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1 Materials and Methods

Procedures were approved by the University of Arizona HuBwalnjects Protection Program.

1.1 Participants

We tested 17 DBS patients, 15 medication patients, and 2thlgessenior controls matched for
age, education, and scores on the North American Adult Rgatkst (NAART), an estimate of
premorbid verbal IQX). The vast majority of patients performed the experimentéywon and
off medication or on and off DBS (order counterbalanced). SJkatients were medicated with
their regular dopamine medication (at lower dosages) ih Bessions, so that any effect can be
attributed to DBS itself, and so that potential findings dooé considered clinically relevant. A
minority of patients opted to not return for a second sesglgmatient on medication, 4 on DBS
and 1 off DBS).

Because we were interested in the extent to which partitspaxperienced conflict and/or
learned about the positive versus negative outcomes af ¢heices, we had to first ensure that
they learned the basic task. While the training criteriaemereant to address this issue, some
participants were globally confused by the lack of feedkawd addition of novel pairs during test
and therefore performed poorly all around, including inrpavhich were easiest for them during
training. As in previous studies, we eliminated particiggenom the analysis who did not perform
better than chance (50%) during test in the easiest AB BpiiTfhis amounted to 7 single sessions
from senior controls (2 of these seniors met criteria in tieosession), 2 patients on medication,
5 patients off medication, 2 patients on DBS and 2 off DBS. fidmaining participants included
in analysis amounted to 22 senior controls, 12 patients oN-8BS, 15 on STN-DBS, 12 on
medication and 9 off medication.

The demographics of seniors and PD patients are shown ie Taldlll patients were receiving
daily L-Dopa preparations, and virtually all of them wer@pglemented with D2 receptor agonists



(pramipexole or ropinrole) and/or selegiline (monoamingvély enhancer), and were stable on
their medication dose for at least 2 months. Patients inffire@dication condition withheld taking
their regular dose of all DA-related medications for a meat3hours prior to the experiment
(minimum 15 hours)Z). Participating senior controls were either the spousé®dpatients or
were recruited from local Tucson senior centers. Exclumipuriteria were as follows:

¢ significant medical history not related directly to PD (esgroke, head injury, clinical de-
mentia, epilepsy);

e concurrent iliness such as schizophrenia and manic depness
e documented or suspected history of drug abuse and/or disgho
e PD patients with advanced symptoms (stage V in the Hoehn ahdréting scale);

e PD patients with Mini Mental State Examination (MMSE) rasnof less than 24 to screen
for dementia;

e patients and control subjects taking additional medicalikely to confound interpretation
of the findings were excluded to the best of our ability.

1.2 Deep Brain Stimulation Surgical Procedures

Patients underwent standard bilateral simultaneous deep stimulation surgery after clinical
determination of the presence of levodopa-responsiveiimk’'s disease which was no longer
adequately treated by standard dopamine-replacememtptheiNone of the patients tested had
undergone prior ablative surgical procedures. A steréiotbiame (Leksell stereotactic system)
was placed on the morning of the surgery and patient undenmwaging for direct targeting. The
initial surgical target was determined by a combination oéct and indirect targeting using a
neuronavigational computer workstation (Framelink, Meuic). Indirect targeting utilized the
default settings of the system (12mm lateral, 3mm poste3ianm inferior to the middle point of
the anterior commissural-posterior commissural line)esehwere modified if necessary by direct
targeting primarily utilizing inversion recovery MRI. llose cases co-registration of CT and MRI
were utilized, which also allows for a more accurate assesswf placement post operatively
(via CT to composite comparison). Once the target was datedmmicroelectrode recording
under local anesthesia was utilized to refine the targethgract was considered acceptable if
the span of the STN transected was more than 5 mm and conts@medrimotor neuronal units.
The inferior border of the STN was determined by locatingrélatively silent region immediately
superior to the substantia nigra pars reticulata identifigatharacteristic high frequency firing
pattern. The chronic stimulation electrode (Medtronic B88 3389) was then placed with the
distal contact at the inferior border of the STN. The sultgbof the placement was confirmed by
intra-operative macrostimulation to ensure that thereimasovement in the motor symptoms and
absence of stimulation side effects at 4.0 volts, 60 miawsd pulse width and 185 Hz frequency
with bipolar stimulation. Two weeks after electrode img&tion, a neurogenerator was placed
(Kinetra or Soletra, Medtronic).

Electrode placement was confirmed to be within the subthaleegion via post-operative MRI
(see Figure 1 for a prototypical example).



1.3 Behavioral Methods

Participants were tested in two separate experimentabsssseparated by a minimum of 7 days,
using different stimuli across sessior®. (Patients in the off medication session abstained from
taking their regular dose of dopaminergic medications farean of 19 hours prior to the exper-
iment 2,4). For off DBS sessions, DBS units were turned off by the ptigsi 30 minutes prior
to the cognitive experiment. The order of off/lon medicatonl off/on DBS was counterbalanced
across patients. Following the end of the standard taslermatwho had been off DBS then had
their stimulators turned back on. A 10 minute delay ensutdr ehich a second test phase was
administered. The same procedure was employed in a subsb4)]Nf senior controls, without the
DBS manipulation. Patients off medication were also testealsecond test phase, after taking a
regular dose of their levodopa medication, but with a defa$0e60 minutes (to ensure medication
would have time to absorb).

Participants sit in front of a computer screen in a lightemhnand view pairs of visual stimuli
that are not easily verbalized (Japanese Hiragana chesactéese stimuli are presented in black
on a white background, in 72 pt font. They press keys on theolefight side of the keyboard
depending on which stimulus they choose to be “correct”. eNbiat precise motor control is
not necessary because any of 12 keys on the appropriatef tiadf keyboard counts as a response,
allowing us to control for motor deficits associated with FDrthermore, the forced-choice nature
of the task controls for any differences in overall motopasding. Visual feedback is provided
following each choice (the word “Correct!” printed in blue ‘dncorrect” printed in red). If no
response is made within four seconds, the words “no respietiseted” are printed in red.

In the Probabilistic Selection task, three different stiusypairs (AB, CD, EF) are presented
in random order, with the assignment of Hiragana charaotstitnulus elements A-F counterbal-
anced across subjects. Feedback follows the choice tcaitedichether it was correct or incorrect,
but this feedback is probabilistic. Choosing stimulus Adeto correct (positive) feedback in 80%
of AB trials, whereas choosing stimulus B leads to incorfeegative) feedback in these trials.
CD and EF pairs are less reliable: stimulus C is correct in 60%D trials, while E is correct in
60% of EF trials. Over the course of training participangseto choose stimuli A, C and E more
often than B, D, or F.

We enforced a performance criterion (evaluated after @aahinng block of 60 trials) to ensure
that all participants were at the same performance leverbefdvancing to test. Because of the
different probabilistic structure of each stimulus paie wsed a different criterion for each (65% A
in AB, 60% C in CD, 50% E in EF). (In the EF pair, stimulus E ismemt 60% of the time, but this
is particularly difficult to learn. We therefore used a 50%ecron for this pair simply to ensure
that if participants happened to “like” stimulus F at thesmif they nevertheless had to learn that
this bias was not going to consistently work.). The paraaipadvanced to the test session if all
these criteria were met, or after six blocks (360 trialsyairing.

Participants were subsequently tested with the same nicaipairs, in addition to all novel
combinations of stimuli, in random sequence. Prior to teepbase they were given the following
instructions: ft's time to test what you've learned! During this set of tsigou will NOT receive
feedback ('Correct’ or ’Incorrect’ to your responses. Iflysee new combinations of symbols in
the test, please choose the symbol that 'feels’ more cob@sed on what you learnt during the
training sessions. If you're not sure which one to pick, jgstwith your gut instinct!” Each



test pair was presented four times for a maximum of four sgeaiuration, and no feedback was
provided.

When comparing high to low conflict RT’s, we first collapsedjthiconflict win/win and
lose/lose decisions and compared them to all low confliatspebubsequent analyses compared
high conflict win/win pairs to low conflict pairs involving apitive stimulus (AD and AF), whereas
high conflict lose/lose pairs were compared with low confhiairs involving a negative stimulus
(BC and BE).

2 Additional Results and Analysis

2.1 Data Analysis

We used SAS v9.1 PROC MIXED to examine both between and wahioect differences, using
unstructured covariance matrices (which does not maketamygsassumptions about the variance
and correlation of the data, as do structured covariandgbgre indicated, we tested for specific
planned contrasts. In these contrasts, the number of degféeedom reflects the entire sample,
and not just the participants involved in the particulartcast, because the mixed procedure ana-
lyzes both between and within effects. This procedure use$the data to provide a more stable
estimate of the error ternd).

2.2 Accuracy during the Learning Phase

In the learning phase of the task, there was a trend for a nieaotef group that neared sig-
nificance (F[4,51] = 2.5, p = .055). Planned comparisonsalegethat this was due to PD pa-
tients overall performing worse than seniors (F[1,51]=78= 0.0072). This result is consistent
with previous observations that PD patients have difficldgrning in probabilistic reinforcement
paradigms, possibly due to depleted striatal dopan6r&( There was no difference in learning
phase accuracy between patients on vs off DBS or on vs offeagdn, or in the DBS group vs
the medication patients group (p's0.4). There were also no differences between these groups in
the number of training trials to reach criterion before adbmag to test phase (p’s 0.3), except
that again PD patients as a whole were slower to do so thaorsemmtrols (F[1,51] = 5.84, p =
0.02). The mean (standard error) trials taken for each gnagas follows: Seniors, 191 (25); off
medication 267 (40), on medication 230 (32); off DBS 285 (®h) DBS 291 (28).

2.3 Accuracy in Positive versus Negative Test Choices

We replicated previously observed findin@ (n a different geographic setting, and in a within-
subject design (all patients performed the same task onfantedication, whereas in the previous
study different tasks were used between sessions). Theyewsanificant interaction between
medication status and choose-A versus avoid-B test pediocen (F[1,51] = 4.1, p = .048). Med-
icated patients performed significantly better at chooséah avoid-B test pairs (F[1,51] = 4.7,
p = .03). Avoid-B performance was also significantly worseha on than off medication state



(F[1,51]= 5.0, p=.03). In contrast, medicated patientsavermerically, but not significantly, bet-
ter at choose-A test pairs. The relatively intact chooseeAqumance in non-medicated patients
may reflect an incomplete medication washout. Previouglgnted detrimental effects on negative
learning were also more robust than the beneficial effectgasitive learning 2, 4). Moreover,
although patients off medication appear to be indistingafide to senior controls, patients required
a greater number of trials to reach performance criteriamduhe training phase before advanc-
ing to the critical test phase (see above). This slower gndibac learning is consistent with other
data, and may reflect reduced dynamic range of dopaminaigiforcement signal$( 8).

Notably, DBS did not alter patients’ biases to learn fromi{pas or negative feedback (p
0.1, Figure 1 main paper). Overall, DBS patients performederically but not significantly worse
than the others at novel test pairs (F[1,51] = 2.3, ns). Thmerical accuracy deficit is consistent
with the overall advanced disease progression in patiezdasetd with DBS. Moreover, there were
significant RT differences across conflict conditions (ewmesorrect trials), indicating that learning
was sufficient to induce slowing (or speeding) as a functiostimulus-reinforcement conflict, in
opposite directions in patients on and off DBS.

Note that classic models of the BG would predict that if thdinect “NoGo” pathway is in-
volved in learning from negative feedback, then DBS shoiifetathis learning, since the STN is
part of the indirect pathwayd( e.g.). However, our model suggests that NoGo learning for sup-
pressing the execution ofspecificresponse (eg, avoid selecting stimulus B), is implemeni&d v
focused projections from striatal NoGo cells to the extepadlidum (GPe), and then from GPe
via focused projections to the internal pallidum (GR8)X0. In contrast, STN projections to the
pallidum are diffuse, and are not involved in the learnedpsegsion of an individual response.
This is further supported by our simulations (Figure 4b ofmpaper) showing no effect of STN
manipulation on learning biases, consistent with the eiggdievidence.

2.4 Accuracy in High-Conflict Test Choices

The model predicts that the STN “Hold your horses” signaldagive, and prevents premature
responding during high conflict decisior{)}. Indeed, models with simulated STN lesions fail to
slow RTs for high conflict choices, and as a result are lessrate than intact (non-PD) networks
at discriminating between subtly different reinforcemeadties. STN-DBS did not have this direct
effect in reducing accuracy on high vs low conflict accuratyhuman PD patients. While there
was a main effect of conflict on accuracy (F[1,51], =6.1, pE7)Qthere was no group by conflict
interaction (F[4,51] = 0.9), and planned comparisons riexkao difference between patients on
vs off DBS (F[1,51] = 0.14). However, this null effect is egocal for multiple reasons. First,
overall accuracy on high conflict test pairs was quite lowldoth patients off and on DBS (57%
in both cases, in contrast to patients on and off medicatt@and 65% respectively, and senior
controls: 64%). This overall poor performance in high catftest choices in patients both on
and off DBS makes it difficult to detect a specific high-conflccuracy deficit in patients on
DBS. Further, the low performance in off DBS patients shawdtibe surprising, given that it is
difficult to discriminate between slight differences inm@rcement values, and that these patients
had relatively advanced Parkinson’s disease (Table 1).

Nevertheless, our model makes a clear and stronger piadlittat error trials in patients on
DBS should specifically be associated with premature redipgrin high conflict trials, whereas



errors in other groups would stem from other factors. Indasdeported in the main paper, analy-
sis of error trials revealed that patients on DBS were sglhigicantly and reliablyfasterfor high
than low conflict decisions (F[1,51] = 16.1, p = .0002), supipg the hypothesis that these errors
reflected premature responding. In contrast, no such effastseen in patients off DBS (F[1,51]
= 0.4), so that their high-conflict errors could not be atitéal to premature responding. The same
logic holds true for patients on and off medication (p'9.15). Healthy senior control subjects
even showed the reverse pattern, still showing signifigaitiwer RT’s for high than low conflict
error trials (F[1,51] = 9.9, p = .003). This pattern sugge¢istd these seniors adaptively slowed
down under high conflict conditions, but that other fact@g difficulty resolving differences in
reinforcement probabilities) led to errors.

Furthermore, we also found that across patients on DBS, thre they showed premature
responding, the more they made high conflict errors. This tnaes regardless of whether we
defined premature responding as faster error than coriatg tmly in high conflict conditions
(r(13) = 0.53, p = .05), or whether we computed a relative mesaef premature responding in
high compared with low conflict trials (r(13) = 0.61, p =.08Pne patient did not make any low
conflict errors and another patient did not make it to the pbstse. Thus this analysis includes
the remaining 13 patients.) In sum, although patients on BiShot perform worse than those
off DBS at high conflict test trials, only the high number ofas in the former group could be
attributed to premature responding.

Our model also provides a plausible account for why accusaoyld be relatively spared un-
der DBS in high conflict trials. Specifically, although siratdd STN lesions lead to impaired
high-conflict accuracyl(0), an effect that we replicated here, surprisingly, modeth simulated
external DBS did not show this accuracy deficit. This disareyy is explained by the following
logic. In high conflict trials, response times have to be séowugh so that the striatal system can
discriminate between competing Go signals so as to seledbebt one. In STN lesioned mod-
els, reaction times are significantly speeded, an effettishexaggerated for win/win decisions,
leading to premature responding and elevated errors (58%/errors compared with 16 +/- 6%
in intact networks). In the DBS networks, although respensere still speeded relative to low
conflict choices, they were nevertheless slower than thb$eeoSTN-lesioned models, due to
overall more STN activation (see Figure 5 in main paper, c@vith zero STN activation). The
relatively greater time taken by these networks allowedth@choose appropriately even in high
conflict conditions (28 +/- 7% errors). These modeling angieical results suggest that high fre-
qguency regular STN firing associated with DBS may actuallgdraewhat preventive of impulsive
decisions, compared with a full STN lesion.

2.5 Lose-Lose Conflict

In the main paper we reported that PD patients on DBS did nigtfail to slow reaction times
for high conflict choices, but actually showsgeededesponses for win/win decisions. This
pattern supports the notion that reaction times to win/véicisions are normally comprised of two
competing factors. First, the presence of two positive gliishould lead to enhanced stimulus-
evoked dopamine release, which can drive speeded respamse 1). In opposition to this
factor, the healthy system can adaptively slow decisiomsim proportion to conflictl0). This
depiction predicts that when faced with high conflict lossd decisions, only one factor is at



play (the conflict-induced slowing), because increaseddope should not be seen in this case.
Therefore, patients on DBS should not actually speed uprelpg, but they should also not slow
responding. This is the pattern that we observed (Figure Rafoss all participants there was a
significant conflict-induced slowing effect for lose/losecsions (F[1,51] = 8.3, p = .006). This
pattern was not reversed in patients on DBS as it was for windecisions. There was no effect
of conflict on RT in this case (the numerical trend for a slaywffect was not close to significant;
F[1,51] = 0.08). There was also a trend for an interactiowbet conflict and win/win vs lose/lose
conditions in DBS patients (p=. 09).

Notably, the same lack of speeded responses was obsentezinmoel (Figure 2b) when DA
levels were not elevated (as should be the case for loseféssions) during response selection in
the test phase.

2.6 Reaction Time Differences in Medicated vs Non-medicadePatients

Overall, there was a trend for medicated patients to havess|BT’s than non-medicated patients,
but this effect was not significant (F[1,51]= 3.2, p = .08).vielktheless this result is surprising,

given that slower RT’s are typically observed in non-metfidgatients (indeed this is the pattern
seen in the simulated Parkinson’s model). However, first ote that the critical comparisons

are the within-subject effects of low versus high conflictgd oth non-medicated and medicated
patients showed evidence for conflict-induced slowinghwio differences between the groups.
Second, we speculate that the somewhat faster RT’s in nalieated patients may reflect en-

hanced motivation to perform well in cognitive tasks, andttthis motivation can itself speed

RTs. These patients are aware that their cognition is beiafyated, and are typically sensitive
about this, particularly in the off-medication conditianwhich they do not have the benefits of
pharmacological enhancement. We previously made a siargament for why these patients can
actually perform better than controls in some cases (theaied Hawthorne effect; Frank et al,

2004).

2.7 STN-DBS and Post-Error Slowing

We also found evidence for the same putative “hold-yousést mechanism in the learning phase
of the task. Specifically, in our probabilistic learningkaafter receiving negative feedback for a
giventrial (e.g., CD), healthy individuals typically sloeaction times the next time they encounter
the same trial type. Across all participants, reaction sinvere slower for trials that had been most
recently associated with negative compared with posieesglback (F[1,51] = 5.1, p = .03). This
phenomenon of post-error slowin@d) is thought to reflect the same neural mechanism in the
anterior cingulate cortex that detects conflict and leadsatdious behaviorl@, 14. Participants
could potentially leverage this slowing to improve accyran the subsequent trial. We reasoned
that slower reaction times following negative feedback Mde associated with more accurate
choices. We therefore hypothesized that this effect woeléhtact in patients off DBS, but that
STN-DBS would interfere with cingulate-STN connectivitycbabolish the coupling between post-
error reaction time and accuracy.

While there was no overall DBS effect on response time (B]1710.02), the relative RT
slowing following incorrect relative to correct trials ngamally depended on DBS status (on vs



off; F[1,15] = 3.9, p = .067). Notably, the degree of posieslowing was tightly coupled with
post-error accuracy in patients off DBS (Figure 3a; r(12)20p = .006), whereas this relationship
was abolished in patients on DBS (Figure 3b; r(15) =-.03).

2.8 Second Test Phase Effects

Because DBS patients performed both the learning and testeghon DBS, it is theoretically
possible that DBS fundamentally altered the manner in whaahiforcement contingencies were
acquired. That s, although there were no effects of DBSainitrg accuracy, there were neverthe-
less other post-error slowing effects and possible diffees in the manner in which reinforcement
values were acquired, potentially leading to only an inticenflict effect. The “retrograde DBS”
effects reported in the main paper control for this potémoefound by showing that even pa-
tients who had learned the task off DBS, and had shown coinflilticed slowing in the test phase,
showed the reverse speeding effect when tested again weithstimulators turned back on. Fur-
thermore, to provide a treatment control, patients whalkeduoff medication were also tested in a
second test phase after taking their regular dose of levaduwglication (here the delay was 40-60
minutes to ensure the medication would have time to abs@ke}kpite this longer delay (which
may tax memory), these patients continued to show a nunhénecal for conflict-induced slowing
in the second test phase (F[1,51] = 2.0, p=.16). Criticalgre was a significant treatment by
conflict interaction (F[1,51]= 6.0, p = .017), such that DESersed conflict-induced slowing but
medication did not.

3 Model Methods

Simulations that demonstrate how to replicate all the repbreffects can be ob-
tained by sending an email to the author at mfrank@u.arieolba  For animated
video captures of model dynamics during response seleciiod learning, please see
www.u.arizona.edu/"mfrank/BGmodel_movies.html

The model is implemented using the Leabra framewd#k 1§. Leabra uses point neurons
with excitatory, inhibitory, and leak conductances cdniting to an integrated membrane poten-
tial, which is then thresholded and transformed viazdtw + 1) sigmoidal function to produce
a rate code output communicated to other units (discretengptan also be used, but produces
noisier results). Synaptic connection weights were tihmging a reinforcement learning version
of Leabra 8,15. The learning algorithm involves two phases, and is moodobically plau-
sible than standard error backpropagation. Inrtheus phasethe network settles into activity
states based on input stimuli and its synaptic weightsmaltely “choosing” a response. In the
plus phasethe network resettles in the same manner, with the onlgmdiffce being a change in
simulated dopamine: an increase of SNc unit firing from 0.%3.@for correct responses, and a
decrease to zero SNc firing for incorrect respon8gsHurther model details, including equations
and parameters are as described in Frank (2006).

As shown in the main paper, the observed behavioral patferesalts was predicted by our
computational modeB;10. To explicitly compare these results to the model, we satad proba-
bilistic learning under multiple model conditions (intasimulated PD, simulated DA medication,



simulated STN lesions, and simulated external DBS, as itbestin the main paper).

The network’s task was to select one of two possible respgoftsesach stimulus input cue.
“Feedback” is then provided to the network by either incieger decreasing simulated dopamine
levels in the plus phase, as described above. The netwonksldmsed on the difference in
Go/NoGo activity levels in the response selection and faeklphase, as detailed ihQ).

The stimulus-response mappings are probabilistic, suahtkie optimal response for some
cues will lead to positive reinforcement (DA bursts) in 80#4r@ls; in the remaining 20% of trials
some alternative response is reinforced. For all incomegponses, DA dips are applied. Other
cue-response mappings are less reliable, such that thealpasponse is positively reinforced in
only 60% of trials. 25 networks with different sets of randomtial synaptic weights were run
with each manipulation. Each network was trained for 25 bBpdthe qualitative pattern of results
does not depend on this number), consisting of 10 trials df eimulus cue.

To determine whether the STN is beneficial for selecting agmoaltiple competing responses,
a test phase was administered. Two cues were presentedinpthiiesimultaneously, one of which
had been associated with 80% positive reinforcement fovangiesponse, while the other had
been associated with 60% positive reinforcement for amradteve response. Although the models
had not been trained with these stimulus combinations, sheuld nevertheless be able to select
the response that was most likely to result in positive mrcégment (i.e. the 80% response).
However, premature responding could result in selectiothefalternative suboptimal response
if its corresponding striatal Go signal happened to getlduiactive (due to noise in striatum or
in the premotor representations themselves). This is geBcthis kind of situation that an initial
STN Global NoGo signal may be useful, so that the network ngegrate over multiple possible
responses before selecting the most appropriate one.

3.1 Reaction time measures under low and high conflict

To measure reaction times in the model, we assessed the nofmistwork processing cycles be-
fore a response was selected by the BG action selection ret\We therefore counted a response
as being gated by the BG when one of the thalamus units wathibgtied so that its activity ex-
ceeded 0.5 (50% maximal firing). These same methods wereogatpin previous model reaction
time analyses1(7). Because the BG gating system is required to facilitaterdicab response,
similar results are obtained by probing Output unit agfivit

To simulate win/win decisions and response speeding, D&l¢evere somewhat elevated dur-
ing response selection (firing rates of DA neurons were aszd from 50% maximal to 70%).
This change was applied for both low and high conflict condsi as long as a single positive
stimulus was presented (ie DA levels were not further insgddor two vs. one positive stimuli,
consistent with recent datd). Decision times were nevertheless faster for win/win sieais,
due to the presence of multiple Go signals in the striatunt)is Telationship between reaction
times and DA levels is consistent with that observed in d@rpemtal monkeysX1). For lose/lose
simulations, DA levels were not elevated.



3.2 External DBS Simulation

To simulate DBS, we applied continuous external excitabiopyt stimulation to a subset of STN
units (3 out of 9 units). We also increased the time constanh&ch STN units could update their
membrane potentials (from .05 to 1.0), allowing STN unitedoillate at very high frequency. The
resulting oscillations occur at much higher frequency tin@slow oscillations reported previously
for DA-depleted networks, putatively associated with Hestn’s tremor 10). Note that results
reported in the DBS simulations do not depend on the paatiqdrameters used to simulate these
oscillations — indeed similar results were obtained in y#tiad simulation in which we simply
added Gaussian noise to each model STN unit’s activity. Tineikey finding is that disruption of
natural STN processing by externally stimulating, addings@, or removing the STN altogether
will prevent the system from regulating decisions timesroportion to decision conflict.

3.3 Representation of Conflict: Cingulate or PreSMA?

Several studies suggest that the anterior cingulate cA€XC) is responsible for detecting re-
sponse conflictY9, 20. These authors suggest that the ACC corresponds to theayooktral
cingulate motor zone2(l, 22, and may represent the activation of multiple competirspoases.
In models of this system, the ACC detects response confltbeifiorm of the co-activation of mul-
tiple motor plans, but integrates this conflaross timdor subsequent modification of behavioral
control (in future trials) 23, 29. In contrast, the conflict signal in our model effectivedypresents
instantaneousonflict, as the preSMA integrates activity from its sendaputs within the course
of a single trial. Greater co-activation among multiplep@sses leads to increased conflict output
from preSMA to STN. For high conflict trials, the preSMA hasrn@ased activity due to the pres-
ence of two stimulus inputs, which are both trying to drive\aty in the different response units.
In future work, it would be interesting to further incorptean ACC layer that integrates preSMA
conflict over time, and interacts with the STN to control bebabetween trials.

3.4 Go/NoGo model biases

Following probabilistic training, Go/NoGo associationgre recorded from the model’s stria-
tum, by computing activation-based receptive fields. Faitpe Go learning, we computed the
summed Go - NoGo activity of units representing the respteesting to the selection of the 80%
rewarded response. For negative NoGo learning, we computated NoGo - Go associations
for selecting the alternative 80% negative respo2¥e The Go/NoGo learning results shown in
main paper replicate those shown previously, before the 8adincluded in our model. The STN
lesioned from the current version of the model resemblesathe intact network, with respect
to Go/NoGo learning biases, and simulated DBS also doedteotlais bias.

The tendency for simulated PD networks to learn less frontige®utcomes is consistent with
previous observations in non-medicated patients acrogdifferent tasks2). This effect was
numerically but not significantly observed in non-medidatempared with medicated patients in
the current sample. However, non-medicated patients toolew/hat longer to reach criterion in
the training phase (see above), and the residual transpersitive test outcomes may also reflect
an incomplete washout of medication. Previously reportegtes on negative learning were also



more robust than those on positive learni@gdj.
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Figure 1: MR images of the subthalamic regi@) pre-operatively, and) post-operatively. Electrode
contacts can be observed in the STN region in (b).
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Figure 2:a) Mean of median reaction times to high-conflict lose/loseigiess (correct trialsp) Model
data showing similar pattern of results. In these simutationodel DA levels were not elevated (no positive
stimuli), and models with simulated STN lesions or exteBIS did not show high-conflict speeding, but
still showed reduced slowing than the other cases.
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Figure 3:Coupling between trial-specific post-error slowing andtfgsor accuracy in patients) off and

b) on STN-DBS.



Sex ratio Years NAART | Hoehn & Yahr| Years
Group n | nfilt (m:f) Age Education| (# correct) stage diag
\ Seniors \ 27\ 22 \ 7:15 \ 66.0 (1.7)\ 16.2 (0.7)\ 44.0 (1.9)\ N/A \ N/A
PD patients
ON Med 15| 12 7:5 67.8 (2.1)| 17.8(1.2)| 42.9 (2.3) 2.4(0.2) 8.8 (0.8)
OFFMed |14| 9 6:3 67.6 (2.5)| 19.2 (1.4)| 43.5(3.1) 2.3(1.9) 9.5(1.4)
ON DBS 17| 15 13:2 64.5(2.8)| 14.2 (1.5)| 39.9 (2.4) 2.3(0.2) 14.4 (1.5)
OFFDBS | 14| 12 11:1 62.3 (3.3)| 14.4(1.2)| 39.0(2.9) 2.8(0.3) 15.2 (1.8)

Table 1:Demographic variables for seniors and PD patients, withigrifecant differences between groups
in any of the demographic variables, except DBS patientinbdvad the disease longer than medication
patients (p = .004), as is expected. There were trends foffddBS patients to be less educated (p=.08)
and more advanced disease progression (p=.13) than gatiefuff medication. These patients were not
significantly less educated than the senior controls. Gzavgre not gender-matched, but it is unlikely that
this factor impacts on the results given that our DBS and oa&idin manipulations were within-subject. The
“n filt” column shows the number of remaining participantsonkere not filtered out for data analysis (see
Data Filtering sections); participants who were filtered were not included in the demographic means
displayed for that row (as they were not used in the statistomparisons). NAART = number correct
responses in the North American Adult Reading Test, an astimf premorbid verbal |Q. For PD patients,
disease severity is indicated in terms of mean Hoehn and stage, and the number of years since having

been diagnosed with PD. Values represent mean (standarl. err

\olt-R
V)

\olt-L
V)

Freg-R
(Hz)

Freg-L
(Hz)

Wave-R
(1s)

Wave-L
(1s)

| 3.4(0.1)] 3.2(0.15)| 176.7 (2.9)] 170.0 (4.2)| 74.0 (3.9)] 76.9 (4.7)]

Table 2:DBS stimulation parameters for right and left STN. Valugsresent mean (standard error).




