tendency to avoid the potential of additional losses asso-
ciated with the risky choice. Nevertheless, because the certain loss
was associated with a purely lateral OFC representation, networks
continued to reliably avoid this option and continued to display
relative risk-seeking behavior.

In summary, our OFC model displayed classical framing effects
in that it was risk averse for gains and risk seeking for losses.
These effects emerged naturally from our framework because
medial OFC representations for certain gains biased networks to
choose these options, whereas lateral OFC representations for
certain losses biased networks to avoid those options. The risky
choices were associated with offsetting medial and lateral repre-
sentations, as their potential outcomes were encoded relative to the
certain gains, as posited by prospect theory (Tversky & Kahne-
man, 1991). Finally, our account for asymmetrical effects of risk
aversion and seeking depends on greater (amygdala) magnitude
representations for negative than for positive outcomes. This ac-
count is consistent with observations that risk-seeking/aversion
behaviors become symmetrical when the risky options are associ-
ated with relatively smaller losses than gains (Tversky & Kahne-
man, 1986).

Discussion

This work represents a unique integration of the contributions of
the BG, amygdala, and ventromedial and orbitofrontal cortices to
decision making. Through explicit computational simulations, we
established a framework for exploring complementary roles of
these cortical and subcortical structures. We showed that the more
primitive BG-DA system is sufficient for (relatively slow) learning
to make choices based on their frequencies of positive versus
negative reinforcement. However, when decision-making tasks
required more complex strategies, active representations in the
OFC are necessary to provide top-down, goal-directed biasing on
the decision outputs. In so doing, our model accounts for decision-
making deficits observed in patients with OFC damage, in both
gambling and reversal learning tasks. Specifically, our model
suggests that the core decision-making deficit in these patients is in
assigning reinforcement value to decisions based on the magnitude
and recent temporal context of expected outcomes. OFC lesions
may lead to decision-making deficits when this information has to
override the long-term probability of positive/negative reinforce-
ment computed by the BG-DA system. This same model accounts
for reversal learning impairments in OFC patients, as very recent
temporal context must be used to override prepotent tendencies.
Further, the model also provides insight into the differential roles

of the OFC and BG in representing goal-directed action–outcome
contingencies versus stimulus–response procedural habits. Finally,
we showed that the intact network exhibits standard risk-aversion
and risk-seeking decision-making patterns that are classically ob-
served in human participants.

The basis for the BG-DA portion of our model was drawn from
various pieces of neurobiological data, as reviewed in Frank
(2005). In brief, two BG pathways are thought to independently
facilitate or suppress cortical motor commands (Mink, 1996).
More specifically, two main projection pathways from the striatum
go through different BG output structures on the way to the
thalamus and up to the cortex (see Figure 1a). Activity in the direct
pathway sends a go signal to facilitate the execution of a response
considered in the cortex, whereas activity in the indirect pathway
sends a no-go signal to suppress competing responses. DA mod-
ulates the relative balance of these pathways by exciting go cells
while inhibiting no-go cells via D1 and D2 receptors, respectively
(Gerfen, 2000; Hernandez-Lopez et al., 1997, 2000). This effect is
dynamic, such that transient DA increases during positive rein-
forcement (Schultz, 2002) preferentially activate go cells while
suppressing no-go cells, and vice versa for DA decreases during
negative reinforcement (Brown et al., 2004; Frank, 2005). This
change in activity modifies synaptic plasticity (Centonze et al.,
2001), driving learning go for rewarding choices and no-go for
maladaptive decisions.

The basis for our implemented OFC mechanisms was similarly
motivated by biological and functional data. As reviewed above,
medial and lateral OFC areas differentially respond to positive and
negative valences (Gottfried et al., 2002; O’Doherty et al., 2001;
Rolls & Kringelbach, 2003). Further, OFC activity is correlated
with the magnitude of reinforcement outcome, which likely re-
flects afferent activity from the ABL (Holland & Gallagher, 2004).
The OFC then maintains this reinforcement information over time
in working memory via persistent neural firing (K. Hikosaka &
Watanabe, 2000), which is enhanced by DA (Seamans & Yang,
2004). This active maintenance has top-down biasing effects on
behavior (Miller & Cohen, 2001), via efferent projections to the
striatum and motor cortical areas (Alexander et al., 1990; Haber et
al., 1995).

Emergent properties of our combined BG-OFC model are also
consistent with theoretical perspectives on the functional roles of
these areas in learning and decision making. First, various ac-
counts have implicated the BG in the development of stimulus–
response habits (O. Hikosaka, 1994; Jog et al., 1999; Packard &
Knowlton, 2002). Our model suggests that the learning of these
habits is accomplished via dopaminergic modulation within go/
no-go BG pathways but that these are only later transferred or
ingrained in the cortex (Frank, 2005). This prediction was recently
supported by observations of learning-related activity occurring
earlier in the striatum than in the frontal cortex (Delgado et al.,
2005; Pasupathy & Miller, 2005). Further support for a BG-
mediated habit learning system comes from observations that
striatal lesions lead to less habitual responding and enhanced
sensitivity to reinforcer devaluation (Yin et al., 2004), a result that
was also borne out in our model. Second, our model also provides
a mechanistic account for how the OFC may be involved in
representing flexible action–outcome contingencies (Gallagher et
al., 1999; Izquierdo et al., 2004), by maintaining recent action–
outcome expectancies in working memory and providing top-
down influences on the decision outputs. This is a more specific
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instantiation of the widely held notion that the PFC is involved in
flexible behavior, planning, and decision making (e.g., Fuster,
1989; Miller & Cohen, 2001; Norman & Shallice, 1986).

This conceptualization is also consistent with animal experi-
ments showing that OFC integrity is necessary for learning to
make decisions that lead to larger, delayed rewards instead of
smaller, immediate rewards (Mobini et al., 2002). The implication
of our model is that learning about delayed rewards depends on
working memory for action–outcome contingencies and requires
suppression of responses that would lead to immediate rewards.
Recent neuroimaging results in humans support this account,
showing medial OFC activity during selection of an immediate
reward (go) and lateral OFC activity when participants suppressed
(no-go) this choice in favor of a later delayed reward (McClure,
Laibson, Loewenstein, & Cohen, 2004). Activation of the medial
and lateral OFC was further observed in an imaging study when
participants chose options having a low probability of resulting in
large rewards–punishments versus those having a high probability
of smaller magnitude outcomes (Rogers et al., 1999). Finally, our
suggestion that the OFC is critical for representing reinforcement
magnitude in the face of conflicting frequency information is
supported by observations that OFC lesions lead to enhanced
choice of smaller, more certain rewards instead of less probable
but larger rewards (Mobini et al., 2002).

Functional Level Description

Although we have simulated a range of decision-making and
reinforcement-learning phenomena with a unified model, one
might argue that this model is more complex than it ought to be for
capturing these psychological phenomena. We believe that our
explicit formulations about how each brain region contributes to
decision making has potential to inform the cognitive and clinical
neuroscience literature and that this would be more difficult using
simpler, more abstract mathematical models. Nevertheless, a func-
tional level description of our model may be useful to evaluate the
overall informational processing computations that should hold
irrespective of our particular implementation.

At the functional level, we propose two systems that can either
work in tandem or compete against each other in biasing the
response selection process. The first, and arguably more primitive,
system is one that learns to bias responses on the basis of proba-
bilistic information pertaining to rewarding and punishing out-
comes. This process emerges from the interaction of the BG-DA
system with the premotor cortex. When a stimulus is initially
encountered, a prediction of its reward or punishment value based
on random initial weights is computed and subsequently biases a
response. Learning about the consequences of that particular re-
sponse occurs during positive or negative reinforcement, which
support go or no-go learning about the response just executed. If
the outcome is positive, a positive learning signal is produced,
which has the effect of strengthening associations to responses that
led to the positive outcome. In contrast, negative learning signals
increase weights that will subsequently result in suppression of
that response, by increasing connection weights to no-go repre-
sentations. Over the course of time, the probabilistic nature of the
outcome structure will result in the model strengthening go repre-
sentations for stimulus–response conjunctions that are likely to be
rewarding and strengthening no-go representations for those that

are not (or that are punishing). Thus, this system can be thought of
as a habit learning system.

The other, more advanced system computes reward or punish-
ment magnitude, which is then held online in working memory to
bias response selection processes.5 This magnitude system relies
on the interaction of the amygdala, OFC, and BG. Our model
suggests that intensity (magnitude) of an outcome is represented
by increased neuronal firing in the amygdala, with two different
subpopulations of neurons firing for positive and negative out-
comes. In addition, information about the valence of the outcome
comes from a prediction error, which is computed within the first
system. In other words, if the outcome is more positive than
expected, the learning signal will be positively valenced, and it
will be negative if the outcome is more negative than expected. We
also propose that positive and negative outcomes are held sepa-
rately in working memory and have differential effects on biasing
response selection processes, with positive magnitudes biasing go
responses and negative magnitudes biasing no-go responses. Be-
cause both systems work to bias response selection processes as
well as each other, we suggest that overall perceived expected
value of a stimulus is an emergent computation that results from
the two systems interacting. Thus, behavior that is considered
irrational (inconsistent with expected values) may result from the
relative biases of the two systems on response selection processes.

Our model also posits an explicit mechanism for how these two
systems interact and compete in decision making (for similar
arguments on emergent competitive dynamics between the BG and
hippocampus in memory, see Atallah, Frank, & O’Reilly, 2004;
Frank, O’Reilly, & Curran, in press). Specifically, during initial
stages of a task, competing responses are simultaneously activated
(considered) in the premotor cortex, and the BG system learns to
facilitate adaptive responses and to suppress those that are mal-
adaptive through trial and error. During this stage, active orbito-
frontal representations encoding recent reinforcement magnitudes
of alternative decisions can exert a considerable amount of control
over behavior by directly biasing premotor responding (and po-
tentially also by influencing the BG). If an outcome is subse-
quently devalued, this change is represented in the OFC and the
animal modifies its behavior accordingly, allowing it to override
the previously learned response (see Figure 4e for a depiction of
this situation). But as learning progresses and the habitual response
is repeatedly chosen, the premotor cortex itself becomes biased to
preferentially activate (i.e., generate) this response, without requir-
ing as much facilitation from the BG. This is consistent with
observations that striatal firing during well-learned responses oc-
curs after that in premotor cortical areas (e.g., Alexander &
Crutcher, 1990b; Crutcher & Alexander, 1990; see also Mink,
1996). During this latter habitual responding stage, OFC represen-
tations exert less control over behavior, because these representa-
tions have to compete with direct premotor activation, and the
additional neural processing associated with the OFC circuit is
temporally delayed, making it more difficult to override ingrained
behaviors. Thus, even intact animals exhibit habitual responding

5 Working memory in the context of the model does not necessarily
imply information that is consciously accessible. Rather, the stimulus–
outcome contingencies are represented as persistent neural firing that
decays gradually and can exert top-down influences even in the absence of
awareness.
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after extended training. Nevertheless, primates and humans with
more developed and stronger frontal–cortical representations con-
tinue to be sensitive to action–outcome contingencies.

Relation to Other OFC Models

Other computational models of OFC function have focused on
the role of the OFC in reversal learning (Deco & Rolls, 2005),
decision making (Wagar & Thagard, 2004), and attentional set
shifting (O’Reilly et al., 2002). All of these models explore spe-
cialized mechanisms within the OFC that support such behavior.
However, none of these models provide a unified account that
reconciles disparate theories of OFC function across multiple
tasks. Moreover, our model is the first to address the division of
labor between the BG-DA system and the OFC–amygdalar system
and how their emergent interactions may influence decision mak-
ing. This integrated model successfully accounted for empirical
data across decision-making, reversal learning, and devaluation
paradigms, without changing any model parameters. We address
specific points of overlap and contrast among the various models
next.

In the Deco and Rolls (2005) model, OFC neurons maintain
stimulus–reinforcement rules in working memory, similar to their
general role in our model. Their model diverges, however, in the
mechanisms used to support reversal learning. Specifically, error
detection neurons send a global inhibition signal and cause simu-
lated OFC neurons to reverse responding. Thus, if Stimulus 1 is
initially associated with reward and Stimulus 2 is associated with
punishment, a subsequent error signal causes OFC neurons to
reverse their selectivity, such that Stimulus 2 is then automatically
associated with reward. Thus, although their model implements a
potential mechanism by which OFC neurons reverse responding
following errors, it does not address the difficult problem of how
OFC representations develop or learn in the first place. Further,
their model’s mechanisms are limited to the simple case of two
stimuli, for which one is rewarded and one is not; in the current
state, it is unclear how it would scale to accommodate multiple
stimulus–reinforcement mappings. In contrast, our model develops
distributed and learned OFC representations of reinforcement
value, which do not fundamentally restrict the number of possible
mappings.

In the Wagar and Thagard (2004) model, the functions of
ventromedial–orbitofrontal and amygdala neurons are simulated in
a decision-making task. These areas are trained with good–bad
affective states that ultimately influence processing in the NAc. If
the two affective states are inconsistent with each other, the
ventromedial–prefrontal cortex (VMPFC) state trumps that of the
amygdala and has more of an influence on the NAc. Thus, VMPFC
lesions lead to an oversensitivity to immediate rewards, which are
represented in the intact amygdala. In a broad sense, this is similar
to our model in that OFC and subcortical areas have complemen-
tary and competitive effects on output responding. However, in our
model, OFC representations depend on, rather than compete with,
input from the amygdala (Holland & Gallagher, 2004); the com-
petition for output responding emerges via interactions with the
dorsal striatum and its effects on response selection processes via
BG output structures, the thalamus, and the premotor cortex.
Further, their model does not learn its VMPFC representations,
which instead are applied directly by the modeler. Thus, the
VMPFC does not have to maintain information in working mem-

ory, and its effects on the NAc are somewhat of a foregone
conclusion. In contrast, complementary roles of the BG and OFC
in our model emerge as a result of training—our simulated OFC
learns positive/negative associations via trial and error, maintains
them in working memory, and influences both the BG and motor
cortical areas. Nevertheless, our model does not include contribu-
tions of the NAc, which are likely to be critical. In particular,
although amygdala activity directly influences the OFC in our
simplified model, we think that the NAc and/or ventral striatum
may actually be involved in gating of this reinforcement magni-
tude information to be maintained in the OFC (cf. Frank et al.,
2001).

Our model is both consistent with and differs from that of
O’Reilly et al. (2002) in several important ways. Like our model,
their simulated PFC-OFC has top-down biasing effects on behav-
ior (Miller & Cohen, 2001). But in their particular implementation,
the currency of OFC information is in representing detailed stim-
ulus features and not their reward values. Our model is therefore
more grounded by the experimental literature, which consistently
implicates OFC representation of reward values across both single-
cell recordings in primates and imaging studies in humans (Krin-
gelbach & Rolls, 2004; O’Doherty et al., 2001; Tremblay &
Schultz, 1999; Wallis & Miller, 2003). It is also unclear how their
model would account for decision-making deficits associated with
OFC damage. Finally, whereas their model explores divergent
roles of the OFC versus the dorsolateral PFC in reversal and set
shifting, our model focuses on medial and lateral OFC interactions
with the BG, which was omitted in O’Reilly et al. (2002).

In summary, our model represents a unique integration of neural
and behavioral data that has not been previously explored and
accounts for several pieces of existing data. Next, we discuss
particular implications of this framework for decision-making def-
icits in clinical populations, before elaborating on further novel
predictions.

Implications for Clinical Populations

Our model suggests that decision-making deficits in OFC pa-
tients stem from degraded working memory representations for the
magnitudes of recent reinforcement outcomes. By this account,
patients should be able to use their intact BG-DA system to
successfully integrate positive/negative experiences over multiple
experiences. Patient deficits should be more marked when the
magnitude of reinforcement outcomes plays more of a role in
determining the expected value of a decision than does the fre-
quency of positive versus negative outcomes. In particular, al-
though the magnitude of infrequent gains and losses may be
available to the BG-DA system in terms of larger DA spikes and
dips (Tobler et al., 2005), these may not be sufficient to counteract
the learning effects of several instances of smaller magnitude
outcomes. Thus, patients with OFC damage are predicted to fail at
the IGT because of a failure to integrate both magnitude and
frequencies of gains versus losses. Because the IGT was not
designed to test this possibility (i.e., outcomes always include a
gain, and the largest magnitude outcomes are in the bad decks), we
are developing modified versions of the task to do so.

Our model may also shed light on decision-making deficits in
other clinical populations. For example, drug abusers perform
poorly on decision-making tasks, showing inability to maximize
long-term rewards (Bolla et al., 2003; Grant, Contoreggi, & Lon-
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don, 2000). These deficits were initially hypothesized to result
from either hypersensitivity to immediate rewards or generally
insensitivity about the future (Bechara, Dolan, & Hindes, 2002).
Mathematical modeling of choice behavior on the IGT showed that
abusers appear to be insensitive to punishments (Busemeyer &
Stout, 2002; Stout, Busemeyer, Lin, Grant, & Bonson, 2004); the
model also included parameters for memory of past consequences
and response thresholds. Our model is broadly consistent with this
characterization but specifies the neural bases for these effects:
Reward and punishment sensitivity is determined by DA modula-
tion and medial–lateral OFC representations, memory for recent
context is implemented in OFC_ctxt, and response threshold is
dictated by the balance of go/no-go activity in the BG. Thus, our
model would suggest that an insensitivity to punishment in abusers
may be associated with reduced lateral OFC activity, consistent
with recent observations in stimulant abusers showing reduced
OFC metabolism (Volkow et al., 2001). Although drug abuse
could feasibly be an effect rather than a cause of impaired OFC
function, indirect evidence from animals shows that cocaine ad-
ministration can cause insensitivity to action–outcome contingen-
cies in a devaluation paradigm (Schoenbaum & Setlow, 2005),
which also depends on the lateral OFC in our model. Finally, the
implication of the lateral OFC in delayed gratification (McClure et
al., 2004) may explain why drug abusers discount the future at
almost twice the rate of non-drug abusing individuals (Bickel &
Marsch, 2001).

In addition to predicting deficits in drug abusing participants,
our model may help to explain normal individual differences in
decision-making abilities. For example, our simulations of classi-
cal framing effects suggest that the medial OFC should be prefer-
entially involved in risk-averse behavior to achieve sure gains,
whereas the lateral OFC should be activated during risk seeking to
avoid certain losses.

Further Model Predictions: Patient and Neural Data

Our model makes several predictions about the nature of
decision-making deficits that would be observed in PD and OFC
patients, with regard to frequency and magnitudes of punishments
and rewards. We also outline some neurophysiological predictions
of the model.

PD patients. Our models predict that PD patients should have
particular trouble learning to choose advantageously when options
differ only in the frequency of rewarding and punishing outcomes,
due to reduced dynamic range of BG-DA signals (Frank, 2005). In
simple reinforcement learning paradigms, patients are not always
globally impaired (Frank et al., 2004), but the BG model never-
theless predicted the differential pattern of learning biases depend-
ing on the patient’s medication status. Specifically, patients off
medication were better at no-go learning from negative reinforce-
ment, whereas medicated patients were more sensitive to positive
outcomes but were impaired at learning from negative outcomes.
The overall lack of impairment in PD patients compared with
control participants could potentially be explained by intact patient
maintenance of reinforcement information in the OFC, especially
because this frontal area interacts with ventral striatal areas that are
relatively spared in PD. Thus, our model predicts overall PD
impairments in decision-making tasks with multiple reinforcement
magnitude outcomes, in which the frequency of rewards and
punishments is more informative than their individual magnitudes.

Further, DA medication may block DA dips and reduce lateral
OFC representations, which in the model would prevent the en-
coding of loss magnitude information while sparing or enhancing
gain representations—potentially explaining the documented ef-
fects of medication on inducing pathological gambling in PD
(Dodd et al, 2005). Patients should also have general impairments
in more complex decision-making tasks that involve high working
memory load (i.e., in a gambling task with multiple decks and
corresponding reinforcement outcomes), as reduced striatal DA in
PD is associated with prefrontal deficits similar to those observed
in patients with frontal damage (Muller, Wachter, Barthel, Reuter,
& von Cramon, 2000; Remy, Jackson, & Ribeiro, 2000).

OFC patients. In contrast to PD patients, OFC patients are
predicted to show greater difficulty when choosing between op-
tions that differ in magnitudes of rewards. In particular, medial
lesions to the OFC are predicted to result in a difficulty of learning
a go response to options in which the reward is relatively small but
frequent, whereas lateral lesions to the OFC should result in a
difficulty learning a no-go response to options that lead to long-
term losses, particularly if these decisions will lead to short-term
gains.

Our model also makes the counterintuitive prediction that OFC
patients should eventually respond more optimally than do control
participants in a pure frequency-based reinforcement learning par-
adigm. This prediction stems from our OFC model’s tendency to
probability match as a result of working memory representations
for gains and losses in the infrequent trials having an effect on
subsequent performance. In contrast, the BG system should even-
tually respond more optimally on the basis of the highest proba-
bility of positive reinforcement, despite being slower to acquire
this knowledge. This type of prediction, for which OFC patients
should perform better than neurologically intact control partici-
pants, has been supported in a recent study in which OFC patients
performed more optimally than did control participants on an
investment task in which the rational choice was more risky (Shiv,
Loewenstein, & Bechara, 2005). Nevertheless, this prediction de-
pends on the time constant under which OFC integrates previous
reinforcement experiences, such that short time constants (fast
decay of working memory) would predict probability matching
behavior but longer time constants would lead to more integration.

Neurophysiological predictions. At the neural level, our
model predicts that the medial OFC has top-down biasing effects
on striatal go signals, whereas the lateral OFC activity should bias
no-go signals. Thus, if multiple-cell recording procedures were
used during a reinforcement learning paradigm, we would expect
medial OFC activity to be correlated with striatal activity in the
direct pathway (striatonigral neurons). Conversely, lateral OFC
activity would be expected to correlate with activity in the indirect
pathway (striatopallidal neurons). Although it is difficult to discern
direct from indirect pathway neurons with extracellular recordings,
these can be inferred indirectly (Onn, West, & Grace, 2000).

Model Limitations and Further Neurobiological
Considerations

Although our model accounts for many empirical findings, we
are not suggesting that it is a comprehensive model that will
explain all decision-making findings but rather a framework with
which to explain interactions between decision making and rein-
forcement learning. As mentioned previously, we have focused
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only on a distinct subset of brain regions that have been implicated
in the literature. Below, we elaborate on some of these shortcom-
ings and how future work might incorporate these functions.

Insula. The insula–somatosensory cortex has been proposed to
be important for the conscious experience of emotions (Damasio,
1994) and in linking cognition with visceral states (Mesulam,
2000). Several neuroimaging studies have found increased insula
activation during decision-making and reversal learning tasks
(Ernst et al., 2002; Paulus, Rogalsky, Simmons, Feinstein, & Stein,
2003; Remijnse, Nielen, Uylings, & Veltman, 2005). Because we
were not attempting to model the conscious experience of emo-
tions, this portion of the decision-making circuit was omitted.
However, future computational models should attempt to incorpo-
rate the development of representations of body states that accom-
pany emotions and that may influence decision making (e.g.,
Bechara & Damasio, 2005).

ACC. The present model also does not explicitly simulate the
contributions of the ACC, which is critically involved in negative
reinforcement learning (Frank et al., 2005; Holroyd & Coles,
2002) and in monitoring conflict among multiple decision options
(Yeung, Botvinick, & Cohen, 2004). Researchers have previously
argued that the ACC may support aversive no-go learning by
interacting with the BG (Frank et al., 2005). Further, external
activation of ACC cells has been shown to produce an aversive
teaching signal (Johansen & Fields, 2004), and ACC activity
predicts behavioral switching from an unsuccessful response to a
more adaptive response; this switch does not occur following ACC
inactivation (Shima & Tanji, 1998). Future research is required to
disentangle the division of labor between the ACC and lateral OFC
in avoidance behavior and negative affect. It may be that in the
present model, the lateral portion of the OFC_med_lat layer ex-
erting behavioral control over no-go responding may be partially
serving the functions of the ACC. By this account, the lateral OFC
would still maintain working memory information about recent
negative reinforcement values (as OFC_ctxt does in our model),
but this would then bias ACC activity when needed for behavioral
control. This is supported by the existence of projections from the
OFC to the ACC (Cavada et al., 2000), functional connectivity
between these areas during risky decision making (M. X. Cohen,
Heller, & Ranganath, 2005), and electrophysiological studies
showing both lateral OFC and ACC signals during no-go trials in
a go/no-go task (Bokura et al., 2001).

What determines DA firing? In the present work, we have also
not addressed the important question of how reward and loss
information is computed by systems upstream of midbrain DA
neurons; instead, we simply assumed this function by externally
increasing and decreasing simulated DA levels during positive
reinforcement and negative reinforcement and then examined their
effects on learning in the BG-OFC network. In parallel work, how
interactions between distinct nuclei of the amygdala and ventral
striatum can learn to associate stimuli with affective states and
drive dopaminergic firing in the midbrain is being investigated
(O’Reilly, Frank, Hazy, & Watz, 2005; see also Brown et al.,
1999). This work provides a biologically explicit mechanism for
the widely acknowledged relationship between the firing patterns
of DA neurons during conditioning paradigms and those predicted
by the abstract mathematical temporal differences reinforcement
learning algorithm (Schultz et al., 1997; Sutton, 1988). This model
produces DA firing patterns that are consistent with formal learn-
ing theory (e.g., in blocking paradigms; Kamin, 1968), as has been

confirmed in DA recording experiments (Waelti, Dickinson, &
Schultz, 2001). Future work will investigate the implications of
this more ecologically valid computation of DA firing on decision-
making processes within the BG and OFC.

More complex decision tasks: Dorsolateral PFC and BG cir-
cuits. We have also simplified the mechanisms by which infor-
mation gets updated into working memory, in that all positive and
negative experiences are updated and subsequently maintained.
Researchers have argued that circuits linking the striatum with the
(dorsolateral) PFC are involved in gating this updating function,
allowing only task-relevant information to be maintained while
distracting information is ignored (Frank et al., 2001; Hazy, Frank,
& O’Reilly, in press; O’Reilly & Frank, 2006). This striatal gating
function is further thought to be reinforced by dynamic changes in
DA that support go and no-go BG firing to update (or not)
prefrontal representations in an analogous fashion to the response
selection circuits (Frank, 2005; O’Reilly & Frank, 2006). The
current simulations did not include this striatal gating function of
working memory updating because (a) the tasks used did not
include distracting information, and (b) the encoding of reward
magnitude information by the amygdala provides a similar, albeit
more graded, gating function of OFC representations. Neverthe-
less, a BG gating function for selectively updating some dorsolat-
eral PFC working memory representations, while continuing to
robustly maintain others, may be critical for more cognitively
demanding decision-making tasks involving planning and evalua-
tion of if–then scenarios (Frank et al., 2001; O’Reilly & Frank,
2006).

Medial–lateral OFC versus right–left hemisphere. The medial
and lateral OFC distinction of processing rewards and punishment
that we chose to model remains controversial. Although several
studies have provided evidence for this distinction, other theories
have suggested a hemispheric specialization for processing posi-
tive and negative information. For example, using resting level
electroencephalograph data (Davidson, 1992) and functional MRI
data (e.g., Davidson & Irwin, 1999), Davidson and colleagues have
provided a wealth of evidence suggesting that the left hemisphere
is preferentially involved in emotions associated with approach,
whereas the right hemisphere is involved in the expression of
negative emotions. In addition, others have found increased de-
pressive symptoms in stroke patients with damage to the left
hemisphere (e.g., Robinson & Starkstein, 1989; Robinson & Sze-
tela, 1981). Although these studies have not specifically investi-
gated reward and punishment processing in the frontal cortex, they
nonetheless are important to consider in theories of the neural
mechanisms of decision making.

Further empirical testing of these competing processing distinc-
tions is needed. Although we chose to use a medial–lateral dis-
tinction for reward–punishment outcome processing, the crucial
principle implemented in the model is that reward and punishment
magnitudes are represented in a distributed fashion in the OFC.
Theoretically, a strict anatomical division for positive and negative
values might not be necessary, as long as these can be differenti-
ated within distributed neural populations. In this scenario, posi-
tive reward representations could come to be associated with
striatal go signals by virtue of these having been paired together
(i.e., via Hebbian learning), whereas negative representations
would be consistently associated with BG no-go signals. Thus,
disconfirming evidence for a medial–lateral distinction should not
discredit the general mechanisms proposed in the model.
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Serotonin. Our model is also incomplete at the level of neu-
rotransmitters. In particular, some have suggested that whereas
positive reinforcement learning depends on DA bursts, the mag-
nitude of DA dips might be too small to functionally support
negative learning (Bayer & Glimcher, 2005). Further, others have
argued that serotonin (5-HT) is more likely to support negative
learning, via opponent processes with DA (Daw, Kakade, &
Dayan, 2002; Deakin, 1983). Our position on this issue is that (a)
5-HT may indeed be involved in negative reinforcement learning,
but (b) this effect is likely to be mediated within the PFC (specif-
ically, the OFC) rather than the BG, and (c) low levels of DA
remain critical for BG-mediated negative reinforcement learning.

In support of a role for 5-HT in negative reinforcement no-go
learning, elevated 5-HT levels are associated with enhanced error
processing and harm avoidance behavior (Falgatter et al., 2004;
Mazzanti et al., 1998). Acute depletion of 5-HT in healthy volun-
teers impairs reversal learning (Murphy, Smith, Cowen, Robbins,
& Sahakian, 2002) and increases impulsive choice (Evers et al.,
2005; Walderhaug et al., 2002), characteristic markers of impaired
no-go learning and behavior. Reversal learning deficits have re-
cently been observed in monkeys with 5-HT depletion selective to
the PFC (Clarke et al., 2005). Others have shown that OFC lesions
increase compulsive responding and that this is reversed by a
selective serotonin reuptake inhibitor (Joel, Doljansky, Roz, &
Rehavi, 2005). Taken together, these results suggest that 5-HT is
involved in negative reinforcement learning and avoidance behav-
ior but that this effect is probably mediated within the OFC-PFC
rather than the BG. It could be that the DA dips that reinforce
lateral OFC representations in the current model are additionally
supported by increases in 5-HT, which promote active mainte-
nance of recently negative reinforcement value.

We suggest that low DA levels remain critical for no-go learn-
ing that is mediated within the BG. First, as argued previously,
although the magnitude of DA dips is smaller than that of bursts,
this is likely compensated for by the far greater sensitivity of D2

(compared with D1) receptors to low DA levels (Creese, Sibley,
Hamblin, & Leff, 1983; Goto & Grace, 2005). Thus, smaller DA
dips would be sufficient to support no-go learning via D2 recep-
tors, whereas larger phasic bursts would be needed to support go
learning via D1 receptors. Second, there is a growing body of
evidence that low DA levels are critical for no-go learning in
humans. Researchers have found that PD patients are better at
no-go learning when they are not taking DA medication (Frank et
al., 2004). Although this learning could have been supported by the
5-HT system (Bayer & Glimcher, 2005), this possibility is unlikely
given that 5-HT levels are actually reduced in PD along with DA
(Di Cara, Samuel, Salin, Kerkerian-Le Goff, & Daszuta, 2003;
Doder, Rabiner, Turjanski, Lees, & Brooks, 2003). Moreover,
several studies report no-go learning deficits in humans taking DA
medications, especially those acting on the D2 receptor (Cools et
al., 2001, 2003; Frank & O’Reilly, in press; Frank et al., 2004;
Mehta, Swainson, Ogilvie, Sahakian, & Robbins, 2000); according
to our model, these medications would block the effects of DA
dips needed to learn no go (Frank, 2005). Notably, none of these
effects can be explained via serotonergic mechanisms: Given the
unidirectional inhibition of 5-HT onto DA (and not vice versa;
Daw et al., 2002), acute DA manipulation is unlikely to have
substantial effects on 5-HT. Indeed, whereas 5-HT inhibits DA
release (Kapur & Remington, 1996; potentially via 5-HT receptors
in DA cells, Nocjar, Roth, & Pehek, 2002), there is no reciprocal

relationship for DA onto 5-HT (Adell & Artigas, 1999). Finally,
although DA dips have been repeatedly observed when outcomes
are worse than expected (e.g., Bayer & Glimcher, 2005; Hollerman
& Schultz, 1998; Morris, Arkadir, Nevet, Vaadia, & Bergman,
2004; Satoh et al., 2003; Schultz, 1999; Ungless, Magill, & Bolam,
2004), the predicted phasic increase in 5-HT during these negative
prediction errors has yet to be observed (see Daw et al., 2002), and
if it is observed, it is unclear how it would preferentially bias no-go
learning in the BG.

Other psychological phenomena: Heuristics and biases. Fi-
nally, in addition to the above neurobiological data, our model is
not currently able to simulate all findings from the heuristics and
biases literature. Because this is a model that must train and learn
from feedback over the course of several trials, it is unlikely that
we would be able to simulate findings in which the availability
bias, the anchoring and adjustment bias, or the representative bias
have been shown (e.g., Tversky & Kahneman, 1974). Also, the
types of problems used to elicit these biases require abstract
concepts of probability and verbal labels for positive and negative
events, which are the result of extensive experience with the world.
Prospect theory (Kahneman & Tversky, 1979) has been very
successful at explaining the above results by including decision
weights that contribute to expected value computations, but the
mechanisms that lead to the computations are not specified. We
suspect that with extensive training and expanded capacity, our
model would be able to reproduce many of the findings showing
the use of processing heuristics and would give a mechanistic
account of these phenomenon.

Conclusion

We extended a previous model of the BG-DA system in rein-
forcement learning to explore how it interacts with simulated
orbitofrontal and amygdalar contributions. We showed that the
primitive BG model learns to slowly integrate reinforcement val-
ues over multiple trials of experience and is thus suitable for
learning to make choices based on their frequencies of positive
versus negative outcomes. Orbitofrontal contributions are neces-
sary, however, when reinforcement information changes rapidly or
when magnitude of gains and losses is more relevant than their
frequency of occurrence. We outlined several novel behavioral and
neural predictions of the augmented model and are hopeful that
whether these are confirmed or falsified, they will lead to theoret-
ical and practical advances.
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Appendix

Implementational Details

The model is implemented through the use of a subset of the Leabra
framework (O’Reilly, 1998; O’Reilly & Munakata, 2000). Leabra uses
point neurons with excitatory, inhibitory, and leak conductances contrib-
uting to an integrated membrane potential, which is then thresholded and
transformed via an x/(x � 1) sigmoidal function to produce a rate code
output communicated to other units. (Discrete spiking can also be used, but
it produces noisier results.) Each layer uses a k-winners-take-all (kWTA)
function that computes an inhibitory conductance that keeps roughly the k
most active units above firing threshold and keeps the rest below threshold.
Units learn according to a combination of Hebbian and error-driven learn-
ing, with the latter computed with the generalized recirculation algorithm
(O’Reilly, 1996).

The membrane potential Vm is updated as a function of ionic conduc-
tances g with reversal (driving) potentials E as follows:

dVm�t�

dt
� ��

c
gc�t�g� c�Ec � Vm�t��, (1)

with three channels (c) corresponding to excitatory input e, leak current l,
and inhibitory input i. Following electrophysiological convention, the
overall conductance is decomposed into a time-varying component gc(t)
computed as a function of the dynamic state of the network and a constant
g�c that controls the relative influence of the different conductances. The
equilibrium potential can be written in a simplified form by setting the
excitatory driving potential (Ee) to 1 and the leak and inhibitory driving
potentials (El and Ei) to 0:

Vm
	 �

geg� e

geg� e � glg� l � gig� i
, (2)

which shows that the neuron is computing a balance between excitation
and the opposing forces of leak and inhibition. This equilibrium form of the
equation can be understood in terms of a Bayesian decision-making frame-
work (O’Reilly & Munakata, 2000).

The excitatory net input or conductance, ge(t) or �j, is computed as the
proportion of open excitatory channels as a function of sending activations
multiplied by the weight values:

� j � ge�t� � � xiwij � �
1

n
�

i
xiwij. (3)

The inhibitory conductance is computed via the kWTA function described
in the next section, and leak is a constant. In the equation above, xi is a
sending activation value; wij is a synaptic weight from unit i to unit j, and
angle brackets indicate normalized average.

Activation communicated to other cells (yj) is a thresholded (
) sigmoi-
dal function of the membrane potential with gain parameter 	:

yj�t� �
1

�1 �
1


�Vm�t� � 
��
� , (4)

where 
 is a gain parameter and [x]� is a threshold function that returns 0
if x � 0 and returns to x if x � 0. Note that if it returns 0, we assume yj(t) �
0, to avoid dividing by 0. As it is, this function has a very sharp threshold,
which interferes with graded learning mechanisms (e.g., gradient descent).
To produce a less discontinuous deterministic function with a softer thresh-
old, we convolved the function with a Gaussian noise kernel (� � 0, � �
.005), which reflects the intrinsic processing noise of biological neurons:

yj�x� � �
	

	 1

�2�
ez2/�2�2�yj�z � x�dz, (5)

where x represents the [Vm(t)  
]� value, and y*j (x) is the noise-
convolved activation for that value. In the simulation, this function is
implemented through the use of a numerical lookup table.

kWTA Inhibition Within Layers

Inhibition between layers (i.e., for GABAergic projections between BG
layers) is achieved via simple unit inhibition, where the inhibitory current
gi for the unit is determined from the net input of the sending unit.

For within-layer inhibition, Leabra uses a kWTA function to achieve
inhibitory competition among units within a layer (area). The kWTA
function computes a uniform level of inhibitory current for all units in the
layer, such that the k � 1th most-excited unit within a layer is below its
firing threshold, whereas the kth is above threshold. Activation dynamics
similar to those produced by the kWTA function have been shown to result
from simulated inhibitory interneurons that project both feedforward and
feedback inhibition (O’Reilly & Munakata, 2000). Thus, although the
kWTA function is somewhat biologically implausible in its implementation
(e.g., requiring global information about activation states and using sorting
mechanisms), it provides a computationally effective approximation to
biologically plausible inhibitory dynamics.

The kWTA function is computed via a uniform level of inhibitory
current for all units in the layer as follows:

gi � gk�1

 � q�gk


 � gk�1

 �, (6)

where 0 � q � 1 is a parameter for setting the inhibition between the upper
bound of gk


 and the lower bound of gk�1

 . These boundary inhibition

values are computed as a function of the level of inhibition necessary to
keep a unit right at threshold:

gi

 �

ge
*g� e�Ee � 
� � glg� l�El � 
�


 � Ei
, (7)

where ge is the excitatory net input without the bias weight contribution;
this allows the bias weights to override the kWTA constraint.

In the basic version of the kWTA function, which is relatively rigid
about the kWTA constraint, gk


 and gk�1

 are set to the threshold inhibition

value for the kth and k � 1th most excited units, respectively. Thus, the
inhibition is placed exactly to allow k units to be above threshold and the
remainder below threshold. For this version, the q parameter is almost
always .25, allowing the kth unit to be sufficiently above the inhibitory
threshold.

Because the OFC layers have to represent differing magnitudes depend-
ing on the value of a particular outcome, they cannot use this standard
kWTA inhibition. Instead, they require a more flexible function that allows
the layer to sometimes have greater overall activity levels, depending on
the excitatory input. The OFC layers therefore use the “AVG MAX PT”
inhibition function, which simply puts the inhibition value between the
average and maximum values for the layer. Specifically, gk


 is the average
gi


 value for the layer, and gk�1

 is the maximum gi


 for the layer. Thus,
greater excitatory input from the ABL results in greater overall OFC
activity levels.

Hebbian and Error-Driven Learning

For learning, Leabra uses a combination of error-driven and Hebbian
learning. The error-driven component is the symmetric midpoint version of
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the generalized recirculation algorithm (O’Reilly, 1996), which is func-
tionally equivalent to the deterministic Boltzmann machine and contrastive
Hebbian learning. The network settles in two phases, an expectation
(minus) phase in which the network’s actual output is produced and an
outcome (plus) phase in which the target output is experienced, and then
computes a simple difference of a pre- and postsynaptic activation product
across these two phases. For Hebbian learning, Leabra uses essentially the
same learning rule used in competitive learning or mixtures of Gaussians,
which can be seen as a variant of the Oja (1982) normalization. The
error-driven and Hebbian learning components are combined additively at
each connection to produce a net weight change. The equation for the
Hebbian weight change is

�hebbWij � xi
�yj

� � yj
�Wij � yj

��xi
� � wij�, (8)

and for error-driven learning using contrastive Hebbian learning is

�errwij � xi
�yj

� � xi
yj

, (9)

which is subject to a soft-weight bounding to keep within the 0–1 range:

�sberrwij � ��err���1 � wij� � ��err�wij. (10)

The two terms are then combined additively with a normalized mixing
constant khebb:

�wij � ��khebb��hebb� � �1 � khebb���sberr��. (11)

OFC_ctxt Layer

The OFC_ctxt layer is a simple working memory context layer that
reflects a combination of its own activity in the previous trial together with
the activity of that in OFC_med_lat, as implemented in simple recurrent
networks (Elman, 1990). Its units receive external input as a function of
their previous activity and the activity of their sending units. Specifically,
the external input u_ext equals

updt.fm_prv*u_act_p � updt.fm_hid*su_act_p, (12)

where updt.fm_prv scales the previous plus-phase activity of that unit,
u_act_p, and is set to .85, and updt.fm_hid scales the previous plus-phase
activity of its corresponding sending unit, su_act_p, from OFC_med_lat by
.60. This balance of parameters for maintaining previous states and updat-
ing new states allows the context layer to integrate reinforcement values
over time, with larger values maintained more persistently than smaller
values.

Simulated Lesions

In all cases of lesions in the model, we removed all of the units of the
layer from processing. Thus, an OFC lesion corresponded to a model with
no OFC effect on processing at all.
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