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Methods

Procedures were approved by the University of Colorado Human Research Committee. Partici-

pants sit in front of a computer screen in a lighted room and view pairs of visual stimuli that are

not easily verbalized (Japanese Hiragana characters). These stimuli are presented in black on a

white background, in 72 pt font. Instructions given to participants are as follows:

Two figures will appear simultaneously on the computer screen. One figure will be correct and

the other will be incorrect, but at first you won’t know which is which! There is no ABSOLUTE

right answer, but some symbols will have a higher chance of being correct. Try to pick the symbol

that you find to have the highest chance of being correct. Press the key labeled L to select the

symbol on the left, and the key labeled R to select the symbol on the right. At first you may be

confused, but don’t worry, you’ll have plenty of practice!

After each choice, visual feedback is immediately provided(duration 1.5 seconds), consisting

of the word “Correct!” printed in blue or “Incorrect” printed in red. If no response is made within

four seconds, the words “no response detected” are printed in red.

In the training phase, three different stimulus pairs (AB, CD, EF) are presented in random

order, with the assignment of Hiragana character to stimulus elements A-F counterbalanced across

subjects. Feedback follows the choice to indicate whether it was correct or incorrect, but this

feedback is probabilistic. Choosing stimulus A leads to correct (positive) feedback in 80% of AB

trials, whereas choosing stimulus B leads to incorrect (negative) feedback in these trials. CD and

EF pairs are less reliable: stimulus C is correct in 70% of CD trials, while E is correct in 60% of

EF trials. Over the course of training participants learn tochoose stimuli A, C and E more often

than B, D, or F.

We enforced a performance criterion (evaluated after each training block of 60 trials) to ensure

that all participants were at the same performance level before advancing to test. Because of the

different probabilistic structure of each stimulus pair, we used a different criterion for each (65% A

in AB, 60% C in CD, 50% E in EF). (In the EF pair, stimulus E is correct 60% of the time, but this
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is particularly difficult to learn. We therefore used a 50% criterion for this pair simply to ensure

that if participants happened to “like” stimulus F at the outset, they nevertheless had to learn that

this bias was not going to consistently work.). The participant advanced to the test session if all

these criteria were met, or after six blocks (360 trials) of training.

Participants were subsequently tested with the same training pairs, in addition to all novel

combinations of stimuli, in random sequence. Prior to the test phase they were given the following

instructions: “It’s time to test what you’ve learned! During this set of trials you will NOT receive

feedback (’Correct’ or ’Incorrect’ to your responses. If you see new combinations of symbols in

the test, please choose the symbol that ’feels’ more correctbased on what you learnt during the

training sessions. If you’re not sure which one to pick, justgo with your gut instinct!”

Each test pair was presented four times for a maximum of four seconds duration, and no feed-

back was provided.

Additional Data and Analysis

DRD2 Gene and RT Effects.

In the main paper we showed reaction time slowing effects forDRD2genes and avoid-B perfor-

mance. Overall, RT’s were slower for avoid-B trials than choose-A trials (F[1,66] = 7.4, P = 0.008),

as expected since it takes longer to avoid a stimulus (B) in order to select the alternative than it

does to just directly choose one (A). Notably, the degree of slowing was reduced with increasing

number of T alleles (F[1,66] = 3.6, P = 0.06), again showing enhanced NoGo function. This effect

of RT slowing was not observed for theDARPP-32gene (F[1,66] = 0.8). Finally, these selective

DRD2genetic effects on NoGo learning were found despite no effect on overall reaction times to

positive or negative test trials alone (all P’s> 0.25).

COMT Gene and Trial-to-Trial Switching and RT Effects.

As reported in the main paper,COMTeffects on switching were significant even in the very first

five training trials of each type. Here we show that this was due to met allele carriers starting out

with high degree of switching and slowing following negative feedback, but reducing this behavior

as training progressed (SI Fig. 6). This is consistent with the notion that participants begin with a

“prefrontal strategy” and are therefore sensitive to working memory for recent trial outcomes, but

then this trial-to-trial information becomes less informative as they integrate probabilistic feedback
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over many trials. This is also consistent with observationsthat PFC is preferentially active during

new learning and less so as cue-response associations become more familiar (1,2).

To analyze the effects ofCOMTon switching and slowing as a function of training, we grouped

the initial block of training into sub-blocks of five trials of each type (AB, CD, EF; 15 trials total).

We then analyzed whether the effects ofCOMTon switching interacted with this sub-block variable

(1,2,3,4). We found that switching interacted with sub-block, such that met allele carriers started

out with increased switching and slowing following single negative feedback experiences, which

decreased across sub-blocks (SI Fig. 6). This is consistentwith the notion that these subjects begin

with a “prefrontal strategy”, and are initially very influenced by the most recent reinforcement

experience, but that this then gives way to systems that integrate reinforcement values over multiple

trials.

There was no main effect ofCOMTgenotype on overall reaction times (F[1,66] = 0.05). Nev-

ertheless, the number of met alleles predicted the degree ofpost-error slowing when faced with

decisions that were most recently associated with negativefeedback (F[1,66] = 4.2, P = 0.04), and

this slowing decreased with time (RT slowing interaction with training block; F[1,66] = 6.1, P =

0.016). This slowing effect is commonly observed as participants become more cautious during

subsequent decisions (3). But just as in the switching findings, the post-error slowing observed here

was specific to a particular stimulus context (ie it was not observed immediately following an error,

but only when the relevant stimulus next appeared), and therefore depends on working memory for

stimulus-reinforcement associations. Again, these sequential RT effects were not modulated by

DRD2(F[1,67] = 1.99, ns) orDARPP-32genotypes (F[1,67] = 0.6).

Table 1 shows raw RT scores for each condition by genotype. The only significant effects were

on RT differences in avoid-B - choose-A trials (forDRD2) and in trials following errors relative to

following correct choices (forCOMT).

Statistical Analysis

We performed a general linear model (GLM) regression to testthe hypotheses in the main pa-

per, using between subjects continuous factors (e.g. number of met alleles forCOMT analysis

or number of T alleles forDRD2 analysis). Where appropriate, we also included repeated mea-

sures multivariate analyses to test for interaction effects (e.g. on choose-A vs avoid-B accuracy

or reaction times). For choose-A and avoid-B accuracy statistics, percent choices were arcsine-
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transformed (4) due to a moderate number of cases where values were 100% (similar results were

obtained with non-transformed data).

Degrees of Freedom.

The number of degrees of freedom was not always the same in ouranalyses in the main paper. This

was due to two simple factors. First, we were unable to obtainCOMTgenotypes for one subject,

so the DF for allCOMTanalyses is one less than those for the other genes. Similarly, the DF was

reduced by one for the within-subject reaction time analyses, comparing choose-A to avoid-B RTs

as a function ofDRD2genotype. This is because reaction time analyses were computed on correct

trials. There was one subject who never responded correctlyon avoid-B conditions, and therefore

we did not have a RT measure for this subject.

Physiological Issues and Neural Model Considerations

We reported that increasedCOMT met allele expression, associated with elevated prefrontal DA

levels, was predictive of trial-to-trial learning from negative outcomes. In contrast, we suggested

that the striatal D2 receptor is necessary for learning fromdecreases in DA during negative feed-

back (and integrating this over multiple trials). How wouldelevated DA levels in PFC facilitate

learning from negative events while decreases in DA supportthis learning in striatum? First, sev-

eral studies suggest that prefrontal and striatal DA levelsare inversely related (5–7). Second,

pauses in DA firing during negative events occur only transiently (pause durations are roughly 200

ms). In striatum, reuptake is fast [4-6µmols/ sec; (8)] and as a result, the half-life of DA in the

synapse is short enough so that DA levels can sufficiently decrease during DA pauses to enhance

striatal NoGo learning (12). In contrast, due to the lack of dopamine transporters in PFC, dopamine

clearance in PFC is far slower [0.05 micromolar /sec; (9)] – it is therefore somewhat more unlikely

that a transient pause in midbrain DA firing would have any effect on PFC DA concentration.

Furthermore, available evidence shows that prefrontal DA levels actually increase in response to

negative events over temporally extended periods (10, 11). In contrast, DA levels either generally

do not change or actually decrease over this same time periodin striatum (10,11).

Note that in our neural model of prefrontal/striatal interactions, in addition to driving striatal

NoGo learning, DA decreases (dips) also played a relativelyminor role in enhancing negative

relative to positive outcome representations in PFC (12). This aspect of our neural model differs
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from the notion depicted here thatelevationsin PFC DA support rapid trial-to-trial adjustments

due to negative outcomes. This disconnection between our neural model and the data (both our

genetic data and physiological evidence quoted above), will force us to modify this role of DA in

modulating PFC representations in future endeavors. In particular, we will follow along the lines of

other prominent models of PFC DA (cited in the main paper) which demonstrate that DA enhances

robust maintenance properties in the PFC; in our framework this can support working memory for

recent reinforcement outcomes. This underscores the iterative nature of neural modeling, whereby

models should be continually updated and improved in the face of challenging data. Nevertheless,

we emphasize that the key prediction of our neural model, supported by the data, is that enhanced

PFC function (often associated withCOMT met allele expressions) should predict rapid trial-to-

trial adaptation of behavior, but not slow integrative (BG-dependent) learning.

Q-learning: Methods, Justification, and Additional Analysis

Q learning (13, 14) is a mathematical model that simulates reinforcement-based decision making,

and is able to fit participants trial-by-trial sequence of responses. Here, we apply the Q learning

algorithm to the probabilistic selection task (15). The rationale for doing so is to disintegrate sub-

jects’ performance in this task into different components,as motivated by neurobiological models,

and also to determine whether individual differences in model parameters are accounted for by

genetic measures of interest. We implemented two parallel versions of the Q learning algorithm,

maximizing fit to participants performance in either the training phase (which is standard for rein-

forcement tasks) or to subsequent generalization performance in the test phase (novel).

The Gain-Loss Q Learning Model.

Because of computational and experimental evidence suggesting that positive and negative rein-

forcement learning are subserved by disparate striatal mechanisms, our model incorporates two

learning rate parameters, associated with loss and gain [negative and positive feedback; (16)]. Q

learning models assume that subjects maintain independentestimates (Q values) of the reward ex-

pected for each stimulus. The expected value of selecting a stimulusi (wherei can be A,B,C,D,E

or F) is computed as follows:

Qi(t + 1) = Qi(t) + αG[r(t) − Qi(t)]+ + αL[r(t) − Qi(t)]−, [5]
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where t is trial number, and allQi are initialized to 0. The best fitting learning rate parameters

αG andαL to each participant’s sequence of responses reflects the degree to which previous re-

inforcement outcomes affect subsequent Q values. Therefore a large learning rate is associated

with a recency effect whereas a small learning rate suggeststhat Q values are being integrated over

multiple trials. This analysis applies to both positive (αG) and negative (αL) outcome learning.

The probability of selecting one stimulus over another (eg.A overB) was computed as:

PA(t) =
e

QA(t)

β

e
QA(t)

β + e
QB(t)

β

, [6]

whereβ is an inverse gain parameter and reflects the participant’s tendency to exploit (ie., to

choose the stimulus with the currently highest Q value) or explore (eg., to randomly choose a

response) (17). The same equation applies for other trial-types, replacingA andB with C,D,E,F

as appropriate.

Fit to Training.

This model was first fit to each participant’s training data, by searching through the space of each

of three parameters, from 0.01 to 1 with a step size of 0.03. Wethen optimized the log likelihood

estimate (LLE) fit of the model to each subjects behavioral choices:

LLE = log(
∏

t

Pi∗,t), [7]

wheret is trial number andi∗, t denotes the subjects choice on trialt. For each subject, the best

fit parameters are those associated with the maximum LLE value and are, by definition, the most

predictive of the subject’s sequence of responses in the probabilistic task.

Final Q values for fit-to-train simulations yielded a highlysignificant association between Q

value and stimulus/reinforcement condition (Figure 4a of main paper; F[5,340] = 81.0, P< 0.0001)

The rationale for building this model is that the best fittingparameters to participants’ training

data would be forced to accommodate trial-to-trial adaptions in response to recent reinforcement

experiences, such thatαL would reflect a sensitivity to the recency of losses and associated lose-

shift performance. We also hypothesized that this parameter would vary byCOMTgenotype.
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Fit to Test.

As described in the main paper, we also separately optimizedthe model’s parameters to fit be-

havioral performance in thetest(generalization) phase, hypothesizing that a differentQ′ system is

under control over behavior in that phase. TheQ′ updating equation is identical to that depicted in

Eq 5 (Eq 1 of main text).Q′ values for each stimulus are computed as a function of reinforcement

feedback during the training phase, but with potentially different learning rates than the standardQ

system. We then computed the finalQ′ values associated with each stimulus at the end of training

for each set of parameters. The only difference is that the best fitting α values are determined to

maximize fit between model and participants’ choices made inthe test phase, rather than fitting the

trial-by-trial behavioral sequences in the training set. Recall that in the fit-to-train case above, Eq.

6 was applied to predict the probability of a participant choosing A over B or C over D or E over

F during each trial in the training set. In contrast, here we apply the same equation but to predict

the probability that the participant chooses A over C,D,E,F(and all other combinations BC, etc)

during the test phase. For example when faced with the novel test pair AC, and the subject chooses

A, we compute the probabilityP test
A as

P test
A =

e
Q′

Afinal

β′

e
Q′

Afinal

β′ + e
Q′

Cfinal

β′

, [8]

whereQ′(final) values reflect the final Q values computed at the end of training, given the

current set ofα′ andβ ′ parameters.Q′ values are assumed to not change as a function of test trials

(given that no feedback is administered during test). We then found the best fitting parametersαG′,

α′

L andβ ′ of the Q′ system to maximize the likelihood of the generalization test phase choices

under the model.

LLE(test) = log(
∏

test

P (test)i∗,test), [9]

wherei∗, test denotes the subjects choice in each test trial. As for the fit-to-train data, for each

subject, the best fit parameters are those associated with the maximum LLE value and are, by

definition, the most predictive of the subject’s choices in the test phase of the probabilistic task. In

sum, this procedure allows us to determine the parameters ofa (putative BG) system that learns

from reinforcement during the training phase, but only comes to dominate behavioral output in the

test phase.
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The reasoning for this separate fit to test phase data is that parameter values obtained from

fitting the model to the training phase (as above) can captureworking memory for the recency of

outcomes. In contrast, fitting test phase data can more purely capture a (putative BG) system that

had integrated reinforcement values over multiple trials,and is not subject to trial-to-trial recency

effects (since there was no feedback in the test phase). We therefore compared learning rates of the

fit-to-test procedure to determine whether these would varyby DARPP-32andDRD2 genotype.

Largerα′ values would indicate that participants are relatively more sensitive to the most recent

reinforcement experiences at the end of the training set (just prior to test), whereas smaller values

indicate integration of probabilities over multiple training trials.

Final Q values for fit-to-test simulations, yielded a highlysignificant association between Q

value and stimulus/reinforcement condition (F[5,340] = 48.0, P< 0.0001)

Q Learning Fits.

Table 2 shows mean parameter values across all subjects. Table 3 shows mean LLE values for each

subject for data fit to train and test. Note that LLE’s are higher when comparing model-to-data fits

in the training compared to test phase, simply because thereare more training than test trials and

therefore greater summed error across trials (similarly, some subjects may have deceptively higher

or lower LLE’s in fit-to-train as a result of performing more or less training trials before reaching

performance criteria.) To provide a more interpretable fit,we calculated pseudo-R2 values, defined

as(LLE − r)/r, where r is the log likelihood of the data under a model of purely random choices

(p = 0.5 for all choices) (17,18). The resulting pseudo-R2 statistic reveals how well the model fits

the data compared to a model predicting chance performance,and is independent of the number of

trials to be fit in each set.

To further motivate the need for a separate system that dictates behavior during test, we com-

puted how well the standard fit-to-train Q value learning algorithm can account for choices in the

test phase. That is, we applied final Q values from the fit-to-train procedure and computed LLE and

pseudo-R2 on the subsequent test data. We found that indeed, the fit of training data to test phase

data was substantially poorer (pseudo-R2 = 0.16), only half as good as the fit-to-test procedure.

That a second (putative BG) system is at play for test choicesis highly supported by the reliable

associations between these newQ′ learning parameters that best fit test responses and the striatal

genes.
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Additional Q Learning Results.

To provide additional validation of both the Q learning approach and our assumptions about the

task, we regressed choose-A and avoid-B performance against final Q′ values for each of the stim-

uli, A,B,C,D,E, and F (all entered in the regression simultaneously, so that any effect of a singleQ′

value controls for effects of other stimuli). As expected, better choose-A performance was associ-

ated with relatively higherQ′

A values (F[1,61] = 7.62, P = 0.0076); this relationship not seen forQ′

values of any other stimulus (all P’s> 0.4, with the exception of the next-most positive stimulus

C, P = 0.065). Similarly, better avoid-B performance was associated with lowerQ′

B (F[1,61] 8.36,

P = 0.0053), with no effect ofQ′ values for any other stimulus (all P’s> 0.15).

In the main paper we reported that smallerαG′ values are associated with better choose-A

performance, whereas smallerαL′ were associated with better avoid-B performance, supporting

the idea that slow integration is necessary for probabilistic generalization. Additional analyses re-

vealed that while there was no overall difference betweenαG andαG′ F[1,68]= 1.0), this difference

became apparent in subjects who successfully generalized positive reinforcement values. That is,

αG′ was relatively smaller thanαG with increasing choose-A test performance (F[1,67]=3.5, P

=.06). There was a similar, albeit nonsignificant, trend forrelatively smallerαL′ thanαL with in-

creasing avoid-B performance (F[1,67] = 2.2, p=.14). We contend that subjects who did not show

lower alpha′ thanalpha values were overly reliant on recent reinforcement outcomes in the test

phase (putatively represented in PFC) and therefore were not successful at generalization.

We also showed that theDARPP-32gene modulates slow integration of positive values, sup-

porting discrimination between subtly different reward values (Figure 5b of main paper). Here we

present converging evidence for this idea. We analyzed the final Q′ values for each participant.

We then asked whetherQ′ values in the test phase showed enough fidelity to reliably discriminate

between different positive (80, 70 and 60% reward probability) and negative (40, 30 and 20%)

values. For positive values, there was a main effect of reinforcement probability (F[2,134] = 17.5,

p<.0001), such that higher probabilities were associated with significantly higherQ′ values. No-

tably, this effect interacted withDARPP-32genotype (F[2,134] = 11.4 P< 0.0001), such that only

A/A homozygotes successfully discriminated betweenQ′ values of positive stimuli (SI Fig. 8).

This finding confirms that a lowαG′ in A/A participants allowed these individuals to discriminate

between subtly different positive values (consistent withthe depiction in Figure 5b of the main

paper). No such interaction was observed for eitherCOMT or DRD2 genes (F[2,34] = 0.6 and

0.1, respectively). For negative values, there was again a main effect of condition (F[2,134] = 6.9,
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p=.001), but this did not interact withDARPP-32(F[2,134] = 1.25, ns),DRD2 (F[2,134]=0.4) or

COMT(F[2,134]=.4) genotypes.

Extended BG-OFC Q Learning Model

The purpose of the separate fit-to-train and fit-to-test models was to show that two systems (puta-

tively BG and OFC) learn in parallel during the training phase of the task. Fitting to training data

can best capture a system adapting on a trial-to-trial basis, whereas fitting to test best captures the

accrued reinforcement values over all of training. This ledus to explore an extended model that

has two separate systems with different learning rates in the training phase, including a working

memory system that decays with time, and a BG system. The two systems contribute to a single Q

value for each stimulus, but which is updated by two different learning rates. If our assumptions

are correct, then the best fitting learning rate to the decaying (PFC) system should be substantially

higher than that of the non-decaying (BG) system. Because the higher learning rate would domi-

nate Q value updates, this would lead to the PFC dominating Q updates early, while the slower BG

would dominate updates later (once the PFC system has decayed).

In the combined model, Q values are computed as follows. Rather than using separate learning

rates for losses and gains, we instead use separate learningrates for two systems, maintaining the

same total number of free parameters:

Qi(t + 1) = Qi(t) + αBG[r(t) − Qi(t)] + αOFC[r(t) − Qi(t)]e
−0.5t. [10]

The terme−0.5t is introduced to simulate a decay of working memory strategies as training pro-

gresses (eg, SI Fig. 6). We used a constant decay for all subjects to eliminate the need to search

simultaneously across multiple parameters.1 The BG component of the Q value does not decay

with time, because BG learning becomes more habitual with increased training (19). Thus al-

though our fit-to-training and fit-to-test procedures assume two systems where only PFC governs

behavior during training and only BG governs behavior at test [similar to the binary use of two sys-

tems in (20)], here we impose a more soft constraint whereby both systems contribute to behavior,

but with relatively greater use of BG and less of PFC as trialsprogress.

Consistent with our overall hypothesis, we found that the resulting best fitαOFC was on average

1The 0.5 factor was chosen to approximate the time course of decay in lose-shift performance with trials. However,
other simulations revealed that the exact value of this parameter does not change the patterns or significance of the
findings reported here.
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twice as high as that ofαBG (Table 4; F[1,68] = 10.71, p= 0.0017). The combined BG/OFC model

also yielded a decent fit to the training phase data, althoughits fits to behavior, especially to test

phase data, were not as good as the Gain-Loss Q learning model(Table 5). Moreover, unlike

the Gain-Loss model, this model is not able to account for differential effects of losses versus

gains or associated genetic effects, as it does not incorporate different learning rates for gains and

losses. To do so would require incorporating separate gain and loss terms for each of the BG and

OFC systems, which would amount to 5 free parameters (including β), which is less parsimonious

and computationally intractable given the large search space and exponential effects of combining

parameters. Although a nonlinear search optimization algorithm is possible in principle, these

are subject to local maxima and possible interactions between parameters, making it much more

difficult to find clear genetic/parameter dissociations.

We further analyzed whether individual subjects’ data werebetter fit by the Gain-Loss or

BG/OFC Q learning models. These models both include the samenumber of parameters, but

the two learning rate parameters are allowed to vary either for gains versus losses or for fast (de-

caying) vs slow learning systems. We hypothesized that whenfitting to train data, the BG/OFC

model would provide a better fit than the Gain-Loss model withincreasingCOMTmet expression,

since these individuals behaviorally showed increased lose-shift (working memory) effects that

decayed with time on task, which would be captured with the BG/OFC model. We computed the

per-subject relative difference in pseudo-R2 between BG/OFC and Gain-Loss Q models for the fit-

to-train simulations. This difference measures the degreeto which having an explicit mechanism

for increased working memory early in training can improve fit to behavior relative to a model that

has only different learning rates for gains and losses. We found that this difference indeed corre-

lated with increasing met allele expression (r(68) = 0.26, one-tailed P = .015). This result supports

the notion that increasing met allele expression (and associated PFC DA) requires a parameter to

capture explicit working memory contributions, and relatively less differentiation between losses

and gains.

Similarly, we hypothesized that fit-to-test procedure would yield a better fit for the Gain-Loss

model than the BG-OFC model, dependent on theDARPP-32gene. Recall that the A/A genotype

was associated with relatively better Go than NoGo test generalization. We therefore reasoned that

these participants’ test performance would be relatively better fit by a model that allowed separate

learning rates for loss and gain (Gain-Loss). Indeed, the pseudo-R2 fit for the Gain-Loss model

was relatively higher than that of the BG-OFC model for A/A participants compared to G carriers
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(t(68) = 1.7, one-tailed P = 0.04). There was no such effect for theDRD2gene (p> 0.4).
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Table 1. Reaction times forCOMT and DRD2 genotypes.

Genotype Choose-A Avoid-B Post-correct Post-error
DRD2
C/C 969 (100) 1,279 (134) 801 (45) 882 (63)
C/T 1,105 (106) 1,186 (94) 1,008 (80) 1,168 (103)
T/T 1,046 (118) 1,076 (94) 1,120 (156) 1,211 (185)

COMT
val/val 1,224 (143) 1,337 (122) 1,040 (136) 1,135 (157)
val/met 1,042 (107) 1,084 (84) 1,032 (80) 1,165 (112)
met/met 993 (104) 1,225 (129) 945 (127) 1,093 (144)

No significant differences were observed for raw RT’s, but only in the relative measures described in the
main text (ForDRD2: Avoid-B compared with Choose-A RTs; and forCOMT: Post-error compared with
post-correct RTs). Values in parentheses reflect standard error.



Table 2. Mean best fitting parameter values for Gain-Loss Q model.

αG αL β αG′ αL′ β’
0.36 (0.24) 0.14 (0.21) 0.29 (0.18) 0.31 (0.36) 0.22 (0.33) 0.2 (0.24)

Standard deviations are in parentheses.



Table 3. Per-subject mean LLE and pseudo-R2 values for model fit to data.

Train Test
LLE -72.75 (63.64) -33.87 (32.0)
pseudo-R2 0.327 (0.19) 0.324 (0.24)

Standard deviations are in parentheses. Train: parametersoptimized to fit training phase trial-by-trial data
as a function of feedback and time. Test: parameters optimized during the learning phase in order to fit
subsequent test phase performance.



Table 4. Mean best fitting parameter values to BG-OFC Q learning model.

αBG αOFC β

0.17 (0.15) 0.33 (0.39) 0.32 (0.23)

Standard deviations are in parentheses.



Table 5. Per-subject mean LLE and pseudo-R2 values for BG-OFC Q learning model.

Train Test
LLE -74.4 (62.5) -35.13 (32.2)
pseudo-R2 0.309 (0.18) 0.29 (0.25)

Standard deviations are in parentheses.
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Figure 6: COMT effects on trial-to-trial adjustments as a function of training trial. Effects of neg-
ative feedback on subsequent switching were strongest in early training trials, and decreased as training
progressed. Error bars reflect standard error.
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Figure 7:Gene dose effects on Q learning parameters.a) DARPP32 gene. A/A homozygotes had smaller
α′

G values (accounting for generalization of probabilistically integrated positive outcomes).b) DRD2gene.
T/T homozygotes had smallerα′

L values (accounting for generalization of probabilistically integrated neg-
ative outcomes).c) COMTgene. Val/Val homozygotes had smallerαL (accounting for reduced trial-to-trial
modification of reinforcement values). There were no gene effects onαG or α′

G.
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Figure 8:DARPP-32effects on final Q’ values from fit-to-test simulations. A/A homozygotes could dif-
ferentiate between positive stimulus values (80, 70 and 60%), whereas G carriers showed similar positive
Q’ values for these stimuli. No suchDARPP-32effect was observed for discriminating between negative
values. Error bars reflect standard error.


