
Dynamic Dopamine Modulation in the Basal Ganglia:
A Neurocomputational Account of Cognitive Deficits

in Medicated and Nonmedicated Parkinsonism

Michael J. Frank

Abstract

& Dopamine (DA) depletion in the basal ganglia (BG) of
Parkinson’s patients gives rise to both frontal-like and implicit
learning impairments. Dopaminergic medication alleviates
some cognitive deficits but impairs those that depend on
intact areas of the BG, apparently due to DA ‘‘overdose.’’
These findings are difficult to accommodate with verbal
theories of BG/DA function, owing to complexity of system
dynamics: DA dynamically modulates function in the BG,
which is itself a modulatory system. This article presents a
neural network model that instantiates key biological proper-
ties and provides insight into the underlying role of DA in the
BG during learning and execution of cognitive tasks. Specifi-
cally, the BG modulates the execution of ‘‘actions’’ (e.g., motor

responses and working memory updating) being considered in
different parts of the frontal cortex. Phasic changes in DA,
which occur during error feedback, dynamically modulate the
BG threshold for facilitating/suppressing a cortical command in
response to particular stimuli. Reduced dynamic range of DA
explains Parkinson and DA overdose deficits with a single
underlying dysfunction, despite overall differences in raw DA
levels. Simulated Parkinsonism and medication effects provide
a theoretical basis for behavioral data in probabilistic classi-
fication and reversal tasks. The model also provides novel
testable predictions for neuropsychological and pharmacolog-
ical studies, and motivates further investigation of BG/DA
interactions with the prefrontal cortex in working memory. &

INTRODUCTION

In cognitive neuroscience, brain regions are often char-
acterized as if they implemented localized functions,
with relatively little treatment of interactive effects at
the network level. In part, this is because interactions
are difficult to conceptualize and mileage has been
gained from simpler theories. In some cases, however,
these theoretical accounts need to be reconsidered.
Some brain regions exert their effects only by modulat-
ing function in other regions and therefore do not
directly implement a cognitive process. This problem
is even more elusive when considering effects of neuro-
modulators in a single brain region, which may have
indirect but substantial effects on network dynamics.

This issue applies particularly well to the effects of
dopamine (DA) in the basal ganglia (BG), which are
critical for many aspects of cognition (Nieoullon, 2002).
Because stimulus–response (SR) tasks recruit the BG,
many researchers assume that its function is to encode
detailed aspects of SR mappings (e.g., Packard & Knowl-
ton, 2002). Others advocate a subtly different modula-
tory role of the BG to facilitate or suppress SR-like
associations that are represented in the cortex (Hikosa-
ka, 1998; Mink, 1996). This article explores the latter

hypothesis and further suggests that DA dynamically
modulates activity in an already modulatory BG, as DA
levels change in response to different behavioral events.
These double modulatory effects are complex and diffi-
cult to conceptualize, motivating the use of computa-
tional modeling to make them more tenable. In so
doing, the model ties together a variety of seemingly
unrelated cognitive deficits stemming from DA dysfunc-
tion in the BG, as in Parkinson’s disease (PD).

The cognitive deficits in PD can be divided into two
general classes: those that are ‘‘frontal-like’’ in nature,
and those that reflect impairments in implicit learning.
On the one hand, patients are impaired at tasks involving
attentional processes or working memory (Woodward,
Bub, & Hunter, 2002; Rogers et al., 1998; Partiot, Verin, &
Dubois, 1996; Dubois et al., 1994; Henik, Singh, Beckley,
& Rafal, 1993; Gotham, Brown, & Marsden, 1988). Im-
plicit learning deficits, on the other hand, do not im-
plicate frontal processes because they generally do not
involve working memory or conscious knowledge of
task demands, and frontal patients do not have such
deficits (Knowlton, Mangels, & Squire, 1996). Yet, PD
patients are impaired at implicit sequence learning
and implicit categorization (Ashby, Noble, Ell, Filoteo,
& Waldron, 2003; Maddox & Filoteo, 2001; Jackson,
Jackson, Harrison, Henderson, & Kennard, 1995). Similar
impairments are observed in probabilistic classification,University of Colorado
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in which participants integrate over multiple trials to
extract statistical regularities of the category structure
(Knowlton, Mangels, et al., 1996; Knowlton, Squire, &
Gluck, 1994). The involvement of DA in these tasks is not
straightforward, as dopaminergic medication has both
positive and negative effects on cognitive function in PD
(Cools, Barker, Sahakian, & Robbins, 2001, 2003; Swain-
son et al., 2000; Gotham et al., 1988).

Because the neuropathology of PD involves damage
to dopaminergic cells in the BG (Kish, Shannak, &
Hornykiewicz, 1988), the predominant explanations for
the two classes of deficits have been (a) that the
damaged BG is interconnected in a functional circuit
with prefrontal cortex [PFC] (Middleton & Strick, 2000;
Alexander, DeLong, & Strick, 1986), thereby producing
frontal deficits, and (b) due to damage to a ‘‘neostriatal
habit learning system’’ (Hay, Moscovitch, & Levine, 2002;
Knowlton, Mangels, et al., 1996). Finally, the selective
cognitive impairments resulting from dopaminergic
medication have been attributed to an ‘‘overdose’’ of
DA in regions of the BG that are relatively spared in PD
(Cools, Barker, et al., 2001; Gotham et al., 1988).

To further understand the role of the BG as a func-
tional cognitive unit, a more mechanistic explanation
involving its neurobiology, and specifically the role of
DA, is required. What is the role of DA in the BG in
modulating frontal processes, and how is it involved in
habit learning? This article accounts for Parkinson defi-
cits by integrating aspects of BG biology together with
cellular and systems-level effects of DA. In particular, two
main populations of cells in the striatum respond differ-
entially to phasic changes in DA thought to occur during
error feedback. This causes the two groups of striatal
cells to independently learn positive and negative re-
inforcement values of responses, and ultimately acts to
facilitate or suppress the execution of commands in the
frontal cortex. Because these cortical commands may
differ widely in content, damage to BG DA gives rise to
seemingly unrelated deficits.

This article presents a neural network model that in-
corporates the above features to test their potential
role in cognitive function. One of the network’s key
emergent properties is that a large dynamic range in
DA release is critical for BG-dependent learning. That
is, the DA signal has to be able to increase and decrease
substantially from its baseline levels in order to sup-
port discrimination between outcome values of differ-
ent responses. This dynamic range is reduced in PD,
accounting for cognitive deficits. The model further
suggests that by tonically increasing DA levels, dopamin-
ergic medications might restrict this dynamic range to
always be at the high end of the DA spectrum, adversely
affecting some aspects of cognition. For simplicity, only
cognitive procedural learning tasks are modeled, but the
same arguments can be extended to include interac-
tions with the frontal cortex in working memory (Frank,
Loughry, & O’Reilly, 2001), as discussed later.

Probabilistic Classification Deficits

Probabilistic classification deficits have been studied
using the ‘‘weather prediction’’ (WP) task (Knowlton,
Squire, et al., 1994). Participants study sets of cards with
multiple cues and have to predict whether the cues
presented in a given trial are associated with ‘‘rain’’ or
‘‘sunshine.’’ The cue–outcome relationships are proba-
bilistic and not easily determined. Healthy participants
implicitly integrate information over multiple trials, pro-
gressively improving despite not being able to explicitly
state the basis of their choices (Gluck, Shohamy, &
Myers, 2002). The BG seems to be recruited for this
ability, as it is activated during the learning stages of the
WP task (Poldrack, Prabakharan, Seger, & Gabrieli,
1999), and is more generally engaged in tasks that
emphasize nondeclarative memory (Poldrack, Clark,
et al., 2001). The damaged BG in PD likely causes slowed
learning observed in patients, just as it has been impli-
cated as a source for habit learning deficits in the motor
domain (e.g., Thomas-Ollivier et al., 1999; Soliveri,
Brown, Jahanshahi, Caraceni, & Marsden, 1997). But
how is the WP task related to habit learning, and exactly
what about DA in the BG supports the learning of these
so-called habits?

Insight comes from the observation that PD patients
are selectively impaired in cognitive procedural learning
tasks that involve trial-by-trial error feedback. In purely
observational implicit learning tasks (e.g., artificial gram-
mar and prototype learning), patient performance is
normative (Reber & Squire, 1999). Among two versions
of conditional-associative SR learning, PD patients were
only impaired in the one that relied on trial-and-error
(Vriezen & Moscovitch, 1990). In implicit categorization
tasks, successful integration of information depends on
both error feedback (Ashby, Maddox, & Bohil, 2002;
Ashby, Queller, & Berretty, 1999) and BG integrity
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998).

Taken together, these observations support the no-
tion that feedback-mediated learning occurs in the BG
and is therefore disrupted in PD. Feedback may modu-
late DA release in the BG which, in addition to having a
performance effect on response execution, is critical for
cognitive reinforcement learning.

Phasic Bursting of DA Mediates
Trial-and-Error Learning

A healthy range of phasic DA bursts during feedback
may lead to the unconscious acquisition of stimulus–
reward–response associations. Data reviewed below sug-
gest that positive and negative feedback have opposing
effects on DA release, which in turn modulates synaptic
plasticity and therefore supports learning.

A multitude of data in primates show that DA-releasing
cells fire in phasic bursts in response to unexpected re-
ward (Schultz, 1998; Schultz, Dayan, & Montague, 1997).
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Equally relevant but sometimes ignored, dopaminergic
firing dips below baseline when a reward is expected
but not received (Hollerman & Schultz, 1998; Schultz,
Apicella, & Ljungberg, 1993). In humans, phasic bursts
and dips of DA have been inferred to occur during
positive and negative feedback, respectively (Holroyd &
Coles, 2002).

Several lines of evidence support the notion that
these changes in extracellular levels of DA during
feedback are critical for learning. First, DA modifies
synaptic plasticity in animal experimental conditions.
DA D1 receptor stimulation leads to long-term potenti-
ation (LTP), whereas D2 stimulation restricts LTP (Nishi,
Snyder, & Greengard, 1997). Accordingly, LTP is blocked
by D1 antagonists and enhanced by D2 antagonists (for
a review, see Centonze, Picconi, Gubellini, Bernardi, &
Calabresi, 2001). Second, these effects are behaviorally
relevant: Administration of D1 antagonists disrupted
learning in an appetitive conditioning task, whereas
D2 antagonists promoted learning (Eyny & Horvitz,
2003). Third, because DA modulates cellular excitability
(Nicola, Surmeier, & Malenka, 2000), associative or
‘‘Hebbian’’ learning may be enhanced in the presence
of DA, as this type of learning depends on the levels of
activity of the cells in question (Schultz, 2002; Hebb,
1949). Thus, the efficacy of recently active synapses may
be reinforced by a burst of DA acting as a ‘‘teaching
signal,’’ leading to the learning of rewarding behaviors
(Wickens, 1997). This account predicts that a delayed
DA burst following the behavior should degrade learning
by enhancing the strengths of inappropriate synapses.
In human category learning, substantial impairments are
indeed observed if feedback is delayed by just 2.5 sec
after each response (Maddox, Ashby, & Bohil, 2003).

In summary, phasic bursts and dips of DA occur dif-
ferentially during positive and negative feedback, result
in modification of synaptic plasticity, and therefore may
be critical for the learning of trial-and-error tasks. A
plausible explanation for implicit category learning def-
icits in PD is that damage to dopaminergic neurons in
the BG reduces both the tonic and phasic levels of
extracellular DA, diminishing the effectiveness of the
habit learning system. Before moving on to a more ex-
plicit biologically based version of this theory, the next
section discusses the effects of dopaminergic medica-
tion on cognition. By artificially increasing levels of DA,
medication alleviates some cognitive deficits but actually
gives rise to others. This is taken to indicate that the
dynamic range of the DA signal may be more critical
than its raw level.

Deficits Induced by Dopaminergic Medication

The most common treatments for PD are DA agonists
and levodopa (L-Dopa), a DA precursor (Maruyama,
Naoi, & Narabayashi, 1996). Many cognitive studies in
PD do not take into account the level of medication

administered to the patient, somewhat confounding the
interpretation of experimental results. That is, if a null
effect is found, it could be attributed to the successful
replenishment of DA by L-Dopa therapy. Conversely, if
an effect is found, it is difficult to know if this effect
stems from a lack of DA in PD, or is somehow related to
the medication. For instance, medication results in
elevated levels of tonic DA in undamaged areas. This
may prevent phasic dips from being effective and de-
grade performance when they are functionally important
(e.g., during negative feedback).

A series of studies compared cognitive function in
medicated versus nonmedicated patients, finding that
L-Dopa therapy had positive or deleterious effects
on cognitive function, depending on the nature of the
task (Cools, Barker, et al., 2001; Swainson et al., 2000;
Gotham et al., 1988). The general conclusion was that
dopaminergic medication ameliorates task-switching
deficits in PD, but that it impairs performance in ‘‘prob-
abilistic reversal’’ [PR] (i.e., learning to reverse stimulus–
reward probabilities after prepotent responses are in-
grained). Deficits induced by medication are selective to
the reversal stage, in which participants must use nega-
tive feedback to override prepotent responses.

The interpretation given by these authors stems from
the fact that dopaminergic damage in early stage PD is
restricted to the dorsal striatum, leaving the ventral
striatum with normal levels of DA (Agid et al., 1993;
Kish et al., 1988). This explains why DA medication
alleviates deficits in task-switching, which relies on
dorsal striatal interactions with the dorsolateral PFC.
However, the amount of medication necessary to re-
plenish the dorsal striatum might ‘‘overdose’’ the ventral
striatum with DA, and is therefore detrimental to tasks
that recruit it. Reversal learning depends on the ventral
striatum and the ventral PFC in monkeys (Dias, Robbins,
& Roberts, 1996; Stern & Passingham, 1995) and recruits
these same areas in healthy humans (Cools, Clark,
Owen, & Robbins, 2002). The overdose hypothesis is
further supported by the finding that medicated, but not
nonmedicated, patients exhibited impulsive betting
strategies in a gambling task known to recruit the ventral
striatum (Cools, Barker, et al., 2003).

If the overdose account is accurate, a key question is
why should high levels of DA in the ventral striatum
produce deficits in reversal learning? Like categorization
tasks, reversal learning relies on trial-by-trial feedback.
During positive feedback, phasic bursts of DA may still
be released. A notable difference is that higher levels of
tonic DA might functionally eliminate the effectiveness
of phasic dips in DA during negative feedback. A DA
agonist would continue to bind to receptors, as it is
not modulated by feedback/reward as is endogenous
DA. This by-product of dopaminergic medication may
eliminate an important aspect of the natural biologi-
cal control system—namely, the ability to quickly un-
learn previously rewarding behaviors. In nonmedicated
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patients and healthy individuals, phasic dips in DA re-
lease may ensue after negative feedback in the reversal
stage, allowing the participant to unlearn the prepotent
association. The overdose of DA in the ventral striatum
of medicated patients would hinder this ability.

So far, it has been hypothesized that cognitive deficits
in PD arise from a restricted range of DA signals in the
BG during error feedback, that does not get completely
fixed with medication. This is somewhat vague in that it
does not clarify what about the BG supports implicit
learning, and how DA modulates processes in the BG.
Why should phasic bursts and dips in DA support the
learning and unlearning of responses, respectively? For
clarity, I now turn to a general (if highly simplified)
description of BG circuitry and function, and review the
role of DA in modulating this function. A neural network
model instantiates these biological properties and pro-
vides a mechanistic account of probabilistic classification
and reversal deficits in PD. Besides being a useful tool
for understanding complex system interactions in im-
plicit learning, the model can be extended to include
those involved in modulating prefrontal function in
higher level cognition.

BASAL GANGLIA NEUROANATOMY
AND BIOCHEMISTRY

In the context of motor control, various authors have
suggested that the BG selectively facilitates the execu-
tion of a single motor command, while suppressing all
others (e.g., Mink, 1996; Chevalier & Deniau, 1990). The
BG does not encode the details of motor responses—it
simply modulates their execution by signaling ‘‘Go’’ or
‘‘No-Go’’ (Hikosaka, 1989). Thus, the BG is thought to
act as a brake on competing motor actions that are
represented in the motor (or premotor) cortex—only
the most appropriate motor command is able to ‘‘re-
lease the brake’’ and get executed at any particular
point in time. This functionality also helps to string
simple motor commands together to form a complex
motor sequence, by selecting the most appropriate
command at any given portion of the sequence and
inhibiting the other ones until the time is appropri-
ate. The circuitry that implements these functions is
described next.

The input segment of the BG is the striatum, which
is formed collectively by the caudate, putamen, and
nucleus accumbens. The striatum receives input from
multiple cortical areas and projects through the glo-
bus pallidus and substantia nigra to the thalamus, ulti-
mately closing the circuit back to the area of the cortex
from which it received (e.g., premotor cortex [PMC])
(Alexander, DeLong, et al., 1986). Ninety to ninety-five
percent of all striatal neurons are GABAergic medi-
um spiny neurons (MSNs). These are projection cells
that carry information to be transmitted to BG output
structures. The remaining 5–10% are local interneurons

that are GABAergic and cholinergic (Gerfen & Wilson,
1996).

The MSNs project to the globus pallidus and substan-
tia nigra via two main pathways which have opposing
effects on the ultimate excitation/inhibition of the thal-
amus (Alexander & Crutcher, 1990b). The ‘‘direct’’ path-
way facilitates the execution of responses, whereas the
‘‘indirect’’ pathway inhibits them. Cells in the direct
pathway project from the striatum and inhibit the in-
ternal segment of the globus pallidus (GPi).1 In the ab-
sence of striatal firing, the GPi tonically inhibits the
thalamus, so the excitation of direct MSNs and resulting
GPi inhibition serves to ‘‘disinhibit’’ the thalamus. Note
that the double-negative invoked by this disinhibition
does not directly excite the thalamus, but instead sim-
ply enables the thalamus to get excited from other ex-
citatory projections (e.g., Frank, Loughry, et al., 2001;
Chevalier & Deniau, 1990), thereby providing a gating
function. Cells in the indirect pathway inhibit the exter-
nal segment of the globus pallidus (GPe), which toni-
cally inhibits the GPi.2 The net effect of indirect MSN
excitation is then to further inhibit the thalamus (see
Figure 1 for a pictorial description of this circuitry).

When striatal cells in the direct pathway disinhibit the
thalamus, excitatory thalamocortical projections en-
hance the activity of the motor command that is cur-
rently represented in the motor cortex so that its
execution is facilitated. Thus, direct pathway cells send
a ‘‘Go’’ signal to select a given response. Indirect
pathway activity, with its opposite effect on the thala-
mus, sends a ‘‘No-Go’’ signal to suppress the response.
In support of this model, distinct neuronal activation
was found in the monkey striatum in response to two
cues that indicated whether the monkey had to execute
(Go) or suppress (No-Go) arm movements (Apicella,
Scarnati, Ljungberg, & Schultz, 1992).

Whether the direct and indirect pathways compete
with each other or function independently is contro-
versial. Because they both ultimately converge on the
GPi before either disinhibiting or further inhibiting the
thalamus, it would seem these two pathways act com-
petitively to control BG output (Percheron & Filion,
1991). However, subregions of neurons in striatum
terminate in distinct subregions within the GPi, sug-
gesting the existence of independent parallel subloops
within the overall thalamocortical circuit (Alexander &
Crutcher, 1990b), rather than a competitive dynamic.
It is plausible that the direct and indirect pathways aris-
ing from a subregion in the striatum converge in the
GPi and act competitively to facilitate/suppress a par-
ticular response, but that this competitive dynamic oc-
curs in parallel for multiple responses. This may allow
for ‘‘selective’’ control of different responses, so that
one response may be enabled, whereas others are
suppressed (Frank, Loughry, et al., 2001; Beiser &
Houk, 1998; Mink, 1996). Selection of a given response
may involve a Go signal to one area of thalamus, in
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conjunction with a No-Go signal to thalamic areas
involved in competing responses.

Cellular Mechanisms of DA in the BG

The dynamics of BG circuitry are importantly modulated
by phasic changes in DA. DA is primarily excitatory to D1
receptors and inhibitory to D2 receptors (see below).
The functional consequences of DA release can be
deduced from the relative segregation of D1 and D2
receptor expression in two main populations of striatal
MSNs. The D1 receptor is predominantly expressed in
striatal cells of the direct pathway, whereas the D2
receptor predominates in the indirect pathway (Ince,
Ciliax, & Levey, 1997; Gerfen, Keefe, & Gauda, 1995;
Bloch & LeMoine, 1994; Gerfen & Keefe, 1994; Gerfen,
1992). Even those who caution that there is D1/D2
colocalization in both BG pathways (Aizman et al.,
2000; Surmeier, Song, & Yan, 1996) nevertheless con-
cede that the relative levels of expression is asymmetri-
cal. Thus, increased levels of DA activate the direct/Go
pathway and suppress the indirect/No-Go pathway (e.g.,
Brown, Bullock, & Grossberg, 2004; Gurney, Prescott, &
Redgrave, 2001). DA depletion of the striatum (as in PD)
has the opposite effect, biasing the indirect pathway to
be overactive (Gerfen, 2000; Salin, Hajji, & Kerkerian-Le
Goff, 1996).

D1 Excites/Enhances Contrast of Go Cells

Many studies show an excitatory effect of D1 stimulation
(e.g., Kitai, Sugimori, & Kocsis, 1976), but conflicting
data also exist (Hernandez-Lopez, Bargas, Surmeier,
Reyes, & Galarraga, 1997). One intriguing possibility
raised by several researchers is that DA effectively en-
hances contrast or increases the signal-to-noise ratio

by amplifying activity of the most active cells while
inhibiting the least active ones (Cohen, Braver, &
Brown, 2002; Cohen & Servan-Schreiber, 1992; Foote
& Morrison, 1987; Rolls, Thorpe, Boytim, Szabo, &
Perrett, 1984). Recently, cellular mechanisms in the BG
were discovered that could potentially support this
function (Nicola et al., 2000; Hernandez-Lopez, Bargas,
et al., 1997; Figure 2). Specifically, the excitatory/
inhibitory effect of DA on D1 receptors in the rat BG
depends on the resting membrane potential of the tar-
get cell. In the presence of a D1 agonist, spontaneous
firing was reduced in cells that were held at a low
membrane potential, but was increased in those held
at a more depolarized potential. This is biologically re-
levant, because medium spiny cells of the BG are bi-
stable: They oscillate between two levels of resting
membrane potential (Wilson & Kawaguchi, 1996; Wil-
son, 1993). The ‘‘down-state’’ refers to a membrane po-
tential of around �80 mV, thought to result from inward
rectifying K currents. The ‘‘up-state’’ refers to a mem-
brane potential of around �50 mV, and results from the
opening of voltage-dependent Na and Ca channels,
upon being excited from temporally coherent, conver-
gent excitatory synaptic input.

Taken together, the above observations suggest that
DA, acting via D1 receptors, can sharpen contrast by
amplifying activity of cells that are in their up-states and
inhibiting those in their down-states from firing sponta-
neously. This may have the effect of increasing the
signal-to-noise ratio, because cells encoding the relevant
signal receive temporally coherent synaptic input from
multiple cortical afferents and are therefore in their up-
state, whereas those reflecting biological noise or other
irrelevant background signals may be in their down-state
and only firing spuriously.3 The increased signal-to-
noise ratio in the direct pathway may help to determine

Figure 1. The

corticostriato-thalamocortical

loops, including the direct and

indirect pathways of the BG.
The cells of the striatum are

divided into two subclasses

based on differences in

biochemistry and efferent
projections. The ‘‘Go’’ cells

project directly to the GPi, and

have the effect of disinhibiting
the thalamus, thereby

facilitating the execution of

an action represented in the

cortex. The ‘‘No-Go’’ cells are
part of the indirect pathway to

the GPi, and have an opposing

effect, suppressing actions

from getting executed. DA
from the SNc projects to the dorsal striatum, differentially modulating activity in the direct and indirect pathways by activating different

receptors: The Go cells express the D1 receptor, and the No-Go cells express the D2 receptor. DA from the VTA projects to the ventral

striatum (not shown) and the frontal cortex. GPi = internal segment of globus pallidus; GPe = external segment of globus pallidus;
SNc = substantia nigra pars compacta; SNr = substantia nigra pars reticulata; VTA = ventral tegmental area.
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which among several responses is most appropriate
to select.

At a molecular level, D1 activation enhances L-type Ca
channel currents in striatal MSNs (Surmeier, Bargas,
Hemmings, Nairn, & Greengard, 1995). It appears that
this is the mechanism by which the DA contrast sharp-
ening is operating, because both the excitatory and
inhibitory DA effects were blocked by L-type Ca channel
antagonists (Hernandez-Lopez, Bargas, et al., 1997).

D2 Inhibits No-Go Cells—‘‘Releasing the Brakes’’

In the case of the D1 receptor, the contrast achieved by
its activation is thought to be by way of enhancement of
L-type Ca channel currents, described above. Recently,
it was shown that D2 activation reduces these same
currents, thereby reducing neuronal excitability (Her-
nandez-Lopez, Tkatch, et al, 2000). Unlike the D1 mod-
ulatory effects, the D2 inhibition effect on neuronal
excitation was not found to be dependent on the
membrane potential of the target cell. These results
confirmed a long held assumption that DA suppresses
activity in the indirect pathway via D2 receptors, and
that this is disrupted in PD (Albin, Young, & Penney,
1989).

Recall that striatal cells expressing D2 receptors pre-
dominate in the indirect/No-Go pathway, which is
thought to act as a brake on a particular action or set
of actions. DA can then aid in releasing the brake, by
inhibiting No-Go activity via D2 receptors, and allowing
the Go pathway to exert more influence on BG output.
By this account, DA shifts the balance in the BG from
being ‘‘hesitant’’ to a more responsive state, effectively

lowering the threshold for selecting/gating a response
to be executed. This explains why Parkinson’s patients,
who have a lack of DA in the BG, have difficulty initi-
ating motor commands—without a reasonable amount
of basal DA release, the system is in a tonic state of ‘‘No-
Go’’ because an overactive indirect pathway leads
to excessive cortical inhibition (Jellinger, 2002; Filion
& Tremblay, 1991). With enough DA, the balance is
shifted to ‘‘Go,’’ and the particular response that is
executed may depend on levels of activity of different
subpopulations—representing different responses—in
the direct/Go cells. The D1 contrast enhancement mech-
anism described above would aid in selecting the most
appropriate response by boosting its associated neural
activity, while suppressing that of all other Go cells.

DA in the BG: Summary and Effects
on Synaptic Plasticity

In summary, increases in DA result in (a) increased
contrast enhancement in the direct pathway; and (b)
suppression of the indirect pathway. Phasic dips in DA
have the opposite effect, releasing the indirect pathway
from suppression.

An important consequence of DA performance effects
on Go/No-Go activity levels is that they drive activity-
dependent learning to synaptic input. A well-established
principle should hold across both Go and No-Go cells:
More active cells undergo LTP, whereas less active cells
undergo long term depression (LTD) (e.g., Bear &
Malenka, 1994). Once we account for differential effects
of DA on excitability in the two BG pathways, this prin-
ciple makes straightforward predictions on their effects

Figure 2. Medium spiny cells

in the basal ganglia are

bi-stable, spontaneously

switching between two levels
of resting membrane potential,

commonly labeled ‘‘up-state’’

(V) and ‘‘down-state’’ (V),

depending on amount of
afferent drive. Cells are more

likely to fire when in the

up-state, but may still fire
spontaneously in the

down-state. DA D1 receptor

activity may increase the

signal-to-noise ratio. In the
presence of D1 agonist SKF

81297, firing is (A) reduced for

cells that are in their

‘‘down-state,’’ but (B)
increased for cells in their

‘‘up-state.’’ (Reproduced with

permission from
Hernandez-Lopez, Bargas, et al.

(1997). Copyright 1997 by the

Society for Neuroscience.)
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on plasticity. If DA bursts during reinforcement are
adaptive, they should have the complementary effects
of increasing Go learning while decreasing No-Go learn-
ing so that reinforced responses are more likely to be
facilitated in the future. Because DA enhances activity in
the direct pathway, bursts may indeed induce LTP in Go
cells. Further, the inhibitory effects of DA in the indirect
pathway may induce LTD in No-Go cells so that they
learn to become less active. This hypothesis is supported
by demonstrations that DA induces LTP via D1 receptors
and LTD via D2 receptors (Kerr & Wickens, 2001;
Calabresi et al., 1997).

The same principle can be applied to predict the
effect of DA dips, which, if they are adaptive, should
enhance No-Go learning so that nonreinforcing re-
sponses are actively suppressed in the future. Because
DA dips release No-Go cells in the indirect pathway from
DA inhibition, the increased No-Go activity should in-
duce LTP in No-Go cells. Although LTP has not been
tested during endogenous DA dips, this hypothesis is
indirectly supported by examining the effects of D2
receptor blockade, assuming that DA dips decrease D2
stimulation and should therefore have the same quali-
tative effects on the indirect pathway as D2 blockade.
When stimulated by cortical inputs, D2 blockade in-
creases bursting activity and Fos expression of striatal
cells in the indirect pathway (Finch, 1999; Robertson,
Vincent, & Fibiger, 1992), and results in enhanced
corticostriatal LTP (Calabresi et al., 1997).

NEURAL MODEL OF BG AND DA

The hypothesis is that cognitive deficits in PD can be
accounted for by a reduced dynamic range of phasic DA
signals which reduces the ability to unconsciously learn
Go/No-Go associations. This verbal explanation alone is
not sufficient, but may be substantially strengthened by
testing its feasibility in a computational model that in-
corporates all the key elements. Such a model can gene-
rate novel predictions because it gets at the underlying
source of cognitive dysfunction in PD. If validated, it can
also be used as a tool to understand complex involve-
ment of DA in the BG in other neurological disorders.

The above anatomical and biochemical considerations
are synthesized in a neural network model (Figure 3).
The model learns to select one of two responses to
different input stimuli. Direct and indirect pathways
enable the model to learn conditions that are appro-
priate for gating as well as those for suppressing. Par-
allel subloops independently modulate each response,
allowing selective facilitation of one response with con-
current suppression of the other. Projections from the
substantia nigra pars compacta (SNc) to the striatum
incorporate modulatory effects of DA. Phasic bursts
and dips in SNc firing (and therefore simulated DA
release) ensue from correct and incorrect responses, re-
spectively. These phasic changes drive learning by pref-

erentially activating the direct pathway after a correct
response and the indirect pathway after an incorrect
response. The model is trained on simulated versions of
the WP task and PR task. Disruption to the DA system as
in PD and ‘‘overdose’’ cases produces results that are
qualitatively similar to those observed behaviorally.

Mechanics of the Model

The units in the model operate according to a simple
‘‘point neuron’’ function using rate-coded output acti-
vations, as implemented in the Leabra framework
(O’Reilly & Munakata, 2000; O’Reilly, 1998). There are
simulated excitatory and inhibitory synaptic input chan-
nels. Local inhibition in each of the layers is computed
through a simple approximation to the effects of inhib-
itory interneurons. Synaptic connection weights were
trained using a reinforcement learning version of Leabra.
The learning algorithm involves two phases, allowing
simulation of feedback effects, and is more biologically
plausible than standard error backpropagation. In the

Figure 3. Neural network model of direct and indirect pathways of

the BG, with differential modulation of these pathways by DA in the

SNc. The PMC selects a response via direct projections from the
input. BG gating results in bottom-up support from the thalamus,

facilitating execution of the response in the cortex. In the striatum, the

response has a Go representation (first column) that is stronger than
its No-Go representation (third column). This results in inhibition of

the left column of the GPi and disinhibition of the left thalamus unit,

ultimately facilitating the execution of Response1 in the PMC. A tonic

level of DA is shown here, during the response selection (‘‘minus’’)
phase. A burst or dip in DA ensues in the feedback (‘‘plus’’) phase

(see Figures 4, 5, and 6).
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‘‘minus phase,’’ the network settles into activity states
on the basis of input stimuli and its synaptic weights,
ultimately choosing a response. In the ‘‘plus phase,’’ the
network resettles in the same manner, with the only
difference being a change in simulated DA: An increase
for correct responses, and a dip for incorrect responses.
Connection weights are then adjusted to learn on the
difference between activity states in the minus and plus
phases.

Overall Network Division of Labor

The network’s job is to select either Response1 or
Response2, depending on the task and the sensory input.
At the beginning of each trial, incoming stimuli directly
activate a response in the Premotor cortex (PMC). How-
ever, these direct connections are not strong enough
to elicit a robust response in and of themselves; they also
require bottom-up support from the thalamus. The job
of the BG is to integrate stimulus input with the domi-
nant response selected by the PMC, and on the basis
of what it has learned in past experience, either facilitate
(Go) or suppress (No-Go) that response.

Within the overall thalamocortical circuit, there are
two parallel subloops that are isolated from each other,
separately modulating the two responses. This allows
for the BG to selectively gate one response, while con-
tinuing to suppress the other(s). This was implemented
in our previous model (Frank, Loughry, et al., 2001), and
has been suggested by others (Beiser & Houk, 1998).
The striatum is divided into two distributed subpopula-
tions. The two columns on the left are ‘‘Go’’ units for the
two potential responses, and have simulated D1 recep-
tors. The two columns on the right are ‘‘No-Go’’ units,
and have simulated D2 receptors. Thus, the four col-
umns in the striatum represent, from left to right, ‘‘Go–
Response1,’’ ‘‘Go–Response2,’’ ‘‘No-Go–Response1,’’
and ‘‘No-Go–Response2.’’

The Go columns project only to the corresponding
column in the GPi (direct pathway), and the No-Go
columns to the GPe (indirect pathway). Both GPe
columns inhibit the associated column in GPi, so that
striatal Go and No-Go activity have opposing effects on
the GPi. Finally, each column in the GPi tonically inhibits
the associated column of the thalamus, which is recip-
rocally connected to the PMC. Thus, if Go activity is
stronger than No-Go activity for Response1, the left
column of the GPi will be inhibited, removing tonic in-
hibition (i.e., disinhibiting) of the corresponding thal-
amus unit, and facilitating its execution in the PMC.

The above parallel and convergent connectivity is
supported by anatomical evidence discussed above.
The network architecture simply supports the existence
of connections, but how these ultimately influence be-
havior depends on their relative strengths. The network
starts off with random weights and representations in
both the BG and cortical layers are learned. Distributed

activity within each striatal column enables different Go
and No-Go representations to develop for various stim-
ulus configurations during the course of training.

Simulated Effects of DA

To simulate differential effects of DA on D1 and D2
receptors in the two populations of striatal cells, sepa-
rate excitatory and inhibitory projections were assigned
from the SNc to the direct and indirect pathways in the
striatum. Thus, the D1 projection only connects to the
Go columns of the striatum, whereas the D2 projection
connects only to the No-Go columns. Besides being ex-
citatory, the effects of D1 activity involve contrast en-
hancement. This was accomplished by increasing the
striatal units’ activation gain (making it more nonlinear),
in conjunction with increasing the activation threshold
(so that weakly active units do not exceed firing thresh-
old and are suppressed). The effects of D2 activity are
inhibitory, suppressing the No-Go cells. Thus, for a high
amount of simulated DA, contrast enhancement in the
direct pathway supports the enabling of a particular Go
response, whereas the indirect pathway is suppressed.

DA Modulates Learning

Increases in DA during positive feedback lead to rein-
forcing the selected response, whereas decreases in DA
during negative feedback lead to learning not to select
that response. A tonic level of DA is simulated by setting
the SNc units to be semi-active (activation value 0.5) at
the start of each trial, in the minus phase. In the initial
stages of training, the network selects a random re-
sponse, dictated by random initial weights together with
a small amount of random noise in PMC activity. If the
response is correct, a phasic increase in SNc firing occurs
in the plus phase, with all SNc units set to have an
activation value of 1.0 (i.e., high firing rate). This burst of
DA causes a more coherent Go representation in the
striatum to be associated with the rewarding response
that was just selected. For an incorrect response, a
phasic dip of DA occurs, with all SNc units set to zero
activation. In this case, the No-Go cells are released from
suppression, enabling the network to learn No-Go to the
selected incorrect response.

Note that an explicit supervised training signal is never
presented; the model simply learns on the basis of the
difference between activity states in the minus and plus
phases, which only differ due to phasic changes in DA.
Weights from the input layer and the PMC are adjusted
so that over time, the striatum learns which responses to
facilitate and which to suppress in the context of incom-
ing sensory input. In addition, the PMC itself learns to
favor a given response for a particular input stimulus, via
Hebbian learning from the input layer. Thus, the BG
initially learns which response to gate via phasic changes
in DA ensuing from random cortical responses, and then
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this learning transfers to the cortex once it starts to
select the correct response more often than not. This
reflects the idea that the BG is not an SR module, but
rather modulates the gating of responses that are se-
lected in the cortex.

Probabilistic Classification Simulations

The WP task (Knowlton, Squire, et al., 1994) involves
presenting cards made up of four possible cues that
have different probabilities of being associated with
‘‘rain’’ or ‘‘sun.’’ The predictability of the individual cues
is 75.6%, 57.5%, 42.5%, and 24.4%. Actual trials involve
presenting from one to three cues simultaneously, for a
total of 14 cue combinations, making it difficult to
become explicitly aware of the probability structure.

In the network, cues are presented in the input,
and potential responses are immediately but weakly
activated in the PMC (Figure 4). The BG gates one
of the two responses if its associated ‘‘Go’’ represen-
tation is strong enough, facilitating its execution and
suppressing that of the alternative response. If the
probabilistically determined feedback to the selected
response is positive, a phasic DA burst is applied in
the plus phase, resulting in an enhanced Go represen-
tation and associated learning. Negative feedback results
in a phasic dip of DA in the plus phase, releasing No-Go
cells from suppression and allowing the network to
learn not to gate the selected response. Over the course
of training, networks integrate Go and No-Go signals in
the context of different cue combinations to learn when
it is most appropriate to gate sun and rain responses.

Performance measures involve percentage of ‘‘opti-
mal’’ responses, rather than percentage of responses
that were associated with (probabilistically determined)
positive feedback provided to the network. Thus, indi-
vidual responses that had negative outcomes, but were
actually the best choice according to the odds, were
scored correctly. Similarly, positive outcome responses
that were suboptimal were scored incorrectly. These
optimal responding measures are consistently used in
the behavioral paradigms (e.g., Gluck et al., 2002). Of
course, networks were not trained with this error mea-
sure but were provided the same probabilistic feedback
that would have been given to the human participant.

Further implementational details of the WP task are
described in the Methods section.

Simulated Parkinsonism

Parkinson’s disease was simulated by ‘‘lesioning’’ three
out of four SNc units so that they were tonically inactive,
representing the cell death of approximately 75–80% of
dopaminergic neurons in this area (bottom of Figures 4
and 5). This has the effect of reducing tonic DA in the
minus phase, as well as phasic DA during feedback in the
plus phase. Although the percentage increase/decrease

in phasic firing relative to baseline is the same for intact
and Parkinson networks, the total amount of DA is re-
duced by a factor of four, resulting in reduced dynamic
range of the DA signal. Dynamic range is critical for
learning appropriate Go/No-Go representations from er-
ror feedback, as network weights are adjusted on the
basis of difference in activity states in the two phases
of network settling. Because tonic DA levels are low, PD
networks have an overall propensity for No-Go learning,
but the dynamic range of phasic dips during negative
feedback is reduced. Go learning is degraded because
limited amounts of available DA reduce the potency of
phasic bursts, activating less of a Go representation
during positive feedback.

Less DA in PD also diminishes the contrast enhance-
ment effects of D1 receptor stimulation, further weak-
ening the learning of Go signals. Smaller bursts of DA in
PD nets led to less contrast enhancement during posi-
tive feedback, by reducing the change in unit activation
gain and threshold by a factor of four (see Methods).
Thus, degraded Go learning is exacerbated because of
reduced contrast enhancement that would normally
amplify the Go signal during positive feedback.

Testing the Contribution of the Indirect Pathway

Because other BG models include the direct, but not
necessarily the indirect, pathway, the contribution of the
latter was evaluated in two different conditions. First,
the indirect pathway was disconnected: No-Go units in
the striatum no longer projected to the GPe. In these
networks, No-Go units were still activated by synaptic
input and modulated by DA, but had no effect on BG
output. Instead, GPe units tonically inhibited the GPi.
This manipulation eliminates the effects of the indirect
pathway so that all discrimination learning must be
accomplished by comparing Go associations in the
direct pathway. Although it is technically possible that
this manipulation simply lowers the threshold for gating
in the direct pathway by providing more tonic inhibition
to the GPi (i.e., less overall No-Go), this possibility was
accounted for by varying the strength of GPe–GPi inhib-
itory projections from zero to maximal inhibition. Re-
sults reported below are for the best of these cases,
which is still substantially worse than the full BG model.

A second test of the indirect pathway was conducted
to evaluate the role of response-specific No-Go repre-
sentations. The hypothesis advocated in this article is
that each response develops both Go and No-Go rep-
resentations as a result of positive and negative feed-
back, and that these representations compete in order
to facilitate or suppress the response. However, it is also
possible that only Go representations in the striatum are
response-specific, and that the indirect pathway repre-
sents a more global No-Go signal. In the model, this
condition was tested by making GPe units in each
column project to both columns of the GPi (rather than
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Figure 4. A positive feedback trial in the weather prediction task, for both intact and ‘‘Parkinson’’ networks. This trial consists of two cues,

represented by the two columns of active units in the input layer. Intact (choice): Response selection (minus phase) activity in the intact
network. Early in training, the BG has not learned to gate either response, as shown by an active GPi and inhibited thalamus. The PMC is weakly

active due to direct connections from sensory input. The most active (left) unit in the PMC, corresponding to ‘‘sun,’’ determines the output

response. Intact (feedback): Because the model ‘‘guessed’’ correctly, a phasic burst of DA firing occurs in the SNc. This has the effect of activating

Go units associated with the selected response (via D1 contrast enhancement), and suppressing No-Go units (via D2 inhibition). Weights are
adjusted based on differences in network activity between the minus and plus phases. The enhanced Go representation in the plus phase

drives learning to gate the ‘‘sun’’ response. PD (choice): Response selection (minus phase) activity in the PD network, for the same trial. Note

the reduced number of intact SNc units, which causes the No-Go units to be more active. Again, there is no BG gating early in training and the
model selects a random response from sensory–motor projections. PD (feedback): Correct guessing leads to a phasic burst of DA in the plus phase.

However, this phasic burst is not as effective because it applies to only one SNc unit, and therefore only weakly activates more Go units while

some No-Go activity persists. Reduced dynamic range of DA in the PD network results in less difference in activity levels between the two phases

of network settling, causing less learning.
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Figure 5. A negative feedback trial in the weather prediction task for both intact and ‘‘Parkinson’’ networks. Intact (choice): A single cue is
presented. Based on previous learning, the Go units for ‘‘rain’’ are sufficiently active to gate that response, indicated by the inhibition of right

GPi units and disinhibition of the right thalamus unit. Intact (feedback): The feedback on this particular trial is negative (due to probabilistic

outcomes), shown by a phasic dip of DA firing in the SNc. The lack of DA removes suppression of No-Go units via D2 receptors, which are then

more active than the Go units. The DA dip therefore drives No-Go learning to the incorrect response selected for this cue. Note the output
layer displays the target response for the trial, but this is not used as a training signal: The only signal driving learning is the change in SNc

DA. PD (choice): The PD network has also learned to gate the ‘‘rain’’ response for this same trial, based on previous learning. PD (feedback):

Feedback is incorrect, and the phasic dip of DA in the SNc leads to activation of some No-Go units. However, the PD network already had low
amounts of tonic DA, causing an overall propensity for No-Go learning, so this phasic dip is smaller and therefore not as effective. Reduced dynamic

range of DA in the PD network results in less difference in activity levels between the two phases of network settling.
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Figure 6. A trial in the probabilistic reversal task. Two cues are presented at the input, and the model has to select one of them (see Methods

for details). The trial shown here is in the reversal stage, during which the model has to learn ‘‘No-Go’’ to the prepotent response before it can
switch to selecting the alternative. Reduced dynamic range of DA in the ‘‘overdosed’’ (OD) network causes degraded ability to learn No-Go. Intact

(choice): Based on learning in the acquisition stage, the network chooses the stimulus on the right (Resp2). Intact (feedback): In the reversal

stage, this choice is incorrect. Phasic dips in SNc release No-Go units from suppression, so that the network can subsequently learn not to
perseverate. OD (choice): The same trial is presented to the OD network. Unimpaired Go learning in the acquisition stage results in selection of

the same response as the intact network. OD (feedback): A phasic dip is applied to SNc on incorrect trials in the reversal stage, but a residual level

of activation due to simulated medication results in weaker activation of No-Go units. The network then takes longer to unlearn the initial

response, causing reversal deficits.
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to just the corresponding column), so that No-Go units
in the striatum had the same effect on both responses.
Because this may amount to more overall inhibition
from the GPe to the GPi, once again the strength of
these inhibitory projections was varied from zero to
maximal and the best case results were reported.

Probabilistic Reversal Simulation

In the PR task (Swainson et al., 2000), the participant is
presented with two stimuli on a touch-sensitive com-
puter screen and has to choose one of them (by
touching it). Feedback provided after each response is
probabilistic, with an 80%/20% ratio of reinforcement for
the ‘‘correct’’ stimulus. After a number of trials, the
probabilities of correct feedback are suddenly reversed,
unbeknownst to the participant.

In the model, training involves two stages: acquisi-
tion and reversal. In the acquisition stage, the network
had to learn which of two stimuli to select. The prob-
abilities associated with correct response were 80% for

selecting Stimulus 1 and 20% for selecting Stimulus 2.
Positive feedback was associated with a DA burst, and
negative feedback was associated with a dip. After 50
blocks of trials, these probabilities were reversed, and the
feedback effects of DA were necessary to learn No-Go to
the prepotent learned response (Figure 6). Once No-Go
representations are strong enough to suppress gating,
random cortical activity leads to sometimes choosing
the opposite response and DA reinforcement of the
corresponding Go representation, enabling reversal.

Further implementational details of the PR task are
described in the Methods section.

Simulated DA Medication

To model DA overdose in the ventral striatum of medi-
cated patients (Cools, Barker, et al., 2001, 2003; Swainson
et al., 2000; Gotham et al., 1988), all SNc units remained
intact. This reflects the fact that the ventral striatum,
which is recruited in this task, is relatively spared from
dopaminergic damage in moderate PD. The difference
between intact and ‘‘overdosed’’ networks was simply an
increase in overall level of DA. In the minus phase, the
tonic level of DA was increased from an SNc unit activa-
tion value of 0.5 to 0.65, reflecting the greater baseline
level of DA. Negative feedback in the plus phase resulted
in an activation value of 0.25, instead of zero SNc acti-
vation. This is still a phasic dip relative to the tonic level,
but is meant to simulate the possibility that DA release

Figure 7. Weather prediction task learning curves, averaged over
25 networks for each condition. Intact: Full BG model with direct

and indirect pathways modulated by phasic changes in simulated

DA during error feedback; PD: simulated Parkinson’s disease, modeled

by lesioning 75% of dopaminergic units in SNc; No Indir: BG model
with the indirect pathway disconnected from the striatum to the GPe;

Global No-Go: Full BG model in which No-Go representations globally

suppress all responses nonselectively. PD networks are impaired at

learning the probabilistic structure, due to impoverished phasic
changes in DA in response to feedback. Models without the indirect

pathway or with global No-Go representations have reduced

discriminability because they can only compare the strength of Go

representations to decide which response to facilitate. In contrast,
intact models can use response-specific Go and No-Go representations

that develop over training in order to more selectively facilitate and

suppress responses.

Figure 8. Probabilistic reversal results for intact networks and for

those with simulated dopamine ‘‘overdose,’’ averaged over 25

networks for each condition. Each block consists of 10 trials; reversal of
stimulus–outcome probabilities occurred at block 20. Overdosed

networks were selectively impaired at learning this reversal, despite

performing as well as intact networks in the acquisition phase. A
smaller phasic dip in DA during negative feedback resulted in

diminished ability to learn ‘‘No-Go’’ to the prepotent response that was

learned in the initial acquisition.
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has less dynamic range in the overdose case (see above
for elaboration and justification). Positive feedback re-
sulted in SNc unit activation of 1.0.

The DA overdose manipulations degraded networks’
ability to learn No-Go representations during negative
feedback, as No-Go units were suppressed by the in-
creased levels of DA. This selectively impairs reversal
learning, in which ‘‘No-Go’’ must be learned to a pre-
potent response.

RESULTS

Probabilistic Classification

Despite not having an explicit supervised training signal,
simulated phasic DA release during error feedback
allowed intact networks to extract the probability struc-
ture, scoring 77% optimal responding after 200 trials of
training (Figure 7). ‘‘Parkinson’’ networks were im-
paired, only scoring 64% optimal responding. Statistical
analysis indicated that this difference was highly signif-
icant [F(1,24) = 20.8, p = .0001]. Two other conditions
were run to evaluate the contribution of response-
specific No-Go representations in the indirect pathway.
Networks with a disconnected indirect pathway were
significantly impaired relative to intact networks [65%
optimal responding, F(1,24) = 11.9, p = .002]. Similarly,
networks that had both direct and indirect pathways but
only had global No-Go representations (i.e., No-Go units
in the striatum affected both responses nonselectively)
were also impaired [64% optimal responding, F(1,24) =
7.13, p = .013]. In both these cases, parameters were
searched to ensure that impairments were not simply
due to an overall threshold for responding, by varying
the strength of inhibitory connections from the GPe to
the GPi—results reported here are for the best cases
over the range from zero to maximal inhibition (which
for both cases involved an inhibitory strength of approx-
imately 70% of that in the full model).

Probabilistic Reversal

The results for the PR task were clearcut: ‘‘overdosed’’
networks were selectively impaired at reversing the
probabilistic discrimination (Figure 8). Both intact and
overdosed networks were able to acquire the initial 80%/
20% probabilistic discrimination, with no significant dif-
ferences between performance in the acquisition phase
[97.8% and 98.2 % optimal responding after 200 trials,
F(1,24) = .4, ns]. Intact networks consistently learned to
reverse this discrimination after a further 200 trials of
training, with 78% optimal responding. In contrast, over-
dosed networks were slower to reverse the initial dis-
crimination, only attaining 64% optimal responding after
the same amount of training. These reversal learning dif-
ferences were significant [F(1,24) = 4.80, p = .038]. DA
depletion, as is the case for severe PD in the ventral

striatum, resulted in nonselective impairment in both
stages (not shown).

DISCUSSION

This work presents a theoretical basis for cognitive pro-
cedural learning functions of the basal ganglia (BG). A
neural network model incorporating known biological
constraints provides a mechanistic account of cognitive
deficits observed in PD patients. A key aspect of the
model is that phasic changes in DA during error feed-
back are critical for the implicit learning of stimulus–
reward–response contingencies, as in probabilistic clas-
sification and reversal.

In brief, the model includes competitive dynamics
between striatal cells in the direct and indirect pathways
of the BG that facilitate or suppress a given response.
The cells that detect conditions to facilitate a response
provide a ‘‘Go’’ signal, whereas those that suppress
responses provide a ‘‘No-Go’’ signal. Habit learning is
supported by this circuitry because DA release dynam-
ically modulates the excitability and synaptic plasticity of
these pathways so that the most reinforcing responses
are subsequently facilitated, whereas those that are
more ambiguous are suppressed.

Simulated Parkinsonism, by reducing the amount of
DA in the model and thus its modulatory effects on Go
and No-Go representations, produced qualitatively sim-
ilar results to those observed in PD patients learning the
WP task (Knowlton, Mangels, et al., 1996; Knowlton,
Squire, et al., 1994). Less DA led to less contrast en-
hancement and lower ability to resolve Go/No-Go asso-
ciation differences needed for discriminating between
subtly different response reinforcement histories.

Although it could be argued that the simulated indirect
pathway is superfluous and that discrimination learning
can happen in the direct pathway alone, networks with
disrupted indirect pathways were substantially impaired.
These results held even when the threshold for facili-
tating responses in the direct pathway was systemati-
cally varied, ensuring that the indirect pathway does not
simply set an overall threshold that feasibly could be
implemented in the direct pathway alone. Rather, the
indirect pathway makes a genuine contribution by de-
veloping response-specific No-Go representations that
compete with Go representations to enhance discrimi-
nability. Without response-specific No-Go representa-
tions, the BG is likely to signal ‘‘Go’’ to whichever
response happens to be slightly more active in the PMC.

Medication-dependent Deficits

The model also offers some insight as to why patients on
medication are impaired at PR. Simulated DA overdose
produced qualitatively similar results to those observed
in medicated patients in PR (Cools, Barker, et al., 2001;
Swainson et al., 2000; Gotham et al., 1988). That is,
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‘‘overdosed’’ networks were selectively impaired in the
reversal stage, but performed as well or better than
control networks in the initial discrimination.

The model provides a mechanistic description of how
DA medication may lead to reversal impairments that is
generally consistent with the overdose hypothesis advo-
cated by authors of the behavioral studies. In intact
networks, negative feedback in the reversal stage was
associated with phasic dips in DA, which led to activa-
tion of striatal No-Go cells by transiently releasing them
from the inhibitory influence of DA. The activation of
these cells led to suppressing the execution of prepo-
tent responses, allowing networks to learn to reverse
responding. In ‘‘overdosed’’ networks, a residual level of
DA during negative feedback continued to suppress No-
Go cells (via simulated D2 receptors), leading to re-
sponse perseveration. This account predicts that tonic
stimulation of just the D2 receptor should produce
similar reversal impairments, which are indeed observed
in both healthy humans and nonhuman primates ad-
ministered D2 agonists (Mehta, Swainson, Ogilvie, Saha-
kian, & Robbins, 2000; Smith, Neill, & Costall, 1999).

The above account is also consistent with event-
related fMRI studies in humans showing caudate activa-
tion during the reception of negative feedback (Monchi,
Petrides, Petre, Worsley, & Dagher, 2001), and ventral
striatum activation during the final reversal error in a PR
task (Cools, Clark, et al., 2002). Phasic dips in DA during
negative feedback should cause an increase in fMRI sig-
nal due to the transient activation of No-Go cells. In the
PR task, striatal activation was found specifically during
the trial that participants used negative feedback to
successfully reverse their behavior on subsequent trials.

Alternative mechanisms are possible to explain rever-
sal learning deficits in patients taking dopaminergic
medication. For instance, medication may simply pre-
vent ‘‘unlearning’’ in direct pathway Go cells, rather than
suppressing the learning of No-Go cells in the current
model. In support of this theory, rats with L-Dopa-
induced dyskinesia had a selective impairment in the
depotentiation (i.e., reversal of LTP) of corticostriatal
synapses (Picconi et al., 2003), ostensibly due to changes
in the D1 receptor pathway. However, it is not clear
whether this depotentiation impairment alone can ac-
count for reversal deficits: Normal depotentiation takes
in the order of 10 min and therefore is not sufficient to
induce reversal in a matter of a few trials. Furthermore,
the fact that D2 agonists impair reversal implicates a role
of the indirect pathway to activate ‘‘No-Go’’ representa-
tions and actively avoid situations. Through its push–
pull circuitry, the model suggests that the BG is special-
ized to quickly learn changes in rewarding information.

Relation to Other Models of DA in the BG

Other computational models of the BG have focused
more on how response selection and reward informa-

tion may be implemented in biological circuitry (e.g.,
Brown et al., 2004; Gurney et al., 2001; Beiser & Houk,
1998), but to my knowledge have not attempted to
model cognitive implicit learning tasks. Thus, it is un-
clear how prior BG models would account for medi-
cated and nonmedicated cognitive impairments in PD.
Nevertheless, a comparative analysis of the critical fea-
tures of the current model with that of others may ex-
plicitly demonstrate both consistencies across models as
well as novel aspects of the current model that account
for behavioral phenomena.

The model builds on earlier work on the interactions
between the BG and the PFC in working memory
(Frank, Loughry, et al., 2001), but differs from it in three
key aspects. First, the earlier model only included the
direct ‘‘Go’’ pathway, as its ‘‘No-Go’’ responses to task-
irrelevant stimuli were assumed and hand-wired. The
current model includes the competing processes of the
indirect pathway, and whether to gate (Go) or suppress
(No-Go) a response is learned. Second, the current
model includes the SNc/VTA so that the role of DA
can be implemented, with simulated D1 and D2 recep-
tors in the striatum. Third, the current model does not
include the PFC or maintenance of information over
time, as the simulated tasks do not involve working
memory. Instead, the cortical layer in the model is a
simpler PMC, representing just two different possible
responses (although in principle it could be extended to
include several responses).

The model is consistent with other models of DA in
the BG (Brown et al., 2004; Monchi, Taylor, & Dagher,
2000; Taylor & Taylor, 1999), in that DA has a perform-
ance effect, by differentially modulating excitability in
the direct and indirect pathways. A notable difference is
that in the current model DA also enhances contrast in
the direct pathway by exciting highly active units and
suppressing weakly active units, instead of being globally
excitatory. This modulatory effect is important for se-
lecting among competing responses, and is motivated by
the observed D1 receptor activation excitation of striatal
cells in the ‘‘up-state,’’ but inhibition of those in the
(‘‘down-state’’; Hernandez-Lopez, Bargas, et al., 1997).

Perhaps a more substantial difference is that although
prior models emphasize the tonic effects of DA, the
current model also incorporates phasic changes in DA
release during positive and negative feedback. Positive
feedback results in a phasic burst of DA, transiently
biasing the direct pathway and suppressing the indirect
pathway. Negative feedback results in a phasic dip in DA,
and has the opposite effect. Learning is driven by these
transient changes: Weight values are modified on the
basis of the difference between phases of response se-
lection (hypothesized to involve moderate amounts of
DA) and error feedback (hypothesized to involve phasic
increases/decreases in DA). Reinforcement learning ac-
counts of DA in the BG have been suggested by others
(e.g., Doya, 2000; Suri & Schultz, 1999), and allow
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f lexible learning of rewarding and nonrewarding be-
haviors that may change over time.

Another distinguishing feature in the current model is
that a particular response is selected by the PMC—the
BG simply gates this response if it detects the conditions
to be appropriate (i.e., predictive of reward). Thus, the
BG is not an SR module, but instead modulates the
efficacy of responses being selected in the cortex. This is
consistent with observations that striatal firing occurs
after that in the PMC and the supplementary motor area
(e.g., Alexander & Crutcher, 1990a; Crutcher & Alexan-
der, 1990; see also Mink, 1996).4 Thus, in contrast to the
long held assumption that the BG initiates motor
responses, this model suggests that it facilitates or gates
responses that are being considered in the PMC. The
model further suggests that cortical learning of response
selection is mediated by way of DA reward system in
the BG, but that once this learning is achieved, the cor-
tex itself selects the response. This is consistent with
the observation that Parkinson’s patients have specific
trouble learning novel motor actions, and with the hy-
pothesis that the BG is only necessary for the learning
of new categories but not for categorization behavior
in experts, which may be mediated directly from per-
ceptual to motor areas (Ashby, Alfonso-Reese, et al.,
1998).

Implications for Frontal Deficits

That PD patients have both implicit learning and frontal
deficits—which are not intuitively related—suggests that
a better understanding of BG specialization would in-
form us about how cognition operates as a functional
system. The present work only modeled implicit pro-
cesses in habit learning, which do not have a prefrontal
component (Knowlton, Mangels, et al., 1996). However,
the same general structure of the model may be ex-
tended to include the PFC, providing insight into the
roles of DA and the BG in executive and attentional
processes. Indeed, these roles may be very similar to
those in implicit learning, with the major difference
being the type of representations modulated in the tar-
geted cortical area—motor representations in the PMC
and working memory in the PFC.

Based on the general suggestions of BG involvement
in prefrontal circuits made by Alexander and colleagues
(Middleton & Strick, 2000; Alexander, Crutcher, & De-
Long, 1990; Alexander, DeLong, et al., 1986), we devel-
oped a computational model that explicitly formulated
the role of the BG in working memory (Frank, Loughry,
et al., 2001). We suggested that just as the BG facili-
tates motor command execution in the PMC by disin-
hibiting or ‘‘releasing the brakes,’’ it may also facilitate
the updating of working memory in the PFC. If a
given stimulus was learned to be task-relevant and
therefore suitable for maintenance in the PFC, a ‘‘Go’’
signal would be executed by activation of the BG di-

rect pathway, thereby disinhibiting the thalamus and
‘‘gating’’ the updating of the PFC.

In the above work (Frank, Loughry, et al., 2001), we
briefly discussed the potential role of DA, suggesting
that it would be important for the learning of task-
relevant stimuli via its reward signaling and modulation
of synaptic plasticity. In ongoing work (O’Reilly & Frank,
submitted), we are developing these ideas in a com-
putational model that integrates ventral and dorsal
striatum with PFC maintenance to demonstrate how
complex working memory tasks may be learned. Con-
sistent with the present model, DA bursts in the BG
preferentially activate cells in the direct pathway via
D1 receptors, while suppressing cells in the indirect
pathway via D2 receptors. Thus, DA in the BG may have
the effect of boosting the updating of working memory
by biasing the direct pathway to win the competition for
BG output. A phasic dip in DA allows the BG to learn
not to update task-irrelevant information. The role of
DA in the PFC may be quite different, helping to ro-
bustly maintain information over time and in the face of
interfering stimuli (Durstewitz, Seamans, & Sejnowski,
2000), depending on optimal levels of DA (Goldman-
Rakic, 1996).

With the above model in mind, consider the effect of
dopaminergic dysfunction in the BG or the PFC. A lack
of DA in the BG would lead to too little updating of
relevant information into the PFC, just as it leads to too
little execution of motor commands. Conversely, too
much DA in the BG would lead to excessive updating of
the PFC, as observed in L-Dopa-induced motor tics and
dyskinesia in Parkinson’s disease. Finally, a suboptimal
level of DA in the PFC would lead to insufficient
maintenance of task-relevant information. Any of these
DA dysfunctions would lead to ‘‘frontal-like’’ cognitive
deficits.

Although it is well accepted that the integrity of the
PFC is necessary for attentional processes, it is not clear
whether attentional deficits seen in PD patients are due
to dopaminergic pathology within the PFC itself, or
whether DA damage in the BG is sufficient to produce
frontal-like deficits due to its interconnections with the
PFC. In support of the latter possibility, a positive
correlation was found between measures of attention
and working memory and the level of L-Dopa accumu-
lation in the striatum of PD patients (Remy, Jackson,
& Ribeiro, 2000). In monkeys, D2 agents have effects
on working memory tasks when applied systemically,
but not when directly infused into the PFC (Granon
et al., 2000; Arnsten, Cai, Steere, & Goldman-Rakic,
1995; Arnsten, Cai, Murphy, & Goldman-Rakic, 1994),
suggesting that D2 receptors are only indirectly involved
in frontal processes.

The current framework holds that D2 effects on
working memory are due to modulation of the BG
threshold for updating the PFC. With high D2 stimula-
tion there is less ‘‘No-Go’’ so the threshold is lowered,
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and with low D2 stimulation the threshold is raised.
Note that a raised threshold means that task-irrelevant
stimuli are less likely to get updated. This is consistent
with observations that DA depletion to the BG (which
should raise the threshold for updating PFC) actually
makes monkeys less distractible to task-irrelevant stimuli
during acquisition of an attentional set (Crofts et al.,
2001). However, this higher threshold may also make
them more rigid in what to pay attention to, so that they
are impaired in task-set switching.

Model Predictions

The main assumption built into the model (supported
by data reviewed above) is that positive and negative
feedback lead to transient bursts and dips in DA. The
model shows that these phasic changes can lead to
systems-level effects that modulate the BG threshold
for facilitating/suppressing cortical commands. Bursts of
DA suppress the No-Go pathway and sharpen represen-
tations in the Go pathway. Phasic dips of DA have the
opposite effect, releasing the indirect pathway from
suppression and allowing the model to learn ‘‘No-Go’’
to the incorrect response. A number of testable predic-
tions can be derived from this model at both neural and
behavioral levels.

At the neural level, the model predicts that phasic
changes in DA support ‘‘Hebbian’’ learning by modu-
lating neuronal excitability in the indirect pathway via
D2 receptors. By transiently suppressing No-Go cells,
DA bursts should lead to LTD. Conversely, by tran-
siently exciting No-Go cells, DA dips should lead to
LTP. This prediction has not yet been tested directly
(during endogenous DA bursts/dips), but is consistent
with observations that selective stimulation of D2 re-
ceptors leads to LTD, whereas D2 blockade leads to
LTP (Calabresi et al., 1997).

The model suggests that a large dynamic range in DA
release is necessary for learning subtle differences be-
tween positive and negative reinforcement values of
responses. DA agonists and antagonists may restrict this
range to be at the high and low ends of the DA
spectrum, respectively. In a probabilistic reinforcement
paradigm, participants administered D2 agonists should
easily learn to respond to stimuli having greater than
50% reinforcement probabilities, whereas those taking
D2 antagonists (and PD patients) should have an easier
time learning to avoid stimuli with lower reinforcement
probabilities. This is because D2 agonists bias the direct
pathway to be more active (by suppressing the indirect
pathway), enhancing the learning and execution of Go
responses. Parkinson’s disease or D2 antagonists should
bias the indirect pathway, enabling the learning of No-
Go responses.

In addition to modulating the threshold for learning
and executing responses, DA should play a similar role
in modulating the threshold for updating working mem-

ory, discussed in the previous section. D2 agonists
should lower this threshold, increasing the amount of
updating, whereas D2 antagonists should reduce the
amount of updating. Whether these drugs improve or
worsen working memory performance should depend
on both the baseline level of updating in the individual
(see Kimberg, D’Esposito, & Farah, 1997), and the
amount of conflict/interference in the particular task.
Specifically, if a working memory task involves dis-
tracting information, a lower threshold for updating
may result in increased distractibility and impulsive-
ness because the participant may have trouble ignoring
task-irrelevant stimuli. Conversely, if the task simply
involves recalling a previously stored memory in the
absence of distracting information, D2 agonists should
improve performance because they should cause more
updating and subsequent maintenance of working
memory.

Model Limitations and Future Directions

The model does not differentiate between different
parts of the striatum. In fact, the same model is used
to simulate probabilistic classification and reversal tasks,
which are thought to depend on the dorsal and ventral
striatum, respectively. It is, at present, unclear why these
two tasks, which both involve learning response selec-
tion via trial-and-error feedback, should involve separate
striato-cortical circuits. However, one possibility is that
the differences lie in the content of cortical targets: The
dorsal striatum modulates motor information in the
PMC, whereas the ventral striatum targets reward infor-
mation in the orbito-frontal cortex (OFC) (Gottfried,
ODoherty, & Dolan, 2003; Alexander, DeLong, et al.,
1986). In reversal learning, a stimulus that has a prepo-
tent reward value suddenly becomes nonrewarding,
and OFC representations may be especially important
to support top-down activation of ‘‘No-Go’’ representa-
tions in the ventral striatum. In probabilistic classifica-
tion, response selection processes for discriminating
among multiple cues may more heavily tax the dorsal
striatum. The functional contributions of these two cir-
cuits working in tandem will be more explicitly explored
in future work.

The present model highlights the importance of
dynamic DA modulation in the BG. However, it does
not address the brain mechanisms which cause phasic
bursts and dips in DA during positive and negative
feedback. Instead, this was assumed, and phasic changes
in DA were simply set, depending on probabilistic
feedback. This implementation does not capture the fact
that as learning progresses and rewards become ex-
pected, phasic bursts of DA no longer occur during re-
ward but are instead transferred to an earlier stimulus
that predicts reward (Ljungberg, Apicella, & Schultz,
1992), as implemented in ‘‘temporal differences’’ (TD)
reinforcement learning algorithms (Sutton, 1988). The
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simple implementation described in this article is suf-
ficient for two reasons: (a) the tasks are probabilistic, so
that positive feedback is never fully predicted (and may
therefore always result in a DA burst), and (b) even if
phasic changes in DA are reduced as outcomes are more
expected, this would simply lead to stable performance
once the probabilistic structure is learned. A TD-like
mechanism is critical in more complex working memory
tasks, in which the model has to update and maintain
information in one trial to obtain positive reinforcement
a few time steps later.

The above discussion makes it clear that the role of
DA in the BG in modulating prefrontal function is more
complex and needs to be further investigated. Although
it was brief ly considered how DA might modulate the
threshold for updating information in the PFC, it has not
yet been tested whether this would allow for selective
updating of task-relevant information, but not that of
irrelevant distracting information. By merging aspects of
our initial BG–PFC model of working memory (Frank,
Loughry, et al., 2001) with that of the current model, we
are currently exploring these issues (O’Reilly & Frank,
submitted).

Conclusions

When systems-level interactions of multiple brain re-
gions are involved, computational investigations pro-
vide a valuable complement to experimental brain
research. The current model of DA in the BG provides
a working hypothesis that can be tested experimentally
and behaviorally.

METHODS

Implementational Details

The model is implemented using a subset of the Leabra
framework (O’Reilly & Munakata, 2000; O’Reilly, 1998).
The two relevant properties of this framework for the
present model are (a) the use of a point neuron
activation function; and (b) the Winners–Take–All
(kWTA) inhibition function that models the effects of
inhibitory neurons (these two properties are described
in detail in the above references, and also in Frank,
Loughry, et al., 2001). Only specific methods related to
the present model are described below.

Probabilistic Classification Simulation

For the WP task, the same probabilistic structure was
used as in the original study (Knowlton, Squire, et al.,
1994), in terms of both frequency of presentation of
individual cue combinations, and their probability of
being associated with an outcome of ‘‘rain’’ or ‘‘sun.’’
Thus, patterns were presented to the network consisting

of one to three cues in blocks of 100 trials. Each cue was
represented by a single column of units in the input
layer. Thus, a trial that includes Cues 1 and 3 together
was simulated by activating the first and third column of
units in the input (Figure 4). This cue combination was
presented in 6 out of 100 trials (for frequency of 6%), of
which five of them would involve positive feedback for a
rain response, and negative feedback for a sun response
(for a probability of 83.3% rain). The two potential
responses in the PMC were left and right, corresponding
to buttons pushed by participants to respond ‘‘sun’’
or ‘‘rain.’’

Probabilistic Reversal Simulation

Just as in the WP task, each of the two stimuli in the
PR task were represented by a column of units in the
input layer. Unlike the WP task, the potential responses
involve directly selecting one of the two stimuli in the
input (i.e., two alternative forced choice). The actual
motor response (i.e., left/right) is not as relevant in this
case, because the correct stimulus appears just as often
on the left and right sides of the screen. Instead,
responses are likely selected relative to a particular
stimulus that is being considered; the participant can
either select it, or switch to the other stimulus. To
address this in the model, a ‘‘stimulus selection process’’
was implemented. In any given trial, attention is ran-
domly directed to one stimulus with only contextual
information about the other. Potential responses were
simply to ‘‘approach’’ the attended stimulus, or to
‘‘switch’’ to the context stimulus. This was modeled by
making one of the stimuli more salient: The attended
stimulus had all 5 units in its column fully activated,
whereas the context stimulus had only 3 (randomly
selected) units weakly activated, with a mean activa-
tion of 0.25 and a variance of 0.35. A similar method
was implemented to model a two-alternative forced-
choice task in previous work (Frank, Rudy, & O’Reilly,
2003).

Parameters for D1 Contrast Enhancement

A simplified version of the Leabra activation function is
presented here to provide context for the parameters
associated with contrast enhancement.

Activation communicated to other cells ( yj) is a
thresholded (�) sigmoidal function of the membrane
potential with gain parameter x:

yjðtÞ ¼
1�

1 þ 1
Î3½VmðtÞ�Î��þ

� ð1Þ

where [x]+ is a threshold function that returns 0 if
x < 0 and x if x > 0. In actual implementation, a
less discontinuous deterministic function with a softer
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threshold is used (see O’Reilly & Munakata, 2000;
O’Reilly, 1998), but the differences do not effect the
contrast enhancement manipulations.

The default activation gain, x, is 600. The default
membrane potential firing threshold, �, is 0.25. These
parameters were used for tonic levels of DA. For contrast
enhancement during phasic DA spikes, the activation
gain was increased to 10,000*k, and the threshold was
increased to 0.25 + 0.04*k, where k is the percentage of
intact SNc units (k = 1 for control networks; k = 0.25
for PD networks). This has the effect of suppressing
units that do not meet the higher threshold, but en-
hancing activity in units that are above this threshold.
During phasic dips of DA, the activation gain was
reduced to 600 � k*300, and the threshold was 0.25.
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Notes

1. The substantia nigra pars reticulata (SNr) is equivalent to
the GPi in this circuitry, except that the former receives from
the caudate, and the latter from the putamen. For this reason, I
consider the two to be one functional entity, but for simplicity,
only refer to GPi.
2. The GPe inhibition of GPi actually involves two sub-
pathways, both directly and indirectly through the subthal-
amic nucleus, but I do not consider the role of the latter
structure here.
3. Note that some argue that noise suppression in the direct
pathway is accomplished not by D1 inhibition, but by low
amounts of D2 heteroreceptors acting presynaptically to
decrease glutamate release in corticostriatal synapses (O’Don-
nell, 2003; Maura, Giardi, & Raiteri, 1988). This proposal does
not conflict in any important way with the implementations of
the model described later in the article.
4. Some, but not all, striatal neurons even fire after the onset
of movement. Note that this observation does not conflict with
the hypothesized role of the BG to gate or facilitate responses,
because firing that occurs after the onset of movement could
be associated with either terminating the initiated motor
program or suppressing other competing programs.
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