Supporting Text

Methods

Procedures were approved by the University of Colorado HuResearch Committee. Partici-
pants sit in front of a computer screen in a lighted room aeev\pairs of visual stimuli that are
not easily verbalized (Japanese Hiragana characters)seTdtanuli are presented in black on a
white background, in 72 pt font. Instructions given to papants are as follows:

Two figures will appear simultaneously on the computer scré@me figure will be correct and
the other will be incorrect, but at first you won’t know whichwhich! There is no ABSOLUTE
right answer, but some symbols will have a higher chance iofgosorrect. Try to pick the symbol
that you find to have the highest chance of being correct. Ptles key labeled L to select the
symbol on the left, and the key labeled R to select the symmbtiieoright. At first you may be
confused, but don’t worry, you'll have plenty of practice!

After each choice, visual feedback is immediately provi¢thaation 1.5 seconds), consisting
of the word “Correct!” printed in blue or “Incorrect” printein red. If no response is made within
four seconds, the words “no response detected” are printestii

In the training phase, three different stimulus pairs (AR, &EF) are presented in random
order, with the assignment of Hiragana character to stimellements A-F counterbalanced across
subjects. Feedback follows the choice to indicate whethess correct or incorrect, but this
feedback is probabilistic. Choosing stimulus A leads taedr(positive) feedback in 80% of AB
trials, whereas choosing stimulus B leads to incorrectdtieg) feedback in these trials. CD and
EF pairs are less reliable: stimulus C is correct in 70% of G&g, while E is correct in 60% of
EF trials. Over the course of training participants learshoose stimuli A, C and E more often
than B, D, or F.

We enforced a performance criterion (evaluated after eaatitig block of 60 trials) to ensure
that all participants were at the same performance leverbefdvancing to test. Because of the
different probabilistic structure of each stimulus paie wsed a different criterion for each (65% A
in AB, 60% C in CD, 50% E in EF). (In the EF pair, stimulus E isreat 60% of the time, but this



is particularly difficult to learn. We therefore used a 50%etion for this pair simply to ensure
that if participants happened to “like” stimulus F at thesmif they nevertheless had to learn that
this bias was not going to consistently work.). The partaipadvanced to the test session if all

these criteria were met, or after six blocks (360 trialsyaifting.

Participants were subsequently tested with the same nicaipairs, in addition to all novel
combinations of stimuli, in random sequence. Prior to tisepbase they were given the following
instructions: ft's time to test what you've learned! During this set of tsigou will NOT receive
feedback ('Correct’ or ’Incorrect’ to your responses. Iftysee new combinations of symbols in
the test, please choose the symbol that 'feels’ more coba@std on what you learnt during the
training sessions. If you're not sure which one to pick, gstith your gut instinct!”

Each test pair was presented four times for a maximum of fecorsds duration, and no feed-

back was provided.

Additional Data and Analysis

DRD2 Gene and RT Effects.

In the main paper we showed reaction time slowing effectiRD2 genes and avoid-B perfor-
mance. Overall, RT’s were slower for avoid-B trials thanab®-A trials (F[1,66] = 7.4, P =0.008),
as expected since it takes longer to avoid a stimulus (B) dermto select the alternative than it
does to just directly choose one (A). Notably, the degredavfiag was reduced with increasing
number of T alleles (F[1,66] = 3.6, P = 0.06), again showingasted NoGo function. This effect
of RT slowing was not observed for ti¥ARPP-32gene (F[1,66] = 0.8). Finally, these selective
DRD2genetic effects on NoGo learning were found despite no effieoverall reaction times to
positive or negative test trials alone (all B*0.25).

COMT Gene and Trial-to-Trial Switching and RT Effects.

As reported in the main papeLOMT effects on switching were significant even in the very first
five training trials of each type. Here we show that this was iumet allele carriers starting out
with high degree of switching and slowing following negatfeedback, but reducing this behavior
as training progressed (S| Fig. 6). This is consistent Wwithrtotion that participants begin with a
“prefrontal strategy” and are therefore sensitive to wagkimemory for recent trial outcomes, but
then this trial-to-trial information becomes less infotmaas they integrate probabilistic feedback



over many trials. This is also consistent with observatibias PFC is preferentially active during
new learning and less so as cue-response associations®evam® familiar , 2).

To analyze the effects @OMTon switching and slowing as a function of training, we gralipe
the initial block of training into sub-blocks of five trial§ each type (AB, CD, EF; 15 trials total).
We then analyzed whether the effect&G@MTon switching interacted with this sub-block variable
(1,2,3,4). We found that switching interacted with subeklosuch that met allele carriers started
out with increased switching and slowing following singkegative feedback experiences, which
decreased across sub-blocks (SI Fig. 6). This is consisiinthe notion that these subjects begin
with a “prefrontal strategy”, and are initially very influeed by the most recent reinforcement
experience, but that this then gives way to systems thagnate reinforcement values over multiple
trials.

There was no main effect @OMT genotype on overall reaction times (F[1,66] = 0.05). Nev-
ertheless, the number of met alleles predicted the degrpestferror slowing when faced with
decisions that were most recently associated with negi@aback (F[1,66] = 4.2, P = 0.04), and
this slowing decreased with time (RT slowing interactiohwtraining block; F[1,66] = 6.1, P =
0.016). This slowing effect is commonly observed as pgréicts become more cautious during
subsequent decisiond)( But just as in the switching findings, the post-error slogwbserved here
was specific to a particular stimulus context (ie it was natesided immediately following an error,
but only when the relevant stimulus next appeared), anétber depends on working memory for
stimulus-reinforcement associations. Again, these saeRT effects were not modulated by
DRD2(F[1,67] = 1.99, ns) oDARPP-32genotypes (F[1,67] = 0.6).

Table 1 shows raw RT scores for each condition by genotype onfly significant effects were
on RT differences in avoid-B - choose-A trials (lobRD2) and in trials following errors relative to
following correct choices (foEOMT).

Statistical Analysis

We performed a general linear model (GLM) regression to ttesthypotheses in the main pa-

per, using between subjects continuous factors (e.g. nuofbmet alleles forCOMT analysis

or number of T alleles foDRD2 analysis). Where appropriate, we also included repeated me
sures multivariate analyses to test for interaction eff¢etg. on choose-A vs avoid-B accuracy
or reaction times). For choose-A and avoid-B accuracystiesi, percent choices were arcsine-



transformed4) due to a moderate number of cases where values were 100%a(siesults were
obtained with non-transformed data).

Degrees of Freedom.

The number of degrees of freedom was not always the same anaiyses in the main paper. This
was due to two simple factors. First, we were unable to olZ&MT genotypes for one subject,
so the DF for allCOMT analyses is one less than those for the other genes. SiyniteglDF was
reduced by one for the within-subject reaction time anaysemparing choose-A to avoid-B RTs
as a function oDRD2genotype. This is because reaction time analyses were d¢ethpo correct
trials. There was one subject who never responded correctiwoid-B conditions, and therefore
we did not have a RT measure for this subject.

Physiological Issues and Neural Model Considerations

We reported that increas€2OMT met allele expression, associated with elevated prefr@fa
levels, was predictive of trial-to-trial learning from regtye outcomes. In contrast, we suggested
that the striatal D2 receptor is necessary for learning fdeereases in DA during negative feed-
back (and integrating this over multiple trials). How wowkbvated DA levels in PFC facilitate
learning from negative events while decreases in DA sugp@iearning in striatum? First, sev-
eral studies suggest that prefrontal and striatal DA leaetsinversely related5¢7). Second,
pauses in DA firing during negative events occur only trartiigpause durations are roughly 200
ms). In striatum, reuptake is fast [4t8nols/ sec; 8)] and as a result, the half-life of DA in the
synapse is short enough so that DA levels can sufficientlyedse during DA pauses to enhance
striatal NoGo learningl(2). In contrast, due to the lack of dopamine transporters @,RIepamine
clearance in PFC is far slower [0.05 micromolar /s@y € it is therefore somewhat more unlikely
that a transient pause in midbrain DA firing would have angaffon PFC DA concentration.
Furthermore, available evidence shows that prefrontal ®&lk actually increase in response to
negative events over temporally extended peridds 11). In contrast, DA levels either generally
do not change or actually decrease over this same time pergidatum (0, 17).

Note that in our neural model of prefrontal/striatal int#i@ns, in addition to driving striatal
NoGo learning, DA decreases (dips) also played a relatiaghor role in enhancing negative
relative to positive outcome representations in PEE).(This aspect of our neural model differs



from the notion depicted here thatevationsn PFC DA support rapid trial-to-trial adjustments
due to negative outcomes. This disconnection between auahmodel and the data (both our
genetic data and physiological evidence quoted abovd)farde us to modify this role of DA in
modulating PFC representations in future endeavors. bicpéar, we will follow along the lines of
other prominent models of PFC DA (cited in the main paper)idiemonstrate that DA enhances
robust maintenance properties in the PFC; in our framewuoskdan support working memory for
recent reinforcement outcomes. This underscores théveraature of neural modeling, whereby
models should be continually updated and improved in the ¢dchallenging data. Nevertheless,
we emphasize that the key prediction of our neural modehaeued by the data, is that enhanced
PFC function (often associated wi@OMT met allele expressions) should predict rapid trial-to-
trial adaptation of behavior, but not slow integrative (B€pendent) learning.

Q-learning: Methods, Justification, and Additional Analysis

Q learning 13, 14 is a mathematical model that simulates reinforcemengdaecision making,
and is able to fit participants trial-by-trial sequence cfp@nses. Here, we apply the Q learning
algorithm to the probabilistic selection tasky). The rationale for doing so is to disintegrate sub-
jects’ performance in this task into different componeassmotivated by neurobiological models,
and also to determine whether individual differences in ehgirameters are accounted for by
genetic measures of interest. We implemented two paradisions of the Q learning algorithm,
maximizing fit to participants performance in either thertrag phase (which is standard for rein-
forcement tasks) or to subsequent generalization perfaceng the test phase (novel).

The Gain-Loss Q Learning Model.

Because of computational and experimental evidence stiggebkat positive and negative rein-
forcement learning are subserved by disparate striataham®ems, our model incorporates two
learning rate parameters, associated with loss and gaga{ine and positive feedbackt)]. Q
learning models assume that subjects maintain indepeedéntates (Q values) of the reward ex-
pected for each stimulus. The expected value of selectitigralsis: (wherei can be A,B,C,D,E
or F) is computed as follows:

Qi(t +1) = Qi(t) + aglr(t) — Qi(t)]+ + ar[r(t) — Qi(1)]-, [5]



where t is trial number, and af); are initialized to 0. The best fitting learning rate paramsete
ag andag, to each participant’s sequence of responses reflects thieedegwhich previous re-
inforcement outcomes affect subsequent Q values. Therefdéarge learning rate is associated
with a recency effect whereas a small learning rate suggest) values are being integrated over
multiple trials. This analysis applies to both positive;§ and negatived;) outcome learning.

The probability of selecting one stimulus over another (¢g@ver B) was computed as:

Q%(t)

e

Pa(t) = Qa0 QM [6]
e B e B

where 5 is an inverse gain parameter and reflects the participagsideincy to exploit (ie., to
choose the stimulus with the currently highest Q value) @l@e (eg., to randomly choose a
response)X7). The same equation applies for other trial-types, reptadi and B with C',D,E,F
as appropriate.

Fit to Training.

This model was first fit to each participant’s training datasbarching through the space of each
of three parameters, from 0.01 to 1 with a step size of 0.03th&fe optimized the log likelihood
estimate (LLE) fit of the model to each subjects behavioralads:

LLE = log(]] Pr»), [7]

wheret is trial number and*, ¢ denotes the subjects choice on trialFor each subject, the best
fit parameters are those associated with the maximum LLEevahd are, by definition, the most
predictive of the subject’'s sequence of responses in tHeapitistic task.

Final Q values for fit-to-train simulations yielded a higtslignificant association between Q
value and stimulus/reinforcement condition (Figure 4a aimpaper; F[5,340]=81.0,# 0.0001)

The rationale for building this model is that the best fittpaggameters to participants’ training
data would be forced to accommodate trial-to-trial adaystim response to recent reinforcement
experiences, such that, would reflect a sensitivity to the recency of losses and agtautlose-
shift performance. We also hypothesized that this parametald vary byCOMT genotype.



Fit to Test.

As described in the main paper, we also separately optintlzednodel’s parameters to fit be-
havioral performance in thtest(generalization) phase, hypothesizing that a diffet¢'rdystem is
under control over behavior in that phase. Tpieipdating equation is identical to that depicted in
Eq 5 (Eqg 1 of main text))’ values for each stimulus are computed as a function of neiafoent
feedback during the training phase, but with potentialffegént learning rates than the standérd
system. We then computed the firdll values associated with each stimulus at the end of training
for each set of parameters. The only difference is that tisé fiiéng o values are determined to
maximize fit between model and participants’ choices madiedriest phase, rather than fitting the
trial-by-trial behavioral sequences in the training setc&l that in the fit-to-train case above, Eq.
6 was applied to predict the probability of a participanta@siog A over B or C over D or E over
F during each trial in the training set. In contrast, here pelyathe same equation but to predict
the probability that the participant chooses A over C,D,@&fkd all other combinations BC, etc)
during the test phase. For example when faced with the nesepair AC, and the subject chooses
A, we compute the probability’cs* as

QfAfinal
e @

Pl = 8]

QfAfinal Q/cfinal ’
e ﬁ/ _'_ e ﬁ/

where@'(final) values reflect the final Q values computed at the end of trgjrgiven the
current set ofy’ and3’ parameters()’ values are assumed to not change as a function of test trials
(given that no feedback is administered during test). We thend the best fitting parameterg,
o and 5’ of the )" system to maximize the likelihood of the generalizatiort f#sase choices
under the model.

LLE(test) = log(] ] P(test)i test) [9]

test

where*, test denotes the subjects choice in each test trial. As for the-itain data, for each

subject, the best fit parameters are those associated weitméiximum LLE value and are, by
definition, the most predictive of the subject’s choiceshimtest phase of the probabilistic task. In
sum, this procedure allows us to determine the parametaqmitative BG) system that learns
from reinforcement during the training phase, but only cemesdominate behavioral output in the

test phase.



The reasoning for this separate fit to test phase data is #rateter values obtained from
fitting the model to the training phase (as above) can captarking memory for the recency of
outcomes. In contrast, fitting test phase data can moreypcapture a (putative BG) system that
had integrated reinforcement values over multiple triaig] is not subject to trial-to-trial recency
effects (since there was no feedback in the test phase). &eftine compared learning rates of the
fit-to-test procedure to determine whether these would tgripARPP-32and DRD2 genotype.
Largero’ values would indicate that participants are relatively ensensitive to the most recent
reinforcement experiences at the end of the training sst uor to test), whereas smaller values
indicate integration of probabilities over multiple traig trials.

Final Q values for fit-to-test simulations, yielded a higbklgnificant association between Q
value and stimulus/reinforcement condition (F[5,340] z04® < 0.0001)

Q Learning Fits.

Table 2 shows mean parameter values across all subjects.3[slhhows mean LLE values for each
subject for data fit to train and test. Note that LLE’s are biglthen comparing model-to-data fits
in the training compared to test phase, simply because #rermore training than test trials and
therefore greater summed error across trials (similasiyyessubjects may have deceptively higher
or lower LLE’s in fit-to-train as a result of performing moreless training trials before reaching
performance criteria.) To provide a more interpretablevit calculated pseud&? values, defined
as(LLE —r)/r, where ris the log likelihood of the data under a model of pur@ndom choices
(p = 0.5 for all choices)X7,18. The resulting pseud®? statistic reveals how well the model fits
the data compared to a model predicting chance performandeds independent of the number of
trials to be fit in each set.

To further motivate the need for a separate system thattdgcteehavior during test, we com-
puted how well the standard fit-to-train Q value learningaltfym can account for choices in the
test phase. Thatis, we applied final Q values from the fitaoprocedure and computed LLE and
pseudok? on the subsequent test data. We found that indeed, the faiofrtg data to test phase
data was substantially poorer (pseuib= 0.16), only half as good as the fit-to-test procedure.
That a second (putative BG) system is at play for test chagcbghly supported by the reliable
associations between these n@mMearning parameters that best fit test responses and thtabtri
genes.



Additional Q Learning Results.

To provide additional validation of both the Q learning aggarh and our assumptions about the
task, we regressed choose-A and avoid-B performance agamlg)’ values for each of the stim-
uli, A,B,C,D,E, and F (all entered in the regression simméiausly, so that any effect of a singeé
value controls for effects of other stimuli). As expecteéltbr choose-A performance was associ-
ated with relatively highe®’, values (F[1,61] = 7.62, P = 0.0076); this relationship nets®r(’
values of any other stimulus (all Pis 0.4, with the exception of the next-most positive stimulus
C, P =0.065). Similarly, better avoid-B performance wa®aisged with lower’; (F[1,61] 8.36,

P =0.0053), with no effect af)’ values for any other stimulus (all P’s0.15).

In the main paper we reported that smalley values are associated with better choose-A
performance, whereas smalley, were associated with better avoid-B performance, suppprti
the idea that slow integration is necessary for probalulggneralization. Additional analyses re-
vealed that while there was no overall difference betweeanda F[1,68]= 1.0), this difference
became apparent in subjects who successfully generalzstive reinforcement values. That is,
aq was relatively smaller thang with increasing choose-A test performance (F[1,67]=3.5, P
=.06). There was a similar, albeit nonsignificant, trendr&atively smaller ;. thanay with in-
creasing avoid-B performance (F[1,67] = 2.2, p=.14). Weteod that subjects who did not show
lower alpha’ thanalpha values were overly reliant on recent reinforcement outmehe test

phase (putatively represented in PFC) and therefore wersusoessful at generalization.

We also showed that tHeARPP-32gene modulates slow integration of positive values, sup-
porting discrimination between subtly different rewardins (Figure 6 of main paper). Here we
present converging evidence for this idea. We analyzed tia @’ values for each participant.
We then asked whethé)' values in the test phase showed enough fidelity to relialslgrohinate
between different positive (80, 70 and 60% reward probighiand negative (40, 30 and 20%)
values. For positive values, there was a main effect of oeteiment probability (F[2,134] = 17.5,
p<.0001), such that higher probabilities were associateld significantly higheiQ’ values. No-
tably, this effect interacted witbARPP-32genotype (F[2,134] = 11.4 R 0.0001), such that only
A/A homozygotes successfully discriminated betwégnvalues of positive stimuli (SI Fig. 8).
This finding confirms that a low in A/A participants allowed these individuals to discrirata
between subtly different positive values (consistent whig depiction in Figure 5b of the main
paper). No such interaction was observed for eitB&MT or DRD2 genes (F[2,34] = 0.6 and
0.1, respectively). For negative values, there was agaiaia affect of condition (F[2,134] = 6.9,



p=.001), but this did not interact withARPP-32(F[2,134] = 1.25, ns)DRD2(F[2,134]=0.4) or
COMT (F[2,134]=.4) genotypes.

Extended BG-OFC Q Learning Model

The purpose of the separate fit-to-train and fit-to-test rnsogas to show that two systems (puta-
tively BG and OFC) learn in parallel during the training pha$ the task. Fitting to training data
can best capture a system adapting on a trial-to-trial pasisreas fitting to test best captures the
accrued reinforcement values over all of training. Thisuedo explore an extended model that
has two separate systems with different learning ratesdrrtining phase, including a working
memory system that decays with time, and a BG system. Theytsterss contribute to a single Q
value for each stimulus, but which is updated by two diffetearning rates. If our assumptions
are correct, then the best fitting learning rate to the decp{PFC) system should be substantially
higher than that of the non-decaying (BG) system. Becauséitiher learning rate would domi-
nate Q value updates, this would lead to the PFC dominatingdates early, while the slower BG
would dominate updates later (once the PFC system has abcaye

In the combined model, Q values are computed as follows.dR#tlan using separate learning
rates for losses and gains, we instead use separate legatesdgor two systems, maintaining the
same total number of free parameters:

Qi(t+1) = Qi(t) + apclr(t) — Qi(t)] + aorclr(t) — Qi(t)le™™™. [10]

The terme=%% is introduced to simulate a decay of working memory stra®ggis training pro-
gresses (eg, Sl Fig. 6). We used a constant decay for allslijeeliminate the need to search
simultaneously across multiple parameter§he BG component of the Q value does not decay
with time, because BG learning becomes more habitual witheased trainingl®). Thus al-
though our fit-to-training and fit-to-test procedures assiwo systems where only PFC governs
behavior during training and only BG governs behavior dt[@milar to the binary use of two sys-
tems in Q0)], here we impose a more soft constraint whereby both systemtribute to behavior,
but with relatively greater use of BG and less of PFC as tpabgress.

Consistent with our overall hypothesis, we found that tiseliteng best fitvp - was on average

1The 0.5 factor was chosen to approximate the time coursecafyda lose-shift performance with trials. However,
other simulations revealed that the exact value of thisrpater does not change the patterns or significance of the
findings reported here.
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twice as high as that afz; (Table 4; F[1,68] = 10.71, p=0.0017). The combined BG/OFCleho
also yielded a decent fit to the training phase data, althdasdtts to behavior, especially to test
phase data, were not as good as the Gain-Loss Q learning rfiadéé 5). Moreover, unlike
the Gain-Loss model, this model is not able to account fded#htial effects of losses versus
gains or associated genetic effects, as it does not incatgdifferent learning rates for gains and
losses. To do so would require incorporating separate gainass terms for each of the BG and
OFC systems, which would amount to 5 free parameters (inaug), which is less parsimonious
and computationally intractable given the large searchespad exponential effects of combining
parameters. Although a nonlinear search optimizationrdlguo is possible in principle, these
are subject to local maxima and possible interactions baEtvparameters, making it much more
difficult to find clear genetic/parameter dissociations.

We further analyzed whether individual subjects’ data weeéer fit by the Gain-Loss or
BG/OFC Q learning models. These models both include the sameber of parameters, but
the two learning rate parameters are allowed to vary eithregdins versus losses or for fast (de-
caying) vs slow learning systems. We hypothesized that viittémy to train data, the BG/OFC
model would provide a better fit than the Gain-Loss model witheasingCOMT met expression,
since these individuals behaviorally showed increased-$béft (working memory) effects that
decayed with time on task, which would be captured with thé@®& model. We computed the
per-subject relative difference in pseu@td-between BG/OFC and Gain-Loss Q models for the fit-
to-train simulations. This difference measures the detgre¢hich having an explicit mechanism
for increased working memory early in training can improvédfibehavior relative to a model that
has only different learning rates for gains and losses. Waddhat this difference indeed corre-
lated with increasing met allele expression (r(68) = 0.2&-tailed P = .015). This result supports
the notion that increasing met allele expression (and &ssacPFC DA) requires a parameter to
capture explicit working memory contributions, and relaly less differentiation between losses
and gains.

Similarly, we hypothesized that fit-to-test procedure wiogikld a better fit for the Gain-Loss
model than the BG-OFC model, dependent onD&&RPP-32gene. Recall that the A/A genotype
was associated with relatively better Go than NoGo testrgdimation. We therefore reasoned that
these participants’ test performance would be relativelyds fit by a model that allowed separate
learning rates for loss and gain (Gain-Loss). Indeed, tegighss?? fit for the Gain-Loss model
was relatively higher than that of the BG-OFC model for A/Atmapants compared to G carriers

11



(t(68) = 1.7, one-tailed P = 0.04). There was no such effedhifeDRD2gene (p- 0.4).
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Table 1. Reaction times forCOMT and DRD2 genotypes.

Genotype| Choose-A | Avoid-B | Post-correct Post-error
DRD2

CiC 969 (100) | 1,279 (134)] 801 (45) | 882 (63)
CIT 1,105 (106)| 1,186 (94) | 1,008 (80) | 1,168 (103)
TIT 1,046 (118)| 1,076 (94) | 1,120 (156)| 1,211 (185)
COMT

vallval | 1,224 (143)] 1,337 (122)[ 1,040 (136)] 1,135 (157)
vallmet | 1,042 (107)| 1,084 (84) | 1,032 (80) | 1,165 (112)
metmet | 993 (104) | 1,225 (129)| 945 (127) | 1,093 (144)

No significant differences were observed for raw RT’s, buy amthe relative measures described in the
main text (FOIDRD2 Avoid-B compared with Choose-A RTs; and 8OMT: Post-error compared with
post-correct RTs). Values in parentheses reflect standeod e



Table 2. Mean best fitting parameter values for Gain-Loss Q mdel.
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0.36 (0.24)

0.14 (0.21)

0.29 (0.18)

0.31 (0.36)

0.22 (0.33)

0.2 (0.24)

Standard deviations are in parentheses.




Table 3. Per-subject mean LLE and pseudak? values for model fit to data.

Train Test
LLE -72.75 (63.64)| -33.87 (32.0)
pseudoR? | 0.327 (0.19) | 0.324 (0.24)

Standard deviations are in parentheses. Train: paranmagignsized to fit training phase trial-by-trial data
as a function of feedback and time. Test. parameters ogthrdziring the learning phase in order to fit
subsequent test phase performance.



Table 4. Mean best fitting parameter values to BG-OFC Q learmig model.

aBg QOFC B
0.17 (0.15)| 0.33 (0.39)| 0.32 (0.23)

Standard deviations are in parentheses.



Table 5. Per-subject mean LLE and pseudak? values for BG-OFC Q learning model.

Train Test
LLE -74.4 (62.5)| -35.13 (32.2)
pseudoR? | 0.309 (0.18)] 0.29 (0.25)

Standard deviations are in parentheses.

Trial to Trial Adjustments
COMT effects across training
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Figure 6: COMT effects on trial-to-trial adjustments as a function of training trial. Effects of neg-
ative feedback on subsequent switching were strongestriy ®aining trials, and decreased as training
progressed. Error bars reflect standard error.
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Figure 7:Gene dose effects on Q learning parametayDARPP32 gene. A/A homozygotes had smaller
o, values (accounting for generalization of probabilisticattegrated positive outcomed)) DRD2gene.
T/T homozygotes had smallef; values (accounting for generalization of probabilisticahtegrated neg-
ative outcomes)c) COMTgene. Val/Val homozygotes had smalier (accounting for reduced trial-to-trial
modification of reinforcement values). There were no gefexts onag or oy,.



Q values fit to Test
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Figure 8: DARPP-32¢effects on final Q' values from fit-to-test simulations. A/Arhozygotes could dif-
ferentiate between positive stimulus values (80, 70 and)6@#ereas G carriers showed similar positive
Q’ values for these stimuli. No sudbARPP-32effect was observed for discriminating between negative
values. Error bars reflect standard error.



