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Abstract

Humans are remarkably adept at generalizing knowledge between experiences in a way

that can be difficult for computers. Often, this entails generalizing constituent pieces of expe-

riences that do not fully overlap, but nonetheless share useful similarities with, previously

acquired knowledge. However, it is often unclear how knowledge gained in one context

should generalize to another. Previous computational models and data suggest that rather

than learning about each individual context, humans build latent abstract structures and

learn to link these structures to arbitrary contexts, facilitating generalization. In these mod-

els, task structures that are more popular across contexts are more likely to be revisited in

new contexts. However, these models can only re-use policies as a whole and are unable to

transfer knowledge about the transition structure of the environment even if only the goal

has changed (or vice-versa). This contrasts with ecological settings, where some aspects of

task structure, such as the transition function, will be shared between context separately

from other aspects, such as the reward function. Here, we develop a novel non-parametric

Bayesian agent that forms independent latent clusters for transition and reward functions,

affording separable transfer of their constituent parts across contexts. We show that the

relative performance of this agent compared to an agent that jointly clusters reward and

transition functions depends environmental task statistics: the mutual information between

transition and reward functions and the stochasticity of the observations. We formalize our

analysis through an information theoretic account of the priors, and propose a meta learning

agent that dynamically arbitrates between strategies across task domains to optimize a sta-

tistical tradeoff.

Author summary

A musician may learn to generalize behaviors across instruments for different purposes,

for example, reusing hand motions used when playing classical on the flute to play jazz on

the saxophone. Conversely, she may learn to play a single song across many instruments

that require completely distinct physical motions, but nonetheless transfer knowledge

between them. This degree of compositionality is often absent from computational
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frameworks of learning, forcing agents either to generalize entire learned policies or to

learn new policies from scratch. Here, we propose a solution to this problem that allows

an agent to generalize components of a policy independently and compare it to an agent

that generalizes components as a whole. We show that the degree to which one form of

generalization is favored over the other is dependent on the features of task domain, with

independent generalization of task components favored in environments with weak rela-

tionships between components or high degrees of noise and joint generalization of task

components favored when there is a clear, discoverable relationship between task compo-

nents. Furthermore, we show that the overall meta structure of the environment can be

learned and leveraged by an agent that dynamically arbitrates between these forms of

structure learning.

Introduction

Compared to artificial agents, humans exhibit remarkable flexibility in our ability to rapidly,

spontaneously and appropriately learn to behave in unfamiliar situations, by generalizing past

experience and performing symbolic-like operations on constituent components of knowledge

[1]. Formal models of human learning have cast generalization as an inference problem in

which people learn a shared (latent) task structure across multiple contexts and then infer

which causal structure best suits the current scenario [2, 3]. In these models, a context, typi-

cally an observable (or partially observable) feature of the environment, is linked to a learnable

set of task statistics or rules. Based on statistics and the opportunity for generalization, the

learner has to infer which environmental features (stimulus dimensions, episodes, etc.) should

constitute the context that signals the overall task structure, and, simultaneously, which fea-

tures are indicative of the specific appropriate behaviors for the inferred task structure. This

learning strategy is well captured by Bayesian nonparametric models, and neural network

approximations thereof, that impose a hierarchical clustering process onto learning task struc-

tures [3, 4]. A learner infers the probability that two contexts are members of the same task

cluster via Bayesian inference, and in novel situations, has a prior to reapply the task structures

that have been more popular across disparate contexts, while also allowing for the potential to

create a new structure as needed. Empirical studies have provided evidence that humans spon-

taneously impute such hierarchical structure, which facilitates future transfer, whether or not

it is immediately beneficial—and, indeed, even if it is costly—to initial learning [3–5].

These clustering models can account for aspects of human generalization that are not well

explained by standard models of learning. This approach to generalization, treating multiple

contexts as sharing a common task structure, is similar to artificial agents that reuse previously

learned policies in novel tasks when the statistics are sufficiently similar [6–9]. However, a key

limitation to these clustering models of generalization is that policies of the agent are general-

ized as a unit. That is, in a new context, a previously learned policy can either be reused or a

new policy must be learned from scratch. This can be problematic as policies are often not

robust to untrained variation in task structure [10–12]. Thus, a previously learned policy can

lead to a poor outcome in a new context even if there is a substantial degree of shared

structure.

Because task structures are either reused or not as a whole, the ability to reuse and share

component parts of knowledge is limited; that is, they are not compositional. Compositionality,

or the ability to bind (compose) information together in a rule governed way, has long been

thought to be a core aspect of human cognition [1, 13]. Importantly, ecological contexts often
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share a partial structure, limiting the applicability of previously learned policies but nonethe-

less providing a generalization advantage to a compositional agent.

To provide a naturalistic example, an adept musician can transfer a learned song between a

piano and a guitar, even as the two instruments require completely different physical move-

ments, implying that goals can be generalized and reused independently of the actions needed

to achieve them. A clustering model that generalizes entire task structures cannot account for

this behavior, and would require instead that an agent would need to relearn a song from

scratch to play it on a new instrument. Worse, this clustering scheme would predict an unlikely

interference effect where the similar outcome of playing the same song on two instruments

results in the model incorrectly pooling motor policies across instruments.

Here, we propose a framework to address one aspect of compositionality by decomposing

task structures—and their separable potential for clustering—into reward functions and tran-

sition functions. These two independent functions of a Markov decision process are suitable

units of generalization: if we assume that an agent has knowledge of a state-space and the set of

available actions, then the reward and transition functions are sufficient to determine the opti-

mal policy. In real-world scenarios, a reward function may correspond to the objective of an

agent (what it would like to achieve and the environmental states that produce these goals). A

transition function determines how the agent’s actions affect its environment (i.e., the subse-

quent states). For example, when playing music a reward function might correspond to the

desired sequence of notes (a scale, or a song) while the transition function might correspond

to the actions needed to produce notes on an instrument. When picking up a new form of gui-

tar, it may be sufficient for a musician to play one or two strings which may then afford infer-

ence of the entire transition functions (the tuning: strings and frets needed to obtain each

note). Here, we are concerned with how the inference of one (reward or transition) function

affects generalization of the other.

We consider two approaches to clustering and compare their relative generalization advan-

tages as a function of environmental statistics. The independent clustering agent supports gen-

eralization by clustering contexts into independent sets defined by the reward and transition

statistics, respectively. In contrast, the joint clustering agent clusters contexts into a single set of

clusters that binds together the transition and reward functions (hence amounting to previous

models of task-set structure that cluster and re-use policies [3–5]). Necessarily, independent

clustering is compositional and requires the binding of two independent functions.

We show that these two models lead to different predictions depending on the task environ-

ment, and we provide an information theoretic analysis to formalize and quantify the bounds

of these advantages/disadvantages. In environments where there is a clear, discoverable rela-

tionship between transitions and rewards, joint clustering facilitates generalization by allowing

an agent to infer one function based on observations that are informative about the other.

Nonetheless, we show that independent clustering can lead to superior generalization even in

such cases when the transition-reward relationship is weak, difficult to discover, or costly to do

so. Finally, we develop a meta-structure learning agent that can infer whether the overall envi-

ronment is better described by independent or joint statistics.

Models

To provide a test-bed for characterizing the effects compositional structure, we consider a

series of navigation tasks by utilizing grid worlds as a simplification of real-world environ-

ments. In these grid worlds, an agent learns to navigate by learning transition functions (the

consequences of its actions in terms of subsequent states) and separately learns a reward func-

tion (the reward values of locations, or goals) as it navigates. At each point in time, the agent is
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given a state tuple s =< x, c> where x 2 Rd is a vector of state variables (for example, a loca-

tion vector in coordinate space) and c 2 Rn is a context vector. Here, we define “context” as a

vector denoting some mutable property of the world (for example, the presence or absence of

rain, an episodic period of time, etc.) that constrain the statistics of the task domain, whereby

these task statistics are consistent for each context that cues the relevant task. Formally, for

each context we can define a Markov decision process (MDP) with state variables x 2 X,

actions a 2 A, a reward function mapping state variables and actions to a real valued number

R : X �A! R, and a transition function mapping state variables and actions to a probability

distribution over successors T : X �A! PðXÞ.
For the purpose of simplicity, we assume that the agent knows the spatial relationship

between states (i.e., it has access to a spatial map of its current position and adjacent positions)

but has to learn how its actions take it from one state to another. Specifically, we assume the

agent knows a set of cardinal movements A 2 Acard, where each cardinal movement is a vector

that defines a change in the state variables with regard to the known spatial structure per unit

time. (For example, in a two dimensional grid world we can define North = hdx/dt, dy/dti = h0,

1i as a cardinal movement). We can thus define a transition function in terms of cardinal

movements T(x, A, x0|c) = Pr(x0|x, A, c) and cast the navigation problem as the learning of

some function that maps primitive actions to cardinal movements �c : A! Acard, which we

assume to be independent of location.

This simplifying assumption has the benefit of providing a model of human navigation,

whom we assume understand spatial structure. Note that the function mapping motor actions

onto cardinal movements can depend on environmental conditions, and thus, context (for

example, wind condition can change the relationship between primitive actions and move-

ments in space for an aerial drone). A similar mapping between arbitrary button presses and

movements in the “finger sailing” task has been used to provided evidence for model-based

action planning in human subjects [14, 15]. Similarly, we can express the reward function in

terms of cardinal movements based on a location in space, Rc(x, A) = Pr(r|x, A, c). This allows

us to consider how the agent receives reward as it moves through coordinate space (as opposed

to how it receives reward as a function of its actions). Alternatively, we can express the reward

function as R(x, x0) or more simply as R(x0). The key assumption here is that the reward func-

tion is not a function of the agent’s actions but is a function of the consequences of those

actions.

The task of the agent is to generate a policy (a function mapping state variables to primitive

actions, for each context; p�jc : X ! A) that maximizes its expected future discounted reward

[16]. Given a known transition function and reward function, the optimal policy given this

task can be defined as:

p�c ðxÞ ¼ arg max
a

X

A2Acard

�cða;AÞ
X

x02X

Tcðx;A; x
0Þ½Rcðx

0Þ þ gVcðx
0Þ�

" #

ð1Þ

where Vc(x) is the optimal value function is defined by the Bellman equation:

VcðxÞ ¼ max
A

X

x02X

Tcðx;A; x
0Þ½Rcðx

0Þ þ gVcðx
0Þ�

" #

8 x 2 X ð2Þ

As the relationship between locations in space, Tc, is known to the agent, it is sufficient to learn

the cardinal mapping function ϕc(a, A) and reward function Rc(x, A) to determine an optimal

policy.
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While the optimal policy is dependent on both the mapping function and reward function,

crucially, the optimal value function is not: it is dependent only on the reward function (and

the known transition function Tc). Consequently, an agent can determine an optimal policy as

a function of movements through space:

p�c ðxÞ ¼ arg max
A

X

x02X

Tcðx;A; x
0Þ½Rðx0Þ þ gVcðx

0Þ�

" #

ð3Þ

This allows the agent to learn how it can take an action to move through space—the mapping

function ϕc(a, A)—independently from the desirability of the consequences of these moves

Rc(x0). This distinction allows for compositionality during generalization, as we will discuss in

the following section.

Context clustering as generalization

A common strategy to support task generalization is to cluster contexts together, assuming

they share the same task statistics, if doing so leads to an acceptable degree of error [7]. This

logic underlies models of animal Pavlovian learning and transfer [2], human instrumental

learning and transfer [3, 4], and category learning [17, 18]. Clustering models of human gener-

alization typically rely on a non-parametric Dirichlet process, commonly known as the Chi-

nese restaurant process (CRP), which acts as a clustering prior in a Bayesian inference process.

Used in this way, the CRP enforces popularity-based clustering to partition observations, so

that the agent will be most likely to reuse those tasks that have been most popular across dispa-

rate contexts (as opposed to across experiences; [4]), and has the attractive property of being a

non-parametric model that grows with the data [19]. Consequently, it is not necessary to know

the number of partitions a priori and the CRP will tend to parsimoniously favor a smaller

number of partitions.

As in prior work, we model generalization as the process of inferring the assignment of con-

texts k = {c1:n} into clusters that share common task statistics. But here, we decompose these

task statistics to consider the possibility that that all contexts c 2 k share either the same reward

function and/or mapping function, such that Rk(x, A) = Rc(x, A) 8 c 2 k and/or ϕk(a, A) = ϕc(a,

A) 8 c 2 k. (We return to the “and/or” distinction, which affects whether clustering is indepen-

dent or joint across reward and mapping functions, in the following section). Formally, we

define generalization as the inference

Prðc 2 kjDÞ / PrðDjkÞPrðc 2 kÞ ð4Þ

where PrðDjkÞ is the likelihood of the observed data D given cluster k, and Pr(c 2 k) is a prior

over the clustering assignment. As in previous models of generalization, we use the CRP as the

cluster prior. If contexts {c1:n} are clustered into N� n clusters, then the prior probability for

any new context cn+1 =2 {c1:n} is:

Prðctþ1 2 kjc1:nÞ ¼

Nk

N þ a
if k � Kn

a

N þ a
if k ¼ Kn þ 1

8
>><

>>:

ð5Þ

where Nk is the number of contexts associated with cluster k and Kn is the number of unique

clusters associated with the n observed contexts. If k� Kn, then k is a previously encountered

cluster, whereas if k = Kn + 1, then k is a new cluster. The parameter α governs the propensity

to assign a new context to a new cluster, that is to create a new task. Higher values of α lead to

a greater prior probability that a new cluster is created and favors a more expanded task space
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overall, leading to reduced likelihood of reusing old tasks. Thus, the prior probability that a

new context is assigned to an old cluster is proportional to the number of contexts in that clus-

ter (popularity), and the probability that it is assigned to a new cluster is proportional to α. As

a non-parametric generative process, the prior allows the number of clusters to grow as new

contexts are observed. This process is exchangeable, and as such, the order of observation does

not alter the inference of the agent [19], though approximate inference algorithms can induce

order effects.

Independent and joint clustering

As we noted above, there are two key functions the agent learns when navigating in a context:

ϕc(a, A) and Rc(x, A). These functions imply that the agent could cluster ϕc(a, A) and Rc(x, A)

jointly, or it could cluster them independently, such that it learns the popularity of each mar-

ginalizing over the other. Formally, the independent clustering agent (Fig 1, left) assigns each

context c into two clusters via Bayesian inference as in (Eq 4) and using the CRP prior for each

Fig 1. Schematic example of independent and joint clustering agents. Top Left: The independent clustering agent

groups each context into two clusters, associated with a reward (R) and mapping (ϕ) function, respectively. Planning

involves combining these functions to generate a policy. The clustering prior induces a parsimony bias such that new

contexts are more likely to be assigned to more popular clusters. Arrows denote assignment of context into clusters

and creation of policies from component functions. Top Right: The joint clustering agent assigns each context into a

cluster linked to both functions (i.e., assumes a holistic task structure), and hence the policy is determined by this

cluster assignment. In this example, both agents generate the same two policies for the three contexts but the

independent clustering agent generalizes the reward function across all three contexts. Bottom: An example mapping

(left) and reward function (right) for a gridworld task.

https://doi.org/10.1371/journal.pcbi.1006116.g001
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cluster (Eq 5). The likelihood function for the two assignments are the mapping and reward

functions

LðDjk�Þ ¼ �kða;AÞ ð6Þ

and

LðDjkRÞ ¼ Rkðx;AÞ; ð7Þ

respectively. Conversely, the joint clustering agent (Fig 1, right) assigns each context c into a

single cluster k via Bayesian inference (Eq 4) and, like the independent clustering agent, uses

the CRP as the prior over assignments (Eq 5). The likelihood function for the context-cluster

assignment is the product of the mapping and reward functions

LðDjkÞ ¼ �kða;AÞRkðx;AÞ ð8Þ

The joint clustering agent is highly similar to previous non-compositional models of task

structure learning and generalization, which have previously been shown to account for

human behavior (but without specifically assessing the compositionality issue) [3, 4]. For the

purpose of comparison with the independent clustering agent, here the joint clustering agent

separately learns the functions R and ϕ. Previous models, in contrast, have learned model-free

policies directly. In the general case, joint clustering does not require the separate representa-

tion of policy components (R and ϕ) nor does it require a binding operation in the form of

planning. However, independent clustering does require the separate representation of policy

components that must be bound via planning. Hence, one potential difference between the

two approaches is algorithmic complexity, where joint clustering may permit a less complex

and computationally costly learning algorithm than independent clustering. In the simulations

below, we have equated the agents for algorithmic complexity and examine how inferring the

reward and transition functions separately or together affect performance across task domains.

Results

We first consider two minimal sets of simulations to illustrate the complementary advantages

afforded by the two sorts of clustering agents depending on the statistics of the task domain,

using a common set of parameters. A third simulation explores how the benefits of composi-

tional clustering can compound in a modified form of the Rooms problems previously used to

motivate hierarchical RL approaches [20, 21]. We show that our independent clustering model

with hierarchical decomposition of the state space can facilitate more rapid transfer than that

afforded by standard approaches. Finally, we conduct an information theoretic analysis to for-

malize the more general conditions under which each scheme is more beneficial. Code for all

of the simulations presented here have been made available in our GitHub repository: https://

github.com/nicktfranklin/IndependentClusters.

Simulation 1: Independence of task statistics

In the first set of simulations, we simulated a task domain in which four contexts involving dif-

ferent combinations of reward and transition functions. In every trial, a “goal” location was

hidden in a 6x6 grid world. Agents were randomly placed in the grid world and explored

action selection until the goal was reached, at which point the trial ended and the next trial

began, with the agent again randomized to a new location. The agent’s task is to find the goal

location (encoded as +1 reward for finding the goal and a 0 reward otherwise) as quickly as

possible. The agents had a set of eight actions available to them A ¼ fa1; :::a8g, which could

Compositional clustering in task structure learning
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be mapped onto one of four cardinal movements Acard ¼ fNorth; South;East;Westg. The

agents were exposed to four trials, in which goal locations and mappings were stationary, for

each context. Each of the four contexts had a unique combination of one of two goal locations

and one of two mappings (Fig 2A), and hence knowledge about the reward function or map-

ping function for any context was not informative about the other function. However, because

the reward and mapping functions were each common across two contexts, the independent

clustering agent can leverage the structure to improve generalization without being bound to

the joint distribution of mappings and rewards.

In addition to the independent and joint clustering agents, for comparison, we also simu-

lated a “flat” (non-hierarchical decomposition of “context” and “state”) agent that does not

cluster contexts at all and hence has to learn anew in each context. (The flat agent is a special

case of both the independent and joint clustering agents such that ki = {ci} 8 i). We used

hypothesis-based inference, where each hypothesis comprised a proposal assignment of con-

texts in to clusters, h: c 2 k, defined generatively, such that when a new context is encountered

the hypothesis space is augmented. For each hypothesis, maximum likelihood estimation was

used to generate the estimates �̂kða;AÞ ¼ P̂rðAja; kÞ and R̂kðxÞ ¼ P̂rðrjxÞ. To encourage opti-

mistic exploration, R̂kðxÞ was initialized to the maximum observable reward (Pr(r|x) = 1) with

a low confidence prior using a conjugate beta distribution of Beta(0.01, 0).

The belief distribution over the hypothesis space is defined by the posterior probability

of the clustering assignments (Eq 4). Calculating the posterior distribution over the full

Fig 2. Simulation 1. A: Schematic representation of the task domain. Four contexts (blue circles) were simulated, each paired with a unique

combination of one of two goal locations (reward functions) and one of two mappings. B: Number of steps taken by each agent shown across trials

within a single context (left) and over all trials (right). Fewer steps reflect better performance. C: KL-divergence of the models’ estimates of the reward

(left) and mapping (right) functions as a function of time. Lower KL-divergence represents better function estimates. Time shown as the number of

trials in a context (left) and the number of steps in a context collapsed across trials (right) for clarity.

https://doi.org/10.1371/journal.pcbi.1006116.g002
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hypothesis space is computationally intractable, as the size of the hypothesis space grows

combinatorially with the number of contexts. As an approximation, we pruned hypotheses

with small probability (less than 1/10x posterior probability of the maximum a posteriori
(MAP) hypothesis) from the hypothesis space. We further approximated the inference prob-

lem by using the MAP hypothesis, rather than sampling from the entire distribution, during

action selection [3, 22]. Value iteration was used to solve the system of equations defined by

(Eq 3) using the values of �̂kða;AÞ and R̂kðxÞ associated with the MAP hypothesis(es). A state-

action value function, defined here in terms of cardinal movements

Q̂kðx;AÞ ¼ R̂kðx;AÞ þ g
X

x02X

Tðx;A; x0ÞV̂ kðx
0Þ ð9Þ

was used with a softmax action selection policy to select cardinal movements:

PrðAjx; kÞ ¼
ebQ̂kða;AÞ

P
A2Acard

ebQ̂kða;AÞ
ð10Þ

where β is an inverse temperature parameter that determines the tendency of the agents to

exploit the highest estimated valued actions or to explore. Lower level primitive actions

(needed to obtain the desired cardinal movement) were sampled using the mapping function:

Prðajx; kÞ ¼
X

A2Acard

�̂kða;AÞPrðAjx; kÞ ð11Þ

We first simulated the independent and joint clustering agents as well as the flat agent on 150

random task domains using the parameter values γ = 0.75, β = 5.0 and α = 1.0 (below we con-

sider a more general parameter-independent analysis). Each of the four contexts was repeated

4 times for a total of 16 trials. The independent clustering agent completed the task more

quickly than either other agent, completing all trials in an average of 205.2 (s = 20.2) steps in

comparison to 267.4 (s = 22.4) and 263.5 (s = 17.4) steps for the joint clustering and flat agents,

respectively (Fig 2B). (We confirmed here and elsewhere that these differences were highly sig-

nificant (e.g., here, the relevant comparisons are a minimum of p< 1e−77)). Repeating these

simulations with agents required to estimate the full transition function (instead of just the

mapping function) led to the same pattern of results, with the independent clustering agent

completing the tasks in fewer steps than either the joint clustering or flat agents (S1 Text,

S1 Fig).

In this case, the performance advantage of independent clustering is largely driven by faster

learning of the reward function, as indexed by the KL-divergence between the agents’ estimates

of the reward function compared to a flat learner (Fig 2C, left). In contrast, both joint and

independent clustering show generalization benefit when learning the mapping function (Fig

2C, right). This difference reflects an information asymmetry: in a new context, more informa-

tion is available earlier to an agent about the mappings than the rewards, given that the latter

are largely experienced when reaching a goal. (For example, in these environments, the first

action in a novel context yields 2 bits of information about the mappings and an average of

0.07 bits of information about the rewards). As a consequence of this asymmetry, observing an

element of a mapping can facilitate generalization of the rest of the mapping via the likelihood

function, whereas observing unrewarded squares in the grid world tells the agent little about

the location of rewarded squares.

In sum, as expected, independent clustering exhibited advantages over joint clustering in a

task environment for which the transition and reward functions were orthogonally linked

across contexts.

Compositional clustering in task structure learning
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Simulation 2: Dependence in task statistics

We next simulated all three agents on separate task domain in which there was a discoverable

relationship between the reward and mapping functions across contexts, such that knowledge

about one function is informative about the other. There were with four orthogonal reward

functions and four orthogonal mappings across eight contexts, with each pairing of a reward

and mapping function repeated across two contexts, permitting generalization (Fig 3A). As

before, 150 random task domains were simulated for each model using the parameter values

γ = 0.75, β = 5.0 and α = 1.0. Each of the eight contexts was repeated 4 times for a total of 32 tri-

als. In these simulations, both clustering agents show a generalization benefit, completing the

task more quickly than the flat agent (Fig 3B). The joint clustering agent showed the largest

generalization benefit, completing all trials in average of 384.2 (s = 23.6) steps in comparison

to 441.5 (s = 33.4) for the independent clustering agent and 526.0 (s = 26.4) steps for the flat

agents. Again, these differences were highly significant and the agents that estimated the full

transition function displayed the same pattern of results (S1 Text, S1 Fig).

As is the previous simulations, the differences in performance between the clustering agents

was largely driven by learning of the reward function. Both the independent and joint cluster-

ing agents had similar estimates of mapping functions across time (Fig 3C, right) whereas the

independent clustering agent uniquely shows an initial deficit in generalization of the reward

function, as measured by KL divergence in the first trial in a context (Fig 3C, left). The differ-

ence in performance between the two clustering models largely occurs for the first trial in a

new in a new context, during which time the joint clustering agent had a better estimate of the

Fig 3. Simulation 2. A: Schematic representation of the second task domain. Eight contexts (blue circles) were simulated, each paired with a

combination of one of four orthogonal reward functions and one of four mappings, such that each pairing was repeated across two contexts, providing

a discoverable relationship. B: Number of steps taken by each agent shown across trials within a single context (left) and over all trials (right). C: KL-

divergence of the models’ estimates of the reward (left) and mapping (right) functions as a function of time.

https://doi.org/10.1371/journal.pcbi.1006116.g003
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reward function. As before, this reflects an information asymmetry between mappings and

rewards.

Simulation 3: Compounding effects in the “diabolical rooms” problem

Generalization is almost synonymous with a reduction of exploration costs: if an agent gener-

alizes effectively, it can determine a suitable policy without fully exploring a new context. In

the above simulations, exploration costs were uniform across all contexts. But in real world sit-

uations, the cost of exploring can compound as a person progresses through a task. Explora-

tion can become more costly as resources get scarce: for example, on a long drive it is far more

costly to drive around looking for a gas station with an empty tank than with a full one because

running out of gas is more likely. Likewise, in a video game where taking a wrong action can

mean starting over, it is more costly for an RL agent to randomly explore near the end of the

game than at the beginning. Thus, the benefits and costs of generalization can compound in

task with a sequential structure over multiple subgoals in ways that are not often apparent in a

more restricted task domain. Here, we consider a set of task domains in which each context

has a different exploration cost, which increases across time.

We define a modified ‘rooms’ problem as a task domain in which an agent has to navigate a

series of rooms (individual grid worlds) to reach a goal location in the last room (Fig 4A). In

each room, the agent must choose one of three doors, one of which will advance the agent to

the next room, whereas the other two doors will return the agent to the starting position of the

Fig 4. “Diabolic rooms problem”. A: Schamatic diagram of rooms problem. Agents enter a room and choose a door to navigate to the next room.

Choosing the correct door (green) leads to the next room while choosing the other two doors leads to the start of the task. The agent learns three

mappings across rooms B: Distribution of steps taken to solve the task by the three agents (left) and median of the distributions (right). C,D: Regression

of the number of steps to complete the task as a function of grid area (C) and the number of rooms in the task (D) for the joint and independent

clustering agents.

https://doi.org/10.1371/journal.pcbi.1006116.g004
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very first room (hence the ‘diabolical’ descriptor). Additionally, the mappings that link actions

to cardinal movements can vary from room to room, such that the agent has to discover this

mapping function separately from the location of the reward (goal door). All of the rooms are

visited in order such that if an agent chooses a door that returns it to the starting location, it

will need to visit each room before it can explore a new door. Consequently, the cost of explor-

ing a door in a new room increases with each newly encountered room.

Botvinick et al. [21] have previously used the original ‘rooms’ problem introduced by Sut-

ton et al. [20] to motivate the benefit of the “options” hierarchical RL framework as a method

of reducing computational steps. However, in the traditional options framework, there is no

method for reusing options across different parts of the state-space (for example, from room

to room). Each option needs to be independently defined for the portion of the state-space it

covers. In contrast, hierarchical clustering agents that decompose the state space can facilitate

generalization in the rooms problem by reusing task structures when appropriate [3]. How-

ever, because it was a joint clustering agent, this previous work would not allow for separate

re-use of mapping and reward functions.

In this new, diabolical, variant of the rooms problem, we have afforded the opportunity for

reuse of subgoals across rooms, but have modified the task not only to allow for different map-

ping functions, but where there is a large cost when the appropriately learned subgoal (choos-

ing the correct door) is not reused, and where this cost is varied parametrically by changing

the size or number of the rooms. The rooms problem here is qualitatively similar to the “RAM

combination-lock environments” used by Leffler and colleagues [9] to show that organizing

states into classes with reusable properties (analogous to clusters presented in the present

work) can drastically reduce exploration costs. In the RAM combination-lock environments,

agents navigated through a linear series of states, in which one action would take agents to the

next state, another to a goal state, and all others back to the start. The rooms task environment

presented here is highly similar but allows us to vary the cost of exploring each room paramet-

rically by varying its size.

We simulated an independent clustering agent, a joint clustering agent, and a flat agent on

a series of rooms problems with the parameters α = 1.0, γ = 0.80 and β = 5.0. Each room was

represented as a new context (for example, to simulate differences in surface features). There

were three doors in the corners of the room, and the same door advanced the agent to the next

room for every room (for simplicity, but without loss of generality—i.e., the same conclusions

apply if the rewarded door would change across contexts). Agents received a binary reward for

selecting the door that advanced to the next room.

In the first set of simulations, we simulated the agents in 6 rooms, each comprising a 6x6

grid world, with three mappings ϕc 2 {ϕ1, ϕ2, ϕ3}, each repeated once. Because the cost of

exploration compounds as an agent progresses through a task, the ordering of the rooms

affects the exploration costs. For simplicity, we simulated a fixed order of the mappings

encountered by rooms, defined by the sequence Xϕ = ϕ1ϕ1ϕ2ϕ2ϕ3ϕ3. In this task domain,

independent clustering performed the best with both clustering agents show a generalization

benefit as compared to the flat agent (Fig 4B), with the flat agent completing the task in

approximately 1.9x and 4.5x more total steps than joint and independent clustering,

respectively.

We further explored how these exploration costs change parametrically with the geometry

of the environment. First, we varied the dimensions of each room from 3x3 to 12x12. While

both clustering models show increased exploration costs as the area of the grid world increases,

the exploration costs for the joint clustering model grow at a faster exponential rate than the

independent clustering model (Fig 4C). Similarly, we can increase the exploration costs by

increasing the number of rooms in the task domain. We varied the number of rooms in the
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rooms in the task domain from 3 to 27 in increments of three. As before, the same door in all

rooms advanced the agent and three mappings were repeated across the rooms. The order of

the mappings encountered is defined by the sequence X� ¼ �
ðkÞ
1
�
ðkÞ
2
�
ðkÞ
3

for k 2 f1; 2; :::; 9g,
where k is the number of times a mapping is repeated. Again, both clustering agents experience

an increased cost of exploration as the number of rooms increases, but the cost of exploration

increases at a faster linear rate for the joint clustering agent than the independent clustering

agent (Fig 4D).

Thus, in environments where the benefits of generalization compound across time, differ-

ence between strategies can be dramatic. Here, we have simulated an environment in which

independent clustering leads to better generalization than joint clustering but we could equiva-

lently create an example in which joint clustering leads to better performance (for example,

joint clustering would do better if each mapping uniquely predicted the correct door). Conse-

quently, any fixed strategy has the potential to face an exploration costs that grows exponen-

tially with the complexity of the task domain.

Information theoretic analysis

Thus far, we have examined the performance of hierarchical clustering variants in specific situ-

ations in order to demonstrate a tradeoff between strategies. However, while these examples

are illustrative, they impose strong assumptions about the task domain, the agents’ knowledge

of its structure, exploration policies and planning. In contrast, we are more concerned with the

suitability of generalization across ecological environments, rather than the specific task

domains we have simulated and the assumptions of planning and exploration.

To make a more general normative claim, it is desirable to abstract away the implementa-

tion and strictly address the normative basis of context-popularity based clustering as a gener-

alization algorithm by itself. While addressing optimality requires knowledge of the generative

process of ecological environments, which is beyond the scope of the current work, we can

more formally and generally assess when, and under what conditions, each of the clustering

models might be more suitable than the other.

To do so, we can frame generalization as a classification problem and quantify how well an

agent correctly identifies the cluster in which a context belongs without regard to learning the

associated task statistics. This simplifying assumption allows us to examine the CRP as a mech-

anism for generalization and abstracts away the effect of the likelihood function on generaliza-

tion. Let k 2 K be a cluster associated with a Markov decision problem and let context c 2 C
be a context experienced by the agent. Given a history of experienced contexts and associated

clusters {c1:n, k1:m}, we cast the problem of generalization as learning the classification function

k = f(c) that minimizes the risk of misclassification. (Misclassification risk here is loosely

defined: some misclassification errors are worse than others and misidentifying a cluster, and

consequently, its MDP, may or may not result in a poor policy if the underlying MDPs are suf-

ficiently similar. As such, the loss function in ecological settings can be a highly non-linear,

domain specific function, as we demonstrate with the diabolical rooms problem.)

More formally, we define risk as the expectation E½Lðp; f Þ�, where L(p, f) is the loss function

for misclassification and p is the generative distribution over new contexts p = Pr(k|ct+1). For

our purposes here, we will abstract away domain specificity in the loss function L(p, f). Because

the CRP is a probability distribution, a reasonable domain-independent loss function is the

information gain between the CRP’s estimate of the probability of k and the realized outcome,

or

Lðp; f Þ ¼ � log
2
qK ð12Þ
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where qk is the CRP’s estimate of the probability of the observed cluster k in context c. The mis-

classification risk is thus the cross entropy between the CRP and the generative distribution:

E½Lðp; f Þ� ¼ Ep½� log
2
q� ¼ Hðp; qÞ ð13Þ

Thus, by casting generalization as classification and assuming information gain as a

domain-general loss function, we are in effect evaluating the degree to which the CRP esti-

mates the generative distribution. Risk is minimized when q = p, that is, when the CRP per-

fectly estimates the generative process. There is no upper bound to poor performance, but in

many task domains it is possible to make a naïve guess over the space of clusters (for example,

a uniform distribution over a known set of clusters). Because any useful generalization model

will be better than a naïve guess, we can evaluate whether the CRP will lead to lower informa-

tion gain than a naïve estimate in different task domains as a function of their statistics. We

consider this more quantitatively in the appendix (S2 Text), but the result is intuitive: overall,

the CRP will facilitate generalization when the generalization process is more predictable (less

entropic) and the CRP can lead to worse than chance performance in sufficiently unpredict-

able domains (S2 Fig).

Independent vs joint clustering. A question of primary interest is under what conditions

is it better to cluster aspects of the task structure (such as reward functions and transition or

mapping functions) independently or jointly. To do so, we rely on the assumption that a

reward function is typically substantially sparser than a transition function: as an agent inter-

acts with a task it will gain more information about the transition function early in the task

than it will about the reward function (unless the environment is very rich with rewards at

most locations, in which case any random agent would perform well).

Consequently, for an agent that clusters rewards and transitions together, the information

gained about transitions will dominate the likelihood function, such that the inference of

rewards can be thought of as approximately conditional on knowledge of the transition struc-

ture. Conversely, an agent that clusters rewards and transition independently will not consider

the mapping information when it predicts the reward function. Thus, we can compare the two

agents by evaluating the consequences of clustering rewards conditional on transitions as com-

pared to clustering rewards independent of transitions. Formally, we can consider the compar-

ison of independent and joint clustering as the comparison between two different classifiers,

R = f(c) and R = f(c, T), one of which classifies reward functions solely as a function of contexts

and the other as a function of contexts and observed transition statistics.

Interestingly, this approximation leads to the conclusion that independent clustering is a

simpler statistical model than joint clustering. Estimating a marginal distribution is a simpler

statistical problem than estimating its composing set of conditional distributions. As such, we

might expect a tradeoff where independent clustering provides better generalization with little

experience whereas joint clustering provides better generalization asymptotically. We can eval-

uate the latter claim by noting that given random variables R and T, H(R|T)�H(R). This state-

ment implies that given a known joint distribution between two random variables, knowledge

of one of the random variables cannot increase the uncertainty of the other; an agent can sim-

ply learn when there is no relation between the two, in which case the joint distribution doesn’t

hurt. Intuitively, this claim is based on the notion that more information is always better (or at

least, no worse) in the long run.

Note that this relationship is only guaranteed if the true generative process is known and as

such, experience in the task domain plays an important role. As we discuss in the following

section, there needs to be sufficient experience to determine whether the joint distribution is

useful or not (and in fact, assuming conditional dependence when there is no such relationship
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can slow down learning dramatically). Nonetheless, the CRP prior will converge asymptoti-

cally on the conditional and marginal distributions, Pr(R|T) and Pr(R), for the joint and inde-

pendent clustering agents, respectively. If we consider the CRP to be an estimator, we can

define its bias as

Biasp q½ � � Ep q½ � � p ¼
� a

aþ Nc
ð14Þ

where Nc is the total number of contexts observed and α is the concentration parameter gov-

erning new clusters. Asymptotically, the CRP is unbiased as limNc!1
Biasp[q] = 0 and the CRP

converges to the generative distribution. As a consequence, joint clustering has lower informa-

tion gain than independent clustering asymptotically as the CRP for a joint clustering agent

will converge to the conditional distribution Pr(R|T) whereas the CRP for an independent

clustering agent will converge to the marginal distribution Pr(R).

Mutual information. As alluded to above, that joint clustering is guaranteed to produce a

better estimate is only true as Nc!1 whereas here we are concerned with task domains in

which an agent has little experience. Intuitively, we might expect independent clustering to be

favorable in task domains where there is no relationship between transitions and rewards.

Conversely, we might expect joint clustering to be more favorable when there is relationship

between transition and rewards. While we considered two extremes of these cases in simula-

tions 1 and 2, we can also vary the relationship parametrically. Formally, we can consider the

relationship between transitions and rewards with mutual information. Let each context c be

associated with a reward function R 2 R and a transition function T 2 T and let Pr(R, T) be

the joint distribution of R and T in unobserved contexts. The mutual information between R
and T is defined

IðR;TÞ ¼
X

R2R;T2T

PrðR;TÞlog
2

PrðR;TÞ
PrðRÞPrðTÞ ð15Þ

Mutual information represents the degree to which knowledge of either variable reduces the

uncertainty (entropy) of the other, and can be used as a metric of the degree to which a task

environment should be considered independent or not. As such, it satisfies 0� I(R;T)�min

(H(R), H(T))

To evaluate how mutual information affects the relative performance of independent and

joint clustering, we constructed a series of task domains that allow us to monotonically

increase I(R;T) by with a single parameter m while holding all else constant. We define

R ¼ fA;Bg and T ¼ f1; 2g and we define two sequences XR and XT such that XR
i and XT

i are

the reward and transition function for context ci. We define the sequence XR = A(2n)B(2n),

where A(k) refers to a k repeats of A, and the sequence XT = 1(n+m)2(2n)1(n−m), where 1(k)

refers to k repeats of 1. To provide a concrete example, if n = 2 and m = 0, the sequence XR =

AAAABBBB and the sequence XT = 11222211. Similarity, if n = 2 and m = 2, then the sequence

XR is unchanged while XT is now 11112222. Critically, these sequences have the property that I
(R;T) = 0 if and only if m = 0 and that I(R;T) monotonically increases with m. In other words,

the residual uncertainty of R given T, H(R|T), declines as a function of m. This allows us to

vary I(R;T) independently of all other factors by changing the value of m.

We evaluated the relative performance of the independent and joint clustering agents by

using the CRP to predict the sequence XR, either independent of XT (modeling independent

clustering), or conditionally dependent on XT (modeling joint clustering) for values of n = 5

and m = [0, 5]. For these simulations, we first assume both sequences XR and XT are noiseless,

but below we show that noise parametrically affects these conclusions. For low values of m
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(m� 2), independent clustering provides a larger generalization benefit (Fig 5, left). This

has the intuitive explanation that as the features of the domain becomes more independent,

independent clustering provides better generalization. Importantly, there are cases in which

independent clustering provides a better evidence even thought there is non-zero mutual

information [0 < I(R; T)≲ 0.2bits].

Noise in observation of transition functions. Above, we assumed that transition func-

tions were fully observable with no uncertainty. But in many real-world scenarios, the relevant

state variables are only partially observable and the transition functions may be stochastic. In

this section, we therefore relax this noiseless assumption to characterize the effect of noisy

observations on inference and generalization. As before, we model generalization as the degree

of predictability of XR
iþ1

given XR
1:i either independent of XT (independent clustering) or condi-

tionally on XT (joint clustering).

We first construct reward and transition sequences in which knowledge of the transition

function completely reduces the uncertainty about the reward function (I(R;T) = H(R), and

hence H(R|T) = 0). Consider XR = A(20)BCD and XT = 1(20)234, where A(20) and 1(20) refer to 20

repeats of A and 1, respectively. As such, we would expect joint clustering to produce better

generalization than independent clustering if observations are noiseless. To simulate noise /

partial observability, we assume each observation of XT
i is mis-identified as some new function

T� =2 {1, 2, 3, 4} with some probability. Importantly, this simulation has the desideratum that

noise does not affect I(R;T) or H(R) themselves (the true generative functions). We compare

the inference of XR independent of XT (modeling independent clustering) or conditionally

dependent on XT (modeling joint clustering) for various noise levels σ = [0, 1.0]. When noise is

sufficiently high (σ> 0.71), independent clustering produces a better estimate of XR than joint

clustering (Fig 5, right, green line) even for this extreme case where the two functions have per-

fect mutual information.

Next, we assessed how mutual information and noise interact by decreasing the correspon-

dence of the sequences. As noted above, in the sequences used above (XR = A(20)BCD and

Fig 5. Performance of independent vs. joint clustering in predicting a sequence XR, measured in bits of

information gained by observation of each item. Left: Relative performance of independent clustering over joint

clustering as a function of mutual information between the rewards and transitions. Right: Noise in observation of XT

sequences parametrically increases advantage for independent clustering. Green line shows relative performance in

sequences with no residual uncertainty in R given T (perfect correspondence), orange line shows relative performance

for a sequence with residual uncertainty H(R|T)> 0bits.

https://doi.org/10.1371/journal.pcbi.1006116.g005
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XT = 1(20)234), there is no residual uncertainty of R given T. We can decrease the correspon-

dence between the two sequences by shifting XT by one to XT
new ¼ 1ð19Þ2341, and thus decrease

the mutual information [I(XR;XT)� 0.77; IðXR;XT
newÞ � 0:52]. As we have previously noted,

this decline in mutual information reduces the benefit of joint clustering, ceteris paribus. None-

theless, there is still a strong relationship between rewards and transition that can be leveraged

by joint clustering.

Simulating independent and joint clustering on these new sequences as a function of σ = [0,

1.0] reveals a lower level of noise needed to see a benefit of independent clustering (Fig 5,

right). As expected, joint clustering provides a better estimate in the no-noise case, as well as

for low noise levels (σ< 0.33), as it can take advantage of the shared structure, while indepen-

dent clustering results in a better estimate for larger noise levels. Importantly, these effect are

cumulative; in ecological settings where observations are noisy and there is only weak mutual

information, independent clustering will likely provide a better estimate of the prior over

rewards.

Meta-agent

Given that the optimality of each fixed strategy varies as a function of the statistics of the task

domain, a natural question is whether a single agent could optimize its choice of strategy effec-

tively by somehow tracking those statistics. In other words, can an agent infer whether the

overall statistics are more indicative of a joint or independent structure and capitalize accord-

ingly? Here, we address this question by implementing a meta-agent that infers the correct pol-

icy across the two strategies (below we also consider a simple model-free RL heuristic for

arbitrating between agents, which produces qualitatively similar results).

For any given fixed strategy, the optimal policy maximizes the expected discounted future

rewards and is defined by Eq 1. Let p�m be the optimal policy for model m. We are interested in

whether p�m is the global optimal policy π�, which we can define probabilistically as

Prðp�m ¼ p�Þ ¼ Prðp�m ¼ p�jmÞPrðmjDÞ ð16Þ

¼ PrðmjDÞ ð17Þ

where PrðmjDÞ is the Bayesian model evidence and where Prðp�m ¼ p�jmÞ � 1. The Bayesian

model evidence is, as usual,

PrðmjDÞ ¼
1

Z
PrðDjmÞPrðmÞ ð18Þ

where PrðDjmÞ is the likelihood of observations under the model, Pr(m) is the prior over mod-

els and Z is the normalizing constant. The likelihood function for the independent and joint

clustering models is the product of the mapping and reward functions (as defined condition-

ally for a cluster in Eqs 6, 7 and 8). However, estimates of the mapping function is highly simi-

lar for both models (Figs 2C and 3C). Thus, as a simplifying assumption, we can approximate

the model evidence with how well each model predicts reward:

PrðmjDÞ �
1

Z

Y1

t¼1

PrðrtjmÞ

 !

PrðmÞ ð19Þ

where rt is the reward collected at time t. Independent and joint clustering can be interpreted

as special cases of this meta-learning agent with the strong prior Pr(m) = 1. Under a uniform
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prior over the models, this strategy reduces to choosing the agent based on how well it predicts

reward, an approach repeatedly used in meta-learning agents [3, 23, 24].

We simulated the meta-learning agent with a uniform prior over the two models and used

Thompson sampling [25] to sample a policy from joint and independent clustering at the

beginning of each trial (Fig 6A). In the first task domain, where independent clustering results

in better performance than joint clustering, the performance of the meta-agent more closely

matched the performance of the independent clustering agent (Fig 6B). The meta-agent com-

pleted the task in an average of 235.2 (s = 35.3) steps compared to 205.2 (s = 20.2) and 267.5

(s = 22.4) steps for the independent and joint clustering agents. In addition, the meta-agent

became more likely to choose the policy of the independent clustering agent over time (Fig

6D). In the second task domain, where joint clustering outperformed independent clustering,

the meta-agent completed the task in an average of 417.5 (s = 42.0) steps compared to an aver-

age of 384.2 (s = 21.2) and 441.6 (s = 35.9) steps for the joint and independent clustering

agents, respectively. Likewise, overtime the meta-agent was more likely to choose the policy of

the joint clustering agent (Fig 6E).

A computationally simple approximation to estimating the model responsibilities is to

select agents as a function of their estimated value. In this approximation, a reward prediction

error learning rule estimates the value for each model, Qm, according to the updating rule:

Qm  Qm þ Zðrt � r̂ t;mÞ ð20Þ

where η is a learning rate and r̂ t;m is the reward predicted by the model at time t. These values

Fig 6. Meta-agent. A: On each trial, the meta-agent samples the policy of joint or independent actor based on model evidence for each

strategy. Both agents, and their model evidences, are updated at each time step. B: Overall performance of independent, joint and meta

agents on simulation 1 C: Overall performance of independent, joint and meta agents on simulation 2 D,E: Probability of the selecting the

policy joint clustering over time in simulation 1 (D) and simulation 2 (E).

https://doi.org/10.1371/journal.pcbi.1006116.g006

Compositional clustering in task structure learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006116 April 19, 2018 18 / 25

https://doi.org/10.1371/journal.pcbi.1006116.g006
https://doi.org/10.1371/journal.pcbi.1006116


can be used to sample the models via a softmax decision rule

m �
1

Z
expfbQmg ð21Þ

Simulation with this arbitration strategy with the parameter values β = 5.0, η = 0.2 led to a

qualitatively similar pattern of results. Performance in both simulations 1 and 2 were not dis-

tinguishable from the Bayesian meta agent, with the agent completing simulation 1 in 237.2

(s = 41.2) steps as compared to the 235.2 (s = 35.3) found for the Bayesian implementation

(p< 0.65) and completing simulation 2 in 418.7 (s = 45.9) steps as compared to 417.5

(s = 42.0) steps for the Bayesian agent (p< .81).

Thus, while for both inference and RL versions, the meta-agent did not equal the perfor-

mance of the best agent in either environment, it outperformed the worse of the two agents in

both environments. Normatively, this is a useful property if an agent cares about minimizing

the worst possible outcome across unknown task domains (as opposed to maximizing their

performance within a single domain), similar to a minimax decision rule in decision theory

[26]. This can be advantageous if agent has little information about the distribution of task

domains and if the costs of choosing the wrong strategy are large as in the ‘diabolical rooms’

problem. Furthermore, while we have used a uniform prior over the two strategies, varying the

prior may result in a better strategy for a given set of task domains.

In our information theoretic analysis above, we showed that the task statistics determines

the normative strategy depending on which agent is more efficacious in reducing Bayesian sur-

prise about reward. The meta-learning agent capitalizes on this same intuition by using pre-

dicted rewards to arbitrate among strategies. More specifically, we argued that the normative

value of each strategy varies with mutual information between rewards and mappings. Thus,

we assessed whether the the meta-learning agent is also sensitive to mutual information, with-

out calculating it directly, and hence be more likely to choose joint clustering when the mutual

information is higher.

In simulations 1 and 2 above, we calculated the mutual information each time a new con-

text was added and used this to predict the probability of selecting the joint agent at the end of

that trial. Specifically, we define

IðR; FjDÞ ¼ HðPrðRjDÞÞ � HðPrðRj� ¼ �k;DÞÞ ð22Þ

where PrðRjDÞÞ is the probability each location is rewarded across all contexts seen so far and

PrðRj� ¼ �k;DÞÞ is conditioned on the current mapping. Using logistic regression, we find

that IðR; FjDÞ positively correlates with the probability of selecting the joint agent across both

simulations, consistent with expectations [Simulation 1: β = 3.3, p< 0.003; Simulation 2: β =

9.4, p< 5 × 10−41].

Discussion

In this paper, we provide two alternative models of context-based clustering for the purpose of

generalization, a joint clustering agent generalizes reward and transition functions together

and an independent clustering agent that separately generalizes reward and transition func-

tions. These models are motivated by human learning and performance, which is thought to

be structured and compositional [27–29].

Generalization can be seen as a solution to a dimensionality problem. In real-world prob-

lems, perceptual space is typically high-dimensional. In order to learn a policy, agents need to

learn a mapping between the high-dimensional perceptual space and the effector space. Learn-

ing this mapping can require a large set of training data, perhaps much larger than a human
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would have access to [12, 21]. Clustering can reduce the dimensionality by projecting the per-

ceptual space onto a lower dimensional latent space in which multiple percepts share the same

latent representation. Thus, an agent does not need to learn a policy over the full state space

but over the lower dimensional latent space. This is an explicit assumption of the models pre-

sented here as well as in other clustering models of human generalization, allowing agents to

collapse across irrelevant features and preventing interference between stimulus-response

mappings across latent distinct rules [3, 23]. Related principles have been explored in lifelong

learning [6–8], object-based, and symbol-based approaches [11, 30–33].

Incorporating compositionality takes this argument further, as multiple policies often share

component features. For example, playing the saxophone involves the use of the same move-

ments to produce the same notes for different effect in different songs. Learning a policy as a

direct mapping from the low level effector space to reward values fails to take advantage of the

structure, even if that policy can be reused as a whole with another instrument. Thus, learning

at the component level as opposed to the policy level reduces a high-dimensional problem into

multiple lower-dimensional problems. While this adds the additional complexity of the choice

of a good set of component features, here we argue the Markov decision process provides a

natural decomposition into reward and transition functions. Importantly, this decomposition

of the task structure is not equivalent to a decomposition of the policy, which is itself depen-

dent on the joint reward and transition functions. Of course, other decompositions are also

possible and useful (and not mutually exclusive). For example, the state-outcome and action-

dependent state transition functions of the active inference framework can both be decom-

posed into “what” and “where” aspects [34, 35]. While these functions, analogous to reward

and transition functions, are linked by a shared latent state representation, this decomposition

facilitate generalization across states that share features.

Regardless of the choice of component features, a compositional generalization model

needs to make assumptions about the relationship between components. We argue here that

the proper choice depends on the generative structure, which as an empirical matter, is largely

unknown for the ecological environments faced by humans and artificial agents. As we dem-

onstrated in the grid-world simulations above, when there is a strong relationship between

components, an agent that assumes as much outperforms an agent that assumes no relation-

ship, and vice-versa (Figs 2 and 3). With sufficient (and stationary) experience, we might

expect a model that assumes a learnable relationship between components (joint clustering) to

perform better in new contexts, since assuming a potential relationship between goals and

mappings can be no worse asymptotically than assuming independence (i.e., the agent can

simply learn that the correlation is zero). Nonetheless, how much experience is sufficient for

joint clustering to provide a better model is difficult to define in general, and will depend on

the statistics of the relationships and the combinatorial explosion of the state space that arises.

Furthermore, noise or partial observability further complicates the picture: even when there is

exploitable mutual information, independent clustering can yield a better estimate when expe-

rience is limited (Fig 5).

Why is this the case? It may appear puzzling given the asymptotic assurances that joint clus-

tering will be no worse in stationary environments. Here, the comparison between classifica-

tion and generalization is instructive. We can think of joint clustering in terms of estimating a

joint distribution of the generative process and independent clustering in terms of estimating

the marginal distribution for each component independently (similar to a naïve Bayes classi-

fier). In this interpretation, independent clustering trades off an asymptotically worse estimate

of the generative process for lower variance, with a bias equal to the mutual information

between mappings and goals. In problems with limited experience, such as the type presented

here, a biased classifier will often perform better than an asymptotically more accurate
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estimator because misclassification risk is more sensitive to variance than bias [36]. Thus, by

ignoring the correlation structure and increasing the bias to generalize goals that are most pop-

ular overall, independent clustering may minimize its overall loss.

Intuitively, we can think of joint clustering as being potentially overly sensitive to noise.

While over infinite time it is always better to estimate the correlations between components, in

practice it may not be worth the cost of doing so. This happens when the correlations between

transitions and rewards is weak or difficult to determine. For a human learner, an example

might be the relationship between how hungry a person is and how heavy it is to carry a plate

of food from a buffet. Learning this relationship is guaranteed to be asymptotically better than

ignoring it but given the triviality of the benefit and the frequency of the context, it probably

isn’t worth the exploration cost.

Previous models of compositional generalization have attempted to decompose the space

of policies, rather than task structure, in to reusable pieces that can be re-executed [34, 37].

Because learned policies depend on both the reward and transition functions of a specific task,

this decomposition implicitly generalizes these two sources of information together, and thus

does not address the set of issues considered here (i.e., when the transition function is indepen-

dent of the reward function across contexts). The same issue applies to the options framework

and other hierarchical task representations [10, 32, 38–40]. As a consequence, reusing policy

components will cause the agent to explore regions of the state space that have had high reward

value in other contexts, which as we have shown may or may not be an adaptive strategy. For

example, successful generalization in the “diabolical rooms” problem presented here, and the

“finger sailing” task presented by Fermin and colleagues [14, 15], requires a separation of reward

from movement statistics. Indeed, the generalization of policy-dependent successor state repre-

sentations works well only under small deviations of the reward or transition function [10, 38,

39]. Thus, the choice of components should be influenced by the robustness to changes in the

reward and transition function, which will not necessarily linked to an individual policy.

From the perspective of human cognition, compositional representation provides the flexi-

bility to create novel policies in a novel domains in a rule-governed manner. This flexibility,

also known as systematicity or generativity, has long been thought to be a key feature of cogni-

tion [29, 41]. As Lake and colleagues note, a person can re-use the learned knowledge of the

structure of a task to accomplish an arbitrary number of goals, such as winning a specific num-

ber of points in a video game [12]. Strongly linking component properties may impede the

potential for systematicity by limiting the flexibility to recombine knowledge. As we have

argued above, recombining reward and transition information may be particularly valuable,

such that agents that can only generalize policies and reward-sensitive policy components may

lack systematicity.

An altogether different possibility is that a mix of strategies is appropriate. While we argue

that independent clustering is a simpler statistical problem than joint clustering, there are

clearly cases where joint clustering is advantageous. As noted before, generalization of succes-

sor-state representation partially links transitions and rewards and is nonetheless sufficiently

flexible to handle small deviations in policy [10, 38, 39]. Furthermore, joint clustering support

simpler algorithms, such as the form of temporal difference learning algorithms thought to

underlie human fronto-striatal learning [3, 42] as well as the proposed successor state repre-

sentations recently proposed to underlie hippocampal-based planning [38, 39, 43]. As we have

suggested with the meta-learning agent, trading off between joint and independent clustering

can reduce the risk of the decision problem.

Furthermore, it is not known what a human learner would typically consider to constitute a

higher order context variable separate from lower order state variables [3, 42]. Ecologically, the

number of contexts a human could potentially encounter is quite high, in which case they
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would be able to form a more accurate estimate of the correlation structure between compo-

nents over time. If this speculation is true, then one potential adaptive strategy would be to

assume a weak relationship between components early in learning and increasingly relying on

the correlation structure as the evidence supports it.

Thus, a hybrid system is supported by both computational and algorithmic considerations.

From the perspective of biological implementation, the inference required for context-cluster-

ing based generalization can be approximated by a hierarchical cortico-basal ganglia learning

system [3]. This framework could be extended to account for independent clustering by allow-

ing for multiple cortical clusters separately representing reward and mapping functions, each

of which is learnable by a neural network model [44]. Because joint clustering results in the

same policy generalized to each context in a cluster, joint clustering does not require separately

estimating the reward and transition functions and instead learned policies (such as stimulus-

action values) can be generalized directly. This can obviate planning, a challenge for any bio-

logical model of any model-based control. Nonetheless, multiple lines of research suggest

humans engage in model-based control [14, 15, 39, 45, 46] and human subjects can re-use

arbitrary action-movement mappings (highly similar to the ones proposed here) for model-

based control, suggesting a compositional representation potentially mediated by the dorsolat-

eral prefrontal cortex, dorsomedial striatum and cerebellum [14, 15].

Finally, while we have presented independent clustering as motivated by human capabilities

for generalization, the question of whether human learning is better accounted for by indepen-

dent or joint clustering, or a mixture of the two, remains an open question. While models are a

generalization of previous models used to account for human behavior [2–4], they make sepa-

rate testable predictions for human behavior. Joint clustering predicts that in a generalization

task, human subjects will use transition formation to infer the location of an unknown goal.

Independent clustering, in contrast, predicts human subjects will ignore transition informa-

tion when searching for goals, and ignore goals when inferring the transition function. By pro-

viding humans subjects an initial set of contexts where the popularity of reward function

varies across contexts as a function of the mapping, a novel set of test contexts can be chosen

to differentiate the model predictions. Future work will address these predictions and the

underlying brain mechanisms.

Supporting information

S1 Fig. A. Agents’ performance learning full transition function in Simulation 1. A, Left:
Cumulative number of steps taken by each model as a function of trials. Fewer steps represents

better performance. A, Right: Distribution of total number of steps required to complete the

task for each agent. B. Agents’ performance function in Simulation 2.

(TIF)

S2 Fig. Performance of the CRP as a function of task domain structure. Left: Relative infor-

mation gain of a naïve guess over the CRP as function of sequence entropy for a CRP with an

optimized alpha parameter (green) or fixed at α = 1.0. Right: Optimized alpha value (log scale)

as a function of sequence entropy.

(TIF)

S1 Text. Grid world simulations with unknown transition functions.

(PDF)

S2 Text. CRP performance as a function of task structure.
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