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The following information is included in the Supplementary Materials for this manuscript: 1) Data on patient 

and control performance in the transfer phase ;  2) A re-analysis of our previous probabilistic selection data 

(Waltz et al, 2007)1 analyzing group performance in relation to negative symptom sub-groups, 3) Details on 

the computational modeling methods and results. 

 

Re-Analysis of Probabilistic Selection Data 

We also re-analyzed our previous data on reinforcement learning in schizophrenia using a probabilistic 

selection task by looking at negative symptom sub-groups to determine whether our previous findings are 

consistent with those reported in the current manuscript.1  Negative symptom groups were determined using 

a median split on the sum of the SANS avolition and anhedonia items. Participants included 24 healthy 

controls, 16 low negative symptom patients (LNS), and 16 high negative symptom patients (HNS). One-way 

ANOVA indicated that the 3 groups significantly differed on Choose A performance (the most frequently 

rewarded stimulus), F (2, 53) = 7.67, p < 0.001; however, there were no differences among groups on Avoid 

B performance (the stimulus that was the least rewarding) , F (2, 53) = 0.37, p = 0.69. Post hoc LSD 

contrasts indicated that HNS patients chose A significantly less than LNS (p = 0.006) or HC (p < 0.001) 

subjects; however, there were no differences between HC and LNS (p = 0.46). These findings are consistent 

with a deficit in Go learning, but intact No Go learning , which is specific to HNS patients. Thus, the re-

analysis of our previous data is consistent with our major findings of the current study. 

 

Computational Modeling 

The goal of the modeling was to provide a quantitative fit to the pattern of data observed in patients and 

healthy controls. As described below, we investigated both a standard Actor-Critic architecture and a Q-

learning architecture.  Neither taken alone could account qualitatively for both healthy control and patient 

data. We thus investigated a mixture model of Actor-Critic and Q-learning, which leads to better qualitative 

and quantitative fits for all groups and explains key features of the data, as motivated in the main paper. 

 

 

 

 



Reward Learning in Schizophrenia                                                                                         Gold, J.M.  et al.       3 
 

 

Actor-Critic (Basal Ganglia) 

According to this model, participants update the expected value V(t) of a state context on each trial t. Each 

pair of stimuli presented together was represented as a state that might be predictive of the presence of 

gains or losses. Values are updated as a function of prediction errors using the delta rule: 

V(s,t+1) = V(s,t) +áC*ä (t), 

where  áC  is the critic learning rate defining the degree to which values are updated on a trial-by-trial basis, 

and ä (t) = outcome(t)-V(s,t) is the reward prediction error showing the discrepancy between expected value 

V for the current state s and the actual experienced outcome. 

 

Prediction errors in the critic are also used to adjust weights in the actor as follows: 

w(s,a,t+1)= w(s,a,t) + áA  *ä(t), 

where w(s,a,t) is the stimulus-response weight for the action selected in trial t producing the prediction error 

ä (t) and áA  is the learning rate for the actor which reflects how rapidly its weights are updated. Both learning 

rates lie in [0,1]. 

 

In order to prevent unbound growth of the actor weights, we normalize them by the sum of absolute values, 

so that they remain on a [-1,1] scale (this also allows proper mixing with Q values, which are naturally 

bounded, in the hybrid model described below). For example, actor weight for action 1 is normalized 

according to  w(s,a_1,t) ? w(s,a_1,t) / (|w(s,a_1,t)| + |w(s,a_2,t)|). To avoid division by a null value we 

initialized the weights at 0.01. This value is small enough not to bias future probabilities for choosing a 

stimulus.   

 

Actions are selected according to the standard softmax logistic function: 

P(a1,t)= e(w(s,a1,t)/â) / (e(w(s,a1 ,t)/â) + e(w(s,a2,t) W/â)), 

where a1  and a2 denote actions leading to the selection of stimulus 1 or 2 and P(a_1,t) is the probability of 

choosing action 1. The parameter ? is the softmax temperature and controls the stochasticity of the choice 

function (e.g. the degree of exploration). 
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In agreement with previous studies, we also allow positive and negative rewards to be weighed differently. 

Positive feedback at trial t was encoded as outcome(t) = 1-d, neutral feedback as  outcome(t) = 0 and 

negative feedback as outcome(t) = -d. Thus the free parameter d indicates full neglect of negative outcomes 

if d = 0, full neglect of positive outcomes if d = 1, and equal weighing of positive and negative outcomes if d = 

0.5. 

 

We expected this model to capture both reward learning and loss avoidance, as in prior actor-critic models of 

avoidance.   This model chose randomly at the initial trials of learning, and adjusted the weights associated 

with a stimulus in the actor following feedback. Weights were increased to reflect learning from positive PEs, 

and decreased to reflect choices that led to worse-than-expected outcomes. Thus, the model was more likely 

to repeat choices that led to positive PEs (winners and loss avoiders), while learning to avoid stimuli which 

produced negative PEs (losers and infrequent winners). It did not, however, distinguish between choices on 

the basis of actual expected outcome values (gain or loss avoidance, loss or absence of reward).  

 

Q-Learning (OFC) 

The Q-Learning model learns the expected value of each action directly, as a function of the prediction error 

difference between the current expected value of that action and the actual outcome: 

Q(a,t+1) = Q(a,t) + áO*(outcome(t) – Q(a,t)), 

where áO is the learning rate for the OFC. The Q-Value is only updated for the action selected in the current 

trial. 

 

Action selection occurs according to the same softmax rule as described higher: 

 

P(a1,t)= e(Q(a1,t)/â) / (e(Q(a1 ,t)/â) + e(Q(a2,t) W/â)), 

and the same weighing of positive and negative outcomes through free parameter d as for actor-critic is 

allowed. 

 



Reward Learning in Schizophrenia                                                                                         Gold, J.M.  et al.       5 
 

 

As shown in numerous other studies, we expected this model to capture both reward learning and loss 

avoidance.  The model learns the expected values associated with different actions in different states and is 

thus able to distinguish between choices on the basis of actual outcome values. 

 

Hybrid Actor-Critic Q-Learning Model (OFC-BG interactions) 

To account for effects predicted separately by the two previously described models, we propose a hybrid 

BG-OFC model, in which the BG functions as an actor-critic but its actor values are influenced by top-down 

OFC Q values. The model includes potentially symmetrical contributions of learned values from both models 

in the softmax function, by replacing individual contributions of each model by the mixture value: 

H(s,a1,t)=[(1-c)*w(s,a,t)+c* Q(a,t)]: P(a1,t)= e(H(s,a1,t)/â) / (e(H(s,a1 ,t)/â) + e(H(s,a2,t) /â)), 

where 0 = c = 1 is a mixing parameter that determines the degree of pure BG vs. OFC contributions. In 

particular, with c=0, the model is reduced to the actor-critic, while with c=1, it is reduced to Q-learning. Since 

both Q-values and normalized weights lie in [-1,1], c=0.5 indicates equivalent contributions of both systems. 

 

Different model predictions 

While all three models predict general reward learning and loss avoidance effects, they each  contribute to 

specific effects observed in the data. In particular, 

• The actor-critic model cannot account for sensitivity to actual outcome values, since it only uses reward 

prediction errors to modify the probability of selecting an action, as opposed to learning specific state 

action values. On contrary, the Q-learning model predicts  sensitivity to actual outcome values, and 

therefore predicts that subjects will choose a frequent winner over a frequent loss avoider, as seen in HC 

and LNS subjects. 

• The Q-learning model cannot account for the observed preference of frequent loss avoiders (FLA) 

compared to infrequent winners (IW) across all groups, since infrequent winners have higher expected 

outcome. In contrast, the AC model can account for this pattern , since frequent loss avoiders lead to 

frequent positive prediction errors, thus stronger positive actor weights for selecting the loss-avoiding 

symbol,  whereas infrequent winners lead to frequent negative prediction errors, thus negative weights.  
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Thus, the hybrid model should be able to better account for observed results in patients and healthy 

subjects. In particular, for a given mixing parameter c, the model may recapitulate the preference of healthy 

subjects to choose frequent winners over frequent loss avoiders (as a function of Q value influences) but still 

capture a preference for frequent loss avoiders over infrequent winners (due to some influence of AC). Lower 

c values are expected to be associated with the pattern seen in HNS subjects, which correspond to a purer 

version of AC. 

 

Model fittings 

All three models were fitted to subjects' data using the standard likelihood procedure. Specifically, for each 

participant, we searched for the free parameters that would maximize the likelihood of their own trial-by-trial 

sequence of choices in both phases of the task, using multiple random starting points. 

 

We found that the hybrid model afforded better fit than both other models for all three groups, even after 

correction for number of supplementary parameters (3, 4 and 6 respectively for Q-Learning, Actor-Critic and 

Hybrid models). In the following table, for each group, we report mean (and standard error) pseudo-r2, as 

well as Akaike Information Criterion (AIC) for complexity penalization. 

 

Results 

The fact that all groups benefit from the addition of actor-critic to the Q-learning algorithm is consistent with 

the finding that all groups showed a preference for frequent loss-avoider trials than infrequent winners. 

Indeed, this could only be predicted by the AC part of the model (see above). 

 

We performed ANOVAs on the fitted parameter values of the hybrid model, with subject group as a factor. 

We only found a main effect of group for the mixing parameter c (F(2,67)=3.8, p=.027; all other parameters 

F<2.15, p>0.12). Post-hoc analyses revealed a significantly lower c value for the HNS-SZ patients compared 

to HC (t=2.77, p=0.008), as well as a trend for the comparison of LNS-SZ patients to HC (t=1.7, p=0.09). 

 

Furthermore, the HC group exhibited estimated c values that were greater than 0.5 (HC: c=0.70 ± 0.06, 

t=3.1, p=0.005; SZ-LNS: c=0.62 ±0.09, NS).  This indicated a greater role for Q-Learning than Actor-Critic in 
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their behavior. Conversely, for the SZ-HNS group the fitted mixing parameter value (c=0.41 ± 0.09) indicated 

a lesser role for Q-Learning than for Actor-Critic. This is consistent with the observation that those patients 

do not show a sensitivity to actual outcome value, contrary to HC and SZ-LNS group. 

 

We then used the fitted parameters to simulate the hybrid model for each group, and show that the model 

can reproduce the key features of the observed data. 
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Figure Legends 

 

 

 

eFigure 1. Patient and Control Mean (SD) Performance (%) on Reinforcement Learning Conditions During 
the Transfer Phase Immediate Testing Session. Note: FW = Frequent Winner; FLA = Frequent Loss Avoider; 
FL = Frequent Loser; IW = Infrequent Winner; AB = 90% Gain;  CD = 80% Gain; EF = 90% Loss Avoidance; GH 
= 80% Loss Avoidance. 
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eFigure 2. Reinforcement Learning Performance in HNS, LNS, and HC subjects from our Previous Study. 
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eTable 1. Transfer Test Phase Performance in Each Group 

  HC 

(n = 28) 

LNS 

(n = 22) 

HNS 

(n = 25) 

P Value 

FW vs. FLA  78 (20)  68 (27)  53 (32)  .005 

FW vs. FW  77 (35)  64 (38)  52 (39)  .061 

FW vs. FL  89 (16)  86 (18)  79 (25)  .135 

FW vs. IW  80 (27)  84 (23)  76 (31)  .594 

IW vs. FLA  69 (26)  75 (22)  69 (31)  .660 

IW vs. FL  60 (28)  48 (27)  55 (30)  .302 

FL vs. FL  48 (46)  43 (42)  46 (43)  .922 

FLA vs. FLA  75 (37)  55 (41)  52 (42)  .078 

FLA vs. FL  79 (32)  66 (31)  72 (29)  .355 

AB Pair  91 (25)  86 (23)  76 (30)  .112 

CD Pair  76 (34)  77 (32)  67 (34)  .501 

EF Pair  88 (19)  80 (31)  74 (33)  .213 

GH Pair  78 (33)  74 (36)  76 (29)  .919 

For all pairs, other than the IW vs FLA pair, the values in the table represent the percentage of trials where 
the participants chose the item with the highest expected value. For the IW vs FLA pair, the value shown is 
the percentage of choices of the FLA stimulus. 
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eTable 2. Measures of Fit for the 3 Different RL Models 

group  Measure  Hybrid   AC   Q‐Learning 

HC  pseudo‐r2  0.365 (0.039)  0.336 (0.037)  0.311 (0.034)\ 

  AIC   5528  5774  5996 

SZ‐LNS  pseudo‐r2  0.267 (0.036)   0.2536  (0.034)   0.19876 (0.029) 

  AIC   5016  5107  5479 

SZ‐HNS  pseudo‐r2  0.260 (0.033)  0.246 (0.033)  0.190 (0.029) 

  AIC   5755  5861  6293 

 


