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BANISHING THE HOMUNCULUS: MAKING WORKING MEMORY WORK
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Abstract—The prefrontal cortex has long been thought to
subserve both working memory and “executive” function,
but the mechanistic basis of their integrated function has
remained poorly understood, often amounting to a homun-
culus. This paper reviews the progress in our laboratory and
others pursuing a long-term research agenda to deconstruct
this homunculus by elucidating the precise computational
and neural mechanisms underlying these phenomena. We
outline six key functional demands underlying working mem-
ory, and then describe the current state of our computational
model of the prefrontal cortex and associated systems in the
basal ganglia (BG). The model, called PBWM (prefrontal cor-
tex, basal ganglia working memory model), relies on actively
maintained representations in the prefrontal cortex, which
are dynamically updated/gated by the basal ganglia. It is
capable of developing human-like performance largely on its
own by taking advantage of powerful reinforcement learning
mechanisms, based on the midbrain dopaminergic system
and its activation via the basal ganglia and amygdala. These
learning mechanisms enable the model to learn to control
both itself and other brain areas in a strategic, task-appropri-
ate manner. The model can learn challenging working mem-
ory tasks, and has been corroborated by several important
empirical studies. © 2005 Published by Elsevier Ltd on behalf
of IBRO.

Key words: basal ganglia, prefrontal cortex, dopamine, rein-
forcement learning, Pavlovian conditioning, computational
modeling.

This article reviews an ongoing research agenda in our
laboratory and others that is attempting to elucidate the
precise computational and neural mechanisms underlying
working memory and “executive” function. Our approach
represents an attempt to understand these phenomena in
terms of a set of biologically based, computational mech-
anisms. This approach has resulted in the identification of
a core set of six functional demands that collectively help
define the fundamental nature of working memory from a
neuro-mechanistic perspective. Our proposed mecha-
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nisms for dealing with these functional demands collec-
tively explain many of the same phenomena as traditional
working memory constructs, but in a manner that contrasts
with them in important ways and does so in a comprehen-
sive, integrated way.

The overall format for the article is as follows. After a
brief introduction of our approach to working memory in
terms of developing a biologically-based architecture for
understanding human cognition, we then describe the cur-
rent version of our computational model of the prefrontal
cortex (PFC) and basal ganglia (BG) in working memory
(PBWM, prefrontal cortex, basal ganglia working memory
model), with special emphasis on six key functional de-
mands underlying working memory. To try to make things
as transparent as possible, we describe both the functional
demands and the model itself in the context of a concrete
working memory task. We then review some of the empir-
ical data that have tested predictions of our model, and
then outline our research trajectory that is attempting to
simulate many of the most important task paradigms of
working memory and executive function in a single instan-
tiation of a comprehensive model built around the core
PBWM mechanisms. Finally, we discuss some overall im-
plications for future work.

Biologically-based cognitive architecture

Our PBWM working memory model is motivated by a
number of considerations derived from an overarching
biologically-based cognitive architecture for understanding
human cognition (Atallah et al., 2004; O'Reilly and Mu-
nakata, 2000). This tripartite architecture is composed of
three functionally complementary brain systems that can
be understood in terms of a set of computational tradeoffs,
which provide a more precise and often subtle set of
functional properties for these areas (Fig. 1). These sys-
tems are as follows:

1. The posterior cortex (PC) system that performs the
vast majority of the “automatic” sensory and motor
processing in the brain. This system exhibits slow,
integrative learning that extracts the long-term statisti-
cal structure of the environment, thereby efficiently
representing accumulated knowledge and skills. In a
sense, the PC system provides the “substrate” upon
which the other two (“higher level”) systems operate to
produce working memory phenomena.

2. The hippocampal system (HC) system that is special-
ized for rapid (e.g. one ftrial) learning that binds to-
gether arbitrary information, which can be subse-
quently recalled in the service of controlled processing.
The neural specializations required for this rapid learn-
ing without interference are incompatible with the inte-
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Fig. 1. Tripartite cognitive architecture defined in terms of different
computational tradeoffs associated with PC, Hippocampus (HC) and
Frontal Cortex/BG (FC/BG) (with motor frontal cortex constituting a
blend between FC and PC specializations). Large overlapping circles
in PC represent overlapping distributed representations used to en-
code semantic and perceptual information. Small separated circles in
HC represent sparse, pattern-separated representations used to rap-
idly encode (“bind”) entire patterns of information across cortex while
minimizing interference. Isolated, self-connected representations in
FC represent isolated stripes (columns) of neurons capable of sus-
tained firing (i.e. active maintenance or working memory). The BG also
play a critical role in the FC system by modulating (“gating”) activations
there based on learned reinforcement history.

grative statistical learning of the posterior cortical sys-
tem, thus motivating the need for two separate neural
systems.

3. The PFC/BG system that is specialized for active main-
tenance of internal contextual information (PFC), which
can be dynamically updated by the BG. This system
can bias (control) ongoing processing throughout the
cortex according to actively maintained information in
the PFC (e.g. goals, instructions, partial products). It
includes a dopamine (DA)-based learning system that
uses a version of reinforcement learning mechanisms
that are widely thought to be supported by the BG and
related mid-brain structures.

Because it represents the canonical form of cortical
processing, our model of the PC lies at the foundation of
much of our work. It is based upon a computational frame-
work called Leabra (O'Reilly, 1998; O’'Reilly and Mu-
nakata, 2000; O’Reilly, 2001) that contains all of the basic
mechanisms and properties required by our models.
These mechanisms have mostly been developed sepa-
rately by other researchers over many years. Our special-
ized model of the HC has been developed over numerous
publications (O’Reilly and McClelland, 1994; McClelland et
al., 1995; O’Reilly and Rudy, 2001; Norman and O’Reilley,
2003; O’Reilly and Norman, 2002), and also includes many
themes going back to earlier work (e.g., Marr, 1971; Mc-
Naughton and Morris, 1987; Rolls, 1989) that are widely
adopted in the literature. Our hippocampal model (imple-
mented in the Leabra framework) has been used to simu-
late a wide range of learning and memory phenomena,
including human recognition memory (Norman and

O’Reilly, 2003), and animal learning paradigms (e.g. con-
textual fear conditioning, nonlinear discrimination learning,
transitive inference) (O’Reilly and Rudy, 2001; Frank et al.,
2003). Our models of the PFC/BG system are elaborated
in the remainder of this paper.

In the context of this overall architecture, we can define
working memory as an emergent property of the interac-
tions between these three specialized brain areas, involv-
ing both active maintenance of task-relevant information
(PFC/BG), and rapid learning of arbitrary associations
(HC). These mechanisms support basic memory functions
associated with working memory (i.e. memory for partial
products of ongoing processing, task goals, etc.), but also
more complex controlled processing functions that are
typically ascribed to a “central executive” in other working
memory frameworks (e.g., Baddeley, 1986). Controlled
processing emerges from the biasing influence of actively
maintained and updated PFC representations on other
parts of the system (e.g., Cohen et al., 1990, 1996; O’Reilly
et al.,, 1999; Miller and Cohen, 2001). This “top-down”
biasing (which can also be supported by the HC to some
extent) supports the performance of task-relevant process-
ing in the face of competition from habitual or more well-
practiced forms of processing that may not be task
relevant.

This contrast between theoretical models that explicitly
distinguish between working memory and executive func-
tion, typically designating them as separate “modules”
(e.g., Baddeley, 1986), and our more emergent, interactive
approach, is critical. Our view that working memory and
executive function are really two sides of the same coin
provides a more parsimonious model, that we believe is
more consistent with extant biological data on the nature of
neural specializations in the PFC/BG system. These con-
trasting approaches may be due in part to traditional mod-
els relying on a computer-like mental architecture, where
processing is centralized and long-term memory is essen-
tially a passive store. For those models, it makes sense to
have a separate set of cache-like working memory buffers
dedicated to the temporary storage of items that are
needed during processing by a completely separate cen-
tral executive module (Baddeley, 1986). However, these
architectures do not correspond to the known micro-archi-
tecture of the brain, in which processing and memory
functions are typically distributed within and performed by
the very same neural substrates (Rumelhart et al., 1986).

Thus, instead of thinking about the moving of informa-
tion from long-term memory into and out of working mem-
ory buffers, we think that information is distributed in a
relatively stable configuration throughout the cortex, and
that working memory amounts to the controlled activation
of these representations. This view shares some similari-
ties with the view of working memory offered by produc-
tion-system accounts (e.g. ACT, Anderson, 1983; Lovett et
al., 1999). However, it does not include the structural dis-
tinction between declarative and procedural knowledge
assumed by such accounts.

To summarize then, our contention is that activation-
based working memory is best thought of as the primary
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mechanism behind the PFC/BG system, and that con-
trolled processing is a resulting emergent function that
depends critically on this mechanism. Furthermore, we
believe it is likely that working memory may represent a
kind of phylogenetic extension of the same kinds of mech-
anisms that underlie all forms of complex motor coordina-
tion and planning.

This conceptualization has important implications for
forming theories and building models. While it certainly
remains perfectly valid (as well as heuristically productive)
to formulate theories to explain a narrow subset of working
memory phenomena, in doing so one runs the distinct risk
that those theories will be inherently incapable of dealing
with other, equally important phenomena in the domain.
Thus, any given theoretic model might best be judged not
only by its fit to the data it was formulated for, but also by its
ability to account for other working memory phenomena—or
at least its potential to do so. In other words, we believe
that a truly robust theory of working memory is best for-
mulated with the big picture in mind.

The PBWM model of working memory

Based on our cumulative work on a wide variety of working
memory tasks, we have identified a core set of six func-
tional demands, enumerated below, that are required by
tasks involving working memory and executive function.
Taken together, these functional demands provide a basic
set of constraints for our biologically-based PBWM model.
The 1-2-AX task, which is an extension of the widely-
studied AX version of the continuous performance task
(AX-CPT), provides a nice demonstration for these informa-
tion-processing demands on the working memory system.

The AX-CPT is a standard working memory task that
has been extensively studied in humans (Cohen et al.,
1997; Braver and Cohen, 2000; Braver et al., unpublished
observations; Braver et al., 1999; Frank and O’Reilly, un-
published observations). The subject is presented with
sequential letter stimuli (A, X, B, Y), and is asked to detect
the specific sequence of an A followed on the very next
event by an X, by pushing the target (right) button. All other
combinations (A=Y, B-X, B-Y) should be responded to
with a non-target (left) button push. This task requires a
relatively simple form of working memory, where the prior
stimulus must be maintained over a delay until the next
stimulus appears, so that the subject can discriminate the
target from non-target sequences. This is the kind of acti-
vation-based working memory that has often been ob-
served for example in electrophysiological studies of work-
ing memory in monkeys (e.g. Fuster and Alexander,
1971; Kubota and Niki, 1971; Miyashita and Chang,
1988; Funahashi et al., 1989; Miller et al., 1996).

In the 1-2 extension of the AX-CPT task (1-2-AX; Fig.
2; Frank et al., 2001; Kroger et al., unpublished observa-
tions), the target sequence varies depending on prior task
demand stimuli (a 1 or 2). Specifically, if the subject last
saw a 1, then the target sequence is A—X. However, if the
subject last saw a 2, then the target sequence is B-Y.
Thus, the task demand stimuli define an outer loop of
active maintenance (maintenance of task demands) within
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Fig. 2. The 1-2-AX task. Stimuli are presented one at a time in a
sequence. The participant responds by pressing the right key (R) to
the target sequence, otherwise a left key (L) is pressed. If the subject
last saw a 1, then the target sequence is an A followed by an X. If a 2
was last seen, then the target is a B followed by a Y. Distractor stimuli
(e.g. 3, C, Z) may be presented at any point and are to be ignored. The
maintenance of the task stimuli (1 or 2) constitutes a temporal outer-
loop around multiple inner-loop memory updates required to detect the
target sequence.

which there can be any number of inner loops of active
maintenance for the A—X level sequences.

Six key functional demands underlying working
memory

With the 1-2-AX task as a concrete example, the six func-
tional demands upon the working memory system are:

1. Rapid updating: The working memory system should
be able to rapidly encode and maintain new informa-
tion as it occurs. In the 1-2-AX task, as each relevant
stimulus is presented, it must be rapidly encoded in
working memory.

2. Robust maintenance: Information that remains rele-
vant should be maintained in the face of the interfer-
ence from ongoing processing or other stimulus inputs.
In the 1-2-AX task, the task demand stimuli (1 or 2) in
the outer loop must be maintained in the face of the
interference from ongoing processing of inner loop
stimuli and irrelevant distractors. Also, a specific A or B
must also be maintained for the duration of each inner
loop.

3. Multiple, separate working memory representations:
To maintain the outer loop stimuli (1 or 2) while updat-
ing the inner loop stimuli (A or B), these two sets of
representations must be distinct within the PFC (i.e.
they must not be in direct mutual competition with one
another, such that only one such representation could
be active at a time).

4. Selective updating: Only some elements of working
memory should be updated at any given time, while
others are maintained. For example, in the inner loop,
A or B should be updated while the task demand
stimulus (1 or 2) is maintained.

5. Top-down biasing of processing: For working memory
representations to achieve controlled processing, they
must be able to bias (control) processing elsewhere in
the brain. For example, whichever outer loop stimulus
(1 or 2) is active at a given time must bias processing
in the PFC/BG system itself, to condition responses
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Fig. 3. lllustration of active gating. When the gate is open, sensory
input can rapidly update working memory (e.g. encoding the cue item
A in the 1-2-AX task), but when it is closed, it cannot, thereby prevent-
ing other distracting information (e.g. distractor C) from interfering with
the maintenance of previously stored information.

and working memory updates as a function of the
current target sequence.

Learning what and when to gate: Underlying all suc-
cessful working memory task performance is the need
to learn when to gate appropriately. This is a challeng-
ing problem because the benefits of having gated
something in are only available later in time (e.g. en-
coding the one task demand stimulus only affects overt
behavior and error-feedback later when confronted
with an A—-X sequence).

Earlier computational work by our group of collabora-
tors has instantiated and validated a number of aspects of
our overall theory, including the graded nature of controlled
processing (Cohen et al., 1990); the ability of PFC repre-
sentations to bias subsequent processing (Cohen and Ser-
van-Schreiber, 1992); the role of PFC in active mainte-
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nance (Braver et al., 1997); the ability of the BG to update
PFC working memory representations (Frank et al., 2001);
and the role of the HC in rapid learning (O’Reilly and Rudy,
2001; Norman and O’Reilly, 2003). Most recently, we have
been focused on the role of the PFC/BG system, and most
specifically, how, mechanistically, it can learn to do what it
has to do to support working memory.

Dynamic updating via BG gating

It is important to note that the first two demands (rapid
updating versus robust maintenance) are in direct conflict
with each other when viewed in terms of standard neural
processing mechanisms. This motivates the obvious need
for a dynamic gating mechanism to switch between these
two modes of operation (Cohen et al., 1996; Braver and
Cohen, 2000; O'Reilly et al., 1999; O’'Reilly and Munakata,
2000). When the gate is open, working memory can get
updated by incoming stimulus information; when it is
closed, currently active working memory representations
are robustly maintained even in the face of potential inter-
ference as from intervening distractor stimuli (Fig. 3).

A central feature of our PBWM model is that the BG
provide this requisite dynamic gating mechanism for infor-
mation maintained via sustained activation in the PFC. The
BG are interconnected with frontal cortex through a series
of parallel loops (Fig. 4). When direct pathway “Go” neu-
rons in dorsal striatum fire, they inhibit the SNr, and thus
disinhibit frontal cortex, producing a gating-like modulation
that we argue triggers the update of working memory
representations in PFC. The indirect pathway “NoGo” neu-
rons of dorsal striatum counteract this effect by inhibiting
the inhibitory GPe (globus pallidus, external segment). The
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Fig. 4. The BG are interconnected with frontal cortex through a series of parallel loops, each of the form shown. Working backward from the thalamus,
which is bidirectionally excitatory with frontal cortex, the SNr is tonically active and inhibiting this excitatory circuit. When direct pathway “Go” neurons
in dorsal striatum fire, they inhibit the SNr, and thus disinhibit frontal cortex, producing a gating-like modulation that we argue triggers the update of
working memory representations in PFC. The indirect pathway “NoGo” neurons of dorsal striatum counteract this effect by inhibiting the inhibitory GPe.
The STN provides an additional dynamic background of inhibition (NoGo) by exciting the SNr.
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STN (subthalamic nucleus) provides an additional dynamic
background of inhibition (NoGo) by exciting the SNr. As
reviewed in Frank et al., 2001, this idea is consistent with
a wide range of empirical data and other computational
models that have been developed largely in the domain of
motor control, but also for working memory as well (e.g.
Wickens, 1993; Houk and Wise, 1995; Wickens et al.,
1995; Dominey et al., 1995; Berns and Sejnowski, 1995,
1998; Jackson and Houghton, 1995; Beiser and Houk,
1998; Nakahara and Doya, 1998; Kropotov and Etlinger,
1999; Amos, 2000; Nakahara et al., 2001). Our ideas
regarding just how the PFC and BG might work together to
accomplish this complex coordination are outlined below,
along with a brief description of the specific biologically-
realistic computational mechanisms that our PBWM model
uses to instantiate them.

1. Rapid updating occurs when direct pathway spiny neu-
rons in the dorsal striatum fire (Go units). Go firing
directly inhibits the substantia nigra pars reticulata
(SNr), and releases its tonic inhibition of the thalamus.
This thalamic disinhibition enables, but does not di-
rectly cause (i.e. gates), a loop of excitation into the
corresponding PFC “stripe” (see Multiple, separate
working memory representations below). The effect of
this net excitation is to toggle the state of bistable
currents in the PFC neurons. Striatal Go neurons in the
direct pathway are in competition (downstream in the
SNr, if not actually in the striatum; Mink, 1996; Wick-
ens, 1993) with a corresponding NoGo (indirect) path-
way that promotes greater inhibition of thalamic neu-
rons, thereby working to block gating.

2. Robust maintenance occurs via two intrinsic PFC
mechanisms: 1) recurrent excitatory connectivity
(O'Reilly et al., 1999; O’Reilly and Munakata, 2000),
and; 2) bistability (Fellous et al., 1998; Wang, 1999;
Durstewitz et al., 1999; Durstewitz et al., 2000), the
latter of which is toggled between a maintenance state
and a non-maintenance state by the Go gating signal
from the BG.

3. Multiple, separate working representations are possi-
ble because of the “striped” micro-anatomy of the PFC,
which is characterized by small, relatively isolated
groups of interconnected neurons, thereby preventing
undo interference between representations in different
(even nearby) stripes (Levitt et al, 1993; Pucak et al.,
1996). We estimate there may be as many as 20,000
such stripes in human PFC (Frank et al., 2001).

4. Selective updating occurs because of the existence of
independently updatable parallel loops of connectivity
through different areas of the BG and frontal cortex
(Alexander et al., 1986; Graybiel and Kimura, 1995;
Middleton and Strick, 2000). We hypothesize that
these loops are selective to the relatively fine-grained
level of the anatomical stripes in PFC. This stripe-
based gating architecture has an important advantage
over the global nature of a purely DA-based gating
signal (Braver and Cohen, 2000; Rougier and O’Reilly,
2002; Tanaka, 2002), which appears computationally

a) Stim
1

Fig. 5. lllustration of how the BG gating of different PFC stripes can
solve the 1-2-AX task (light color=active; dark=not-active). (a) The
one task is gated into an anterior PFC stripe because a corresponding
striatal stripe fired Go. (b) The distractor C fails to fire striatial Go
neurons, so it will not be maintained; however, it does elicit transient
PFC activity. Note that the one persists because of gating-induced
robust maintenance. (c) The A is gated in. (d) A right key-press motor
action is activated (using same BG-mediated disinhibition mechanism)
based on X input plus maintained PFC context.

inadequate for supporting a selective updating function
by itself.

5. Top-down biasing of processing occurs via projections
from actively-maintained representations in PFC to rel-
evant areas throughout the brain, most typically the
PC, but also the HC and the PFC/BG itself (Cohen and
Servan-Schreiber, 1992; Fuster, 1989).

6. Learning what and when to gate is accomplished by a
DA-based reinforcement-learning mechanism that is
capable of providing temporally-appropriate learning
signals to train gating update activity in the striatal Go
and NoGo synapses. Thus, each spiny neuron devel-
ops its own unique pattern of connection weights en-
abling separate Go vs. NoGo decisions in each stripe.

Fig. 5 shows how the BG-mediated selective gating
mechanism can enable performance of the 1-2-AX task
(see Frank et al., 2001 for a working simulation). When a
task demand stimulus is presented (e.g. 1), a BG gating
signal (i.e. a Go signal) must be activated to enable a
particular PFC stripe to gate in and retain this information
(panel a), and no stripe (or NoGo firing) should be acti-
vated for a distractor such as C (Panel b). A different stripe
must be gated for the subsequent cue stimulus A (panel c).
When the X stimulus is presented, the combination of this
stimulus representation plus the maintained PFC working
memory representations is sufficient to trigger a target
response R (panel d).

Learning when to gate in the BG

Of all the aspects of our model that purport to deconstruct
the homunculus, learning when to gate is clearly the most
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central. For any working memory model, either the knowl-
edge of when to update working memory must be built in
by the model’s designer, or, somehow, a model must learn
it on its own, relying only on its built-in constraints inter-
acting with its training experience. That is, without such a
learning mechanism, our model would have to resort to
some kind of intelligent homunculus to control gating.

Our approach for simulating how the BG learns to
update task-relevant versus irrelevant working memory
information builds on our prior work for how the same
system modulates the selection of motor responses. Spe-
cifically, the BG are thought to facilitate the selection of the
most appropriate response, while suppressing all compet-
ing responses (Mink, 1996). In our models, the BG learn
the distinction between good and bad responses via
changes in DA firing during positive and negative rein-
forcement (for details, see Frank, 2005). In brief, our model
leverages the observation that DA D1 and D2 receptors
are relatively segregated in Go and NoGo cells, respec-
tively (Gerfen, 1992; Wise et al., 1996; Aubert et al., 2000).
This is of interest because DA effects on neuronal excit-
ability and synaptic plasticity are dependent on whether it
acts via D1 or D2 receptors (Hernandez-Lopez et al., 1997,
2000; Nishi et al., 1997; Centonze et al., 2001). The net
effect is that increases in DA during positive reinforcement
enhance BG Go firing and learning via simulated D1 re-
ceptors, whereas decreases in DA during negative rein-
forcement have the opposite effect, enhancing NoGo firing
and learning via simulated D2 receptors. This functionality
enables the BG system to learn to discriminate between
subtly different reinforcement values of alternative re-
sponses, and is consistent with several lines of biological
and behavioral evidence (Frank, 2005).

For the PBWM model, we have extended these ideas
to include BG modulation of PFC working memory repre-
sentations. Thus, increases in DA reinforce BG Go firing to
update information that is adaptive to store in working
memory, while decreases in DA allow the model to learn
that its current working memory state is maladaptive. In
this manner, the BG eventually come to update information
that is task-relevant, because maintenance of this informa-
tion over time leads to adaptive behavior and reinforced
responses. Conversely, the system learns to ignore dis-
tracting information, because its maintenance will interfere
with that of task-relevant information and therefore lead to
poor performance.

As Fig. 5 illustrates, the learning problem in the BG
boils down to learning when to fire a Go vs. NoGo signal in
a given stripe based on the combination of current sensory
(PC) input and maintained PFC activations. From a com-
putational perspective, there are two fundamental prob-
lems that must be solved by the learning mechanism.

Temporal credit assignment. The benefits of having
encoded a given piece of information into prefrontal work-
ing memory are typically only available later in time (e.g.
encoding the one task demand stimulus can only really
help later (in terms of getting an actual reward) when
confronted with an A—X sequence). Thus, the problem is to

know which prior events were critical for subsequent good
(or bad) performance.

Structural credit assignment. The network must de-
cide which stripes should encode which different pieces of
information at a given time, and when successful perfor-
mance occurs, it must reinforce those stripes that actually
contributed to this success. This form of credit assignment
is what neural network models are typically very good at
doing (e.g. the backpropagation algorithm), but clearly this
form of structural credit assignment interacts with the tem-
poral credit assignment problem and with the unique mi-
cro-anatomical structure of the stripe-loop architecture of
the PFC and BG, making the technical problem consider-
ably more complex.

The firing patterns of midbrain DA neurons (ventral
tegmental area, VTA; substantia nigra pars compacta,
SNc; both strongly innervated by the BG) exhibit the prop-
erties necessary to solve the temporal credit assignment
problem, because they learn to fire for stimuli that predict
subsequent rewards (e.g. Schultz et al., 1993; Schultz,
1998). This property is illustrated in schematic form in Fig. 6
for a simple Pavlovian conditioning paradigm, where a stim-
ulus (e.g. a tone) predicts a subsequent reward. Fig. 5b
shows how this predictive DA firing can reinforce BG Go
firing to gate in and subsequently maintain a stimulus,
when such maintenance leads to subsequent reward. Spe-
cifically, the DA firing can move discretely from the time of
a reward to the onset of a stimulus that, if maintained in the
PFC, leads to the subsequent delivery of this reward.
Because this DA firing occurs at the time when the stimu-
lus comes on, it is well timed to facilitate the storage of this
stimulus in PFC. In our model, this occurs by reinforcing
the connections between the stimulus and the Go gating
neurons in the striatum, which then cause updating of PFC
to maintain the stimulus.

The apparently predictive nature of the DA firing has
most often been explained in terms of the temporal differ-
ences (TD) reinforcement learning mechanism (Sutton,
1988; Sutton and Barto, 1998; Schultz et al., 1995; Houk et
al., 1995; Montague et al., 1996; Suri et al., 2001; Con-
treras-Vidal and Schultz, 1999; Joel et al., 2002). However,
extensive exploration and analysis of these models has led
us to develop a non-TD-based account, which moves
away from the prediction framework upon which it is based
(O’Reilly and Frank, in press; O’'Reilly et al., unpublished
observations). In brief, TD depends on chaining of predic-
tions from one time step to the next, and any weak link (i.e.
unpredictable event) can break this chain. In many of the
tasks faced by our models (e.g. the 1-2-AX task), the
sequence of stimulus states is almost completely unpre-
dictable, and this significantly disrupts the TD chaining
mechanism (O’Reilly et al., unpublished observations).
Our alternative learning mechanism, called PVLV (primary
value and learned value) involves two separable but inter-
dependent learning mechanisms, each of which is essen-
tially a simple delta-rule or Rescorla-Wagner mechanism
(Rescorla and Wagner, 1972; Widrow and Hoff, 1960).
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This PVLV mechanism shares several features in common
with the model of Brown et al., 1999.

The further details of these PBWM and PVLV learning
mechanisms are beyond the scope of this paper, but the
basic results are that the resulting model can learn com-
plex working memory tasks such as the 1-2-AX task based
purely on trial-and-error experience with the task. We pro-
vide more examples of the learning and performance of
this model below.

Empirical tests of the model

In addition to incorporating a large amount of existing
empirical data, the overall PBWM model of the role of the
PFC and BG in working memory makes a number of
further predictions, several of which have been tested
empirically. We review some of these below, and then
discuss ongoing applications of the PBWM model to un-
derstand working memory behavior.

PFC organization

The PBWM model strongly predicts that information that
must be updated at different points in time during a working
memory task (e.g. the outer loop vs. the inner loop of the
1-2-AX task) should be represented in different parts of the
PFC. This prediction has been tested directly in the 1-2-AX
task (Kroger et al., unpublished observations), and in a
number of other tasks that also share this same kind of
inner/outer loop structure (e.g. Braver and Bongiolatti,
2002; Koechlin et al., 2000, 2003). In all of these cases,
more anterior areas of PFC, specifically the frontal pole
(Broadman'’s area 10) was selectively activated for outer-
loop information, while more posterior areas (dorso-lateral
PFC, Broadman’s areas 46/9) were active for inner-loop
information.

BG/DA mechanisms

Recently, we have tested various aspects of the hypothe-
sized roles of the BG/DA system across both reinforce-
ment learning and working memory processes. First, we
demonstrated striking support for a central prediction of
our model regarding DA involvement in “Go” and “NoGo”
cognitive reinforcement learning (Frank et al., 2004; Frank,
2005). We tested Parkinson patients on and off medica-
tion, along with healthy senior control participants matched
for age, education and a measure of verbal 1Q. We pre-
dicted that decreased levels of DA in Parkinson’s disease
would lead to spared NoGo learning, but impaired Go
learning (which depends on DA bursts). We further pre-
dicted that dopaminergic medication should alleviate the
Go learning deficit, but would block the effects of DA dips
needed to support NoGo learning, as was simulated to
account for other medication-induced cognitive deficits in
Parkinson’s disease (Frank, 2005). Results were consis-
tent with these predictions. In a probabilistic learning task,
all patients and aged-matched controls learned to make
choices that were more likely to result in positive rather
than negative reinforcement. The difference was in their
strategy: patients taking their regular dose of dopaminergic

medication implicitly learned more about the positive out-
comes of their decisions (i.e. they were better at Go learn-
ing), whereas those who had abstained from taking med-
ication implicitly learned to avoid negative outcomes (bet-
ter NoGo learning). Age-matched controls did not differ in
their tendency to learn more from the positive/negative
outcomes of their decisions.

We have also tested predictions for a more a general
role for BG/DA in cognitive function by administering low
doses of DA agonists/antagonists to young, healthy par-
ticipants (Frank and O’Reilly, unpublished observations).
The drugs used (cabergoline and haloperidol) were selec-
tive for D2 receptors, which are by far most prevalent in the
BG. By acting on presynaptic D2 receptors, cabergoline
reduces, while haloperidol enhances, the amount of phasic
DA that is released during dopaminergic cell bursting (e.g.,
Wu et al., 2002). Again, results were consistent with our
model: Increases in DA during learning caused partici-
pants to learn more about the positive outcomes of their
decisions (as in medicated Parkinson’s patients), whereas
decreases in DA caused the same participants to learn
more about negative outcomes (as in non-medicated pa-
tients). Notably, these same effects were borne out in the
context of a modified version of the AX-CPT working mem-
ory task. In our version, a variable number of task-irrele-
vant distractor stimuli were presented during the delay
period, and participants were told to ignore these distrac-
tors for the purpose of target (A—X) detection. We also
included an attentional set-shifting condition, in which the
previously task-relevant letters (A, X, B, Y) became dis-
tractors, while previous distractors were now task-relevant.

Interestingly, increases in DA by haloperidol enhanced
selective working memory updating of task-relevant (i.e.
“positively-valenced”), but not distracting (“negatively-va-
lenced”) information. By our model’s account, DA release
evoked during the presentation of task-relevant informa-
tion reinforces BG Go firing to update this information.
Consistent with this analysis, increased DA release also
caused difficulty not updating (i.e. ignoring) this information
when it subsequently became distracting in the set-shift.
Conversely, under cabergoline (decreased DA release)
set-shifting deficits were observed that were consistent
with impaired, rather than enhanced, Go learning. In par-
ticular, whereas set-shifting deficits under haloperidol were
only observed in trials for which participants had to ignore
previously task-relevant distractors, deficits were observed
under cabergoline when they only had to update the new
task-relevant set (i.e. in trials without distractors). Finally,
and perhaps most suggestive for a role of BG DA in
working memory, participants with low baseline working
memory span were most subject to the effects of increases
in DA by haloperidol, while those with high span were most
subject to decreases in DA by cabergoline (Frank and
O’Reilly, unpublished observations). These latter results
are consistent with the notion that individual differences in
working memory span are partially characterized by under-
lying differences in DA levels (Kimberg et al., 1997), but
extend this hypothesis in a more mechanistic fashion con-
sistent with our modeling.
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Taken together, these results provide strong support
that BG signals, under modulation by DA, are critical for
the updating of PFC working memory representations.
Further, the model’s success in capturing subtle cognitive
effects in both Parkinson’s disease and controlled DA ma-
nipulation suggests that it can also be applied to mecha-
nistically understand cognitive deficits in those with more
complex disorders involving BG/DA dysfunction, such as
ADHD (attention deficit hyperactivity disorder) and schizo-
phrenia. However, it is also the case that, although the
PBWM model has been specifically designed to include
many biological aspects, it obviously also goes beyond
what is currently known. For example, the model ascribes
specific roles to subsets of neurons in the nucleus accum-
bens, which provides testable hypotheses about the biol-
ogy and function of these systems in the brain. It will be
interesting to see how some of these ideas implemented in
the PBWM model stand up to further biological investiga-
tions.

Simulating multiple working memory tasks in a
single integrated model

The PBWM model is quite complex. Although it is moti-
vated by a wide range of empirical data, and some of its
predictions have been tested and confirmed as described
above, it is nevertheless important to constrain the com-
plexity of the model further by subjecting it to increasingly
stringent tests. One strategy that we have employed suc-
cessfully in the past with both our hippocampal and pos-
terior cortical models is to apply these models to as wide a
range of cognitive neuroscience phenomena as possible.
To the extent that the same basic model can account for a
wide range of data, it provides confidence that the model is
capturing some critical core elements of cognitive function.
The virtues of this general approach have been forcefully
argued by Newell, 1990.

For these reasons, one important current research
goal is to attempt to simulate a wide range of working
memory tasks with one instantiation of the PBWM model
(Table 1). This research builds upon earlier work simulat-
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Fig. 6. (a) Schematic of DA neural firing for an input stimulus (Input,
e.g. a tone) that reliably predicts a subsequent reward (unconditioned
stimulus US/r). Initially, DA fires at the point of reward, but then over
repeated trials learns to fire at the onset of the stimulus. (b) This DA
firing pattern can solve the temporal credit assignment problem for
PFC active maintenance. Here, the PFC maintains the transient input
stimulus (initially by chance), leading to reward. As the DA system
learns, it can predict subsequent reward at stimulus onset, by virtue of
PFC “bridging the gap” (in place of a sustained input). DA firing at
stimulus onset reinforces the firing of BG Go neurons, which drive
updating in PFC.

ing many of the paradigmatic tasks thought to be charac-
teristic of working memory and executive function, includ-
ing: the Stroop effect (Cohen et al., 1990; O’'Reilly and
Munakata, 2000); the AX-CPT (Braver et al., 1995); the
1-2-AX (O’Reilly and Frank, in press); the WCST (Rougier
and O’Reilly, 2002); the ID/ED dynamic categorization task
(O'Reilly et al., 2002); and the Eriksen flanker task (Eriksen
and Eriksen, 1974; Cohen et al., 1992; Yeung et al., 2004;

Table 1. Brief descriptions of the tasks simulated in the multitask (MT) model, and the evidence implicating the PFC in them

Task Brief description

Stroop Color words printed in same or different ink colors, response is either color or word. Differential slowing is observed for conflicting
word/color in color naming condition, csp with PFC damage.

AX-CPT Letters appear one at a time on the screen. Target sequence of A followed by X must be detected, requiring maintenance of A
(impaired with PFC damage).

1-2-AX Like AX-CPT, except target depends on prior 1 or 2 stimulus; 1=AX, 2=BY target sequence.

WCST Wisconsin Card Sorting Task: multidimensional stimuli (color, shape, number) are sorted according to one dimension; Sorting
“rule” learned by trial-and-error, and changes unexpectedly. Increased perseveration on initial rule observed with PFC damage.

ID/ED Intradimensional/Extradimensional task, which is like WCST except multiple stimuli are presented simultaneously, allowing rule
changes within a given dimension, or across different dimensions. PFC-related perseveration also observed.

Eriksen A central, to-be-named stimulus is flanked by consistent or inconsistent stimuli. PFC damage causes more intrusion from
flankers.

ABCA/ABBA A sequence of stimuli is presented; a response is required when the 1st stimulus repeats. PFC damage causes false alarms in
ABBA condition.

Serial recall A sequence of verbal items must be recalled in order.

Sternberg Digits are presented in an array, then removed. One location is probed and measured capacity is often greater than serial recall.

N-Back Repetitions separated by N in a continuous stimulus sequence must be detected. PFC damage impairs performance.
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Fig. 7. Overall structure of the MT model. Similar to our other PBWM models, the input/output layers are at the top-left of the diagram. The PFC and
BG layers are at the bottom-right. The PVLV learning algorithm layers are in the lower left hand corner (highlighted in darker gray), and the full PBWM
component also includes the BG (Matrix, SNrThal) and PFC on the right hand side (highlighted in lighter gray). Depending on the particular task, single
or multiple featured stimuli are presented in one or more “slots” in the Stimuli_In layer, along with task instructions in the Task_Instruct and SIR layers.
Based on these inputs, plus context provided by PFC input, the Hidden layer determines the correct output in verbal or nonverbal form, or both. The
shown model has four “stripes” reflected in the four subgroups of the PFC and Matrix (striatal matrisomes) layers, and the four units of the SNc and
SNrThal layers. LVe, learned value, excitatory (anatomically associated with the central nucleus of the amygdala); LVi, learned value (LV) inhibitory
(same anatomical locus); PVe, primary value (PV) excitatory, external reward; PVi, primary value inhibitory (anatomically associated with patch/
striosomes of ventral striatum); SNrThal, abstracted layer reflecting direct and indirect pathways via substantia nigra, pars reticulata and thalamus.

Bogacz and Cohen, 2004). We also plan to simulate the
ABCA/ABBA task (Miller et al., 1996), serial recall (phono-
logical loop) (Burgess and Hitch, 1999), Sternberg task
(Sternberg, 1996), and the N-Back task (Braver et al.,
1997).

In addition to the basic goal of simulating all of these
tasks within a single model, this model will allow us to
explore fundamental questions about the nature and ori-
gins of cognitive control, and intelligence more generally,
by varying the training experiences that we give to the
model prior to testing on the full set of standard experi-
mental tasks. Specifically, we plan to build up a repertoire
of complex cognitive skills by initial training on much sim-
pler tasks, and to explore the extent to which performance
across a range of tasks can build efficiently upon a com-
mon set of shared task elements. Before discussing these
issues, we first describe our comprehensive MT (multi-
task) model (designed around the basic PBWM mecha-
nisms) that we are developing for this project, and our
initial efforts demonstrating basic competency for the par-
adigmatic working memory tasks listed in Table 1.

The full MT model

Fig. 7 shows the MT (multitask) model, with input/output
layers appearing at the top of the network, posterior corti-
cal “Hidden” layers and PFC layer in the middle, and
BG/midbrain areas for learning and gating of PFC at the

bottom. The input/output representations were designed to
accommodate the vagaries of each individual task in a way
that achieves a high level of surface validity.

The perceptual input representations in the MT model
(Fig. 8) assume a high level of perceptual preprocessing,
such that different stimulus items (“objects”) are repre-
sented with consistent and unique activity patterns. We
encode three separate (orthogonal) stimulus dimensions:
object identity, color, and size, and we also provide three
spatial locations in which a given object may appear. The
task instruction layer tells the network what to do with the
input stimuli, including the overall task and any more spe-
cific pieces of information that might be required (e.g.
whether to do word reading or color naming in the Stroop
task). We are exploring different ways of presenting these
task instructions, including presenting them only at the
beginning of a block of trials on a given task, at the begin-

Size: Small | Medium | Large X-Large
Color: Black White Red Green
Object: || Circle | Square | Triangle | Diamond
“Red” | “Green” 1 2
A B X Y

Fig. 8. Perceptual input features, organized along three separate
dimensions. Three separate locations of these features are provided
as input to the network.
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ning of a trial but not during it, and constantly throughout
each trial. Furthermore, we will explore the presentation of
a given task in a more surface valid manner, where after
training on a set of basic cognitive operations, a given task
is then “described” to the model in terms of the combina-
tion of these operations, instead of having it simply mem-
orize the meaning of a distinctive task label. We have also
included a sub-category of instruction inputs in the form of
the storef/ignore/recall (SIR) layer, which can be used to
provide explicit working memory update signals that are
encoded in a variety of different ways in different tasks,
and may also be present via implicit timing signals via the
cerebellum (Mauk and Buonomano, 2004; Ivry, 1996). The
outputs include both verbal and non-verbal responses, the
latter including button presses and pointing to locations.

The task instruction and SIR input each have a sepa-
rate hidden layer associated with them, which enables the
network to develop a more systematic internal represen-
tation of the task demands. These TaskHidden and
SIRHidden layers, along with the perceptual inputs, all
feed into one large common hidden layer (representing
posterior association cortex), which in turn projects to the
two output layers. The PFC is bidirectionally connected to
all relevant high-level processing layers (sensory input,
task hidden, central hidden, and output), and its associated
BG layers receive from all of these layers as well to provide
control over the learning and execution of the dynamic
gating signals. Note that the shown PFC/BG system has
four stripes, with each stripe representing a selectively
updatable component of working memory. More stripes
facilitate faster learning, but result in a larger, more compu-
tationally costly model, so the exact number of stripes is a
matter of pragmatic optimization in the model (in the brain, we
estimate that many thousands of stripes are present).

When sensory inputs are presented, activation flows
throughout the network in a bidirectional manner, so that
internal posterior cortical “hidden” layers are affected by
both these bottom-input and maintained top-down activa-
tions in the PFC. In the Leabra algorithm that we use,
individual units are modeled as point neurons, with simu-
lated ion channels contributing to a membrane potential,
which is in turn passed through a thresholded nonlinear
activation function to obtain a continuous instantaneous
spike rate output that is communicated to other units. The
inhibitory conductances are efficiently computed according
to a k-winners-take-all algorithm (kwta), which ensures that
no more than some percentage (typically between 15 and
25%) of units within a layer is active at a time.

Outside of the BG system, learning occurs as a result
of both Hebbian and error-driven mechanisms, with the
error-driven learning computed in a biologically-plausible
fashion based on the GeneRec learning algorithm
(O’Reilly, 1996). The learning mechanisms for the BG
components (PVLV algorithm) were described earlier.

The model can be systematically lesioned in a wide
variety of ways and its performance tested on each of the
behavioral paradigms. In some cases, there are clear pa-
tient data that the model will be expected to simulate.
However, much of the time, these lesions will not clearly

map onto any existing piece of empirical data, and will
therefore stand as important testable predictions of the
model. In addition to the standard techniques of damaging
units and connections, we can also manipulate the dopa-
minergic and other pathways in the BG and their projec-
tions to the PFC to simulate conditions such as Parkin-
son’s, ADHD, and schizophrenia.

Current progress and future directions

The model is currently able to perform a set of core tasks,
including the Stroop, AX-CPT, 1-2-AX, and WCST, in ad-
dition to a set of more primitive component tasks (e.g.
naming, matching, and comparing stimulus features, di-
mensions, and locations) that also involve basic working
memory capacities. The network has replicated basic fea-
tures of these tasks as highlighted in Table 1 (e.g. the
differential slowing of the color-naming conflict condition in
the Stroop task), but more extensive detailed testing has
yet to be performed, awaiting further training of the model
on more tasks, and all of the tasks integrated together.
Thus, although we are optimistic that the network will
succeed in simulating all of these tasks, considerable work
remains to be done.

As mentioned earlier, a single instantiation of our com-
prehensive MT model will provide important opportunities
for exploring a wide range of issues in cognitive develop-
ment and human intelligence generally. Perhaps the great-
est mystery in cognitive processing is where all the
“smarts” come from to control the system in a task-appro-
priate manner. Specifically, a fundamental question we
face is, How is it that people quickly adapt to performing
novel cognitive tasks, when it takes monkeys months of
highly-focused training to learn a single new task? We
hypothesize that people develop an extensive repertoire of
basic cognitive operations throughout the long develop-
mental period into adulthood, and then, are able to rapidly
and flexibly combine these basic “building block” opera-
tions to solve novel tasks. This may sound like common
sense, but demonstrating even rudimentary capabilities in
this regard in a mechanistically explicit computational
model remains an important challenge.

To explore these issues, we are planning to train the
MT model on a large corpus of primitive task-oriented
experiences (e.g. object naming, color naming, etc.) so as
to establish a basic set of capabilities underlying the more
complex task paradigms targeted above. A critical issue
will be how much specific training on each task will still be
required, in comparison to prior training on more basic
cognitive operations that may be combinatorially applied to
each task. One extreme of this dimension is represented
by studies conducted on monkeys, where many months of
highly specific training are required to achieve task perfor-
mance. In contrast, adult human participants typically re-
quire a simple set of verbal instructions, followed by a
small number of practice trials, to achieve high levels of
performance. In the past, neural network models have
been much closer to the monkey end of this spectrum (or
worse), requiring extensive task-specific training. Other
cognitive models (e.g. production systems) typically rely on
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the intelligence of the modeler to program in all the nec-
essary task components by hand, while non-computational
theories often invoke constructs that amount to homunculi,
for example the “central executive” of Baddeley (1986). A
major goal of our overall research program is to move our
models closer to the human end of the spectrum. A key
hypothesis to be tested is that our model will learn complex
tasks significantly faster after being pre-trained on simpler,
relevant ones. If we are successful in achieving this goal, it
would represent a critical qualitative step forward in the
modeling of human-like intelligence.

Some preliminary work using an earlier version of our
basic model provides reason to be optimistic regarding this
overall approach. In simulations of a task paradigm we
called cross-task generalization (XT; Rougier et al., 2005),
we explored the ability of training on one set of tasks to
generalize (transfer) to other, related tasks. In general, the
key to generalization in a neural network is the formation of
abstract (e.g. categorical) representations (O’Reilly and
Munakata, 2000; Munakata and O’Reilly, 2003). For ex-
ample, the abstract representation of the category “dog”
(which must be abstracted over experiences with specific
dogs) can enable one to surmise that poodles eat dog food
based on seeing a German shepherd eating dog food,
even though this might not be obvious given the raw per-
ceptual differences among members of the dog category
(e.g. you might otherwise be tempted to feed a poodle cat
food).

In the Rougier et al. (2005) model, we trained a PFC
model using a simple form of dynamic gating mechanism
on a varying number of related tasks operating on simple
visual stimuli (e.g. name a “feature” of the stimulus along a
given “dimension” such as its color, shape, or size; match
two stimuli along one of these dimensions; compare the
relative size of two stimuli). To test for generalization, we
only trained a given task on a small percentage (e.g. 30%)
of all the stimuli, and then tested that task on stimuli that
were trained in other tasks. We found that only the model
with an intact PFC and dynamic gating mechanism was
capable of significant levels of generalization. Further-
more, this model developed discrete rule-like representa-
tions in the PFC that clearly and uniquely encoded the
task-relevant stimulus dimensions, and the generalization
performance and formation of these rule-like representa-
tions were strongly correlated throughout all the models.

We think this pattern of results reflects a general prin-
ciple for why the PFC should develop more abstract rep-
resentations than PC, and thus facilitate flexible generali-
zation to novel environments: abstraction derives from the
maintenance of stable representations over time, interact-
ing with learning mechanisms that extract commonalities
over varying inputs. Supporting this view are data showing
that damage to PFC impairs abstraction abilities (e.g.,
Dominey and Georgieff, 1997), and that PFC in monkeys
develops more abstract category representations than
those in PC (Wallis et al., 2001; Freedman et al., 2002;
Nieder et al., 2002).

As a preliminary test of our overall approach, we have
successfully implemented the core findings of the cross-

task generalization model (Rouger et al., in press) in a
version of the MT model described here to validate that the
latter can replicate the core results generated by that
model. Specifically, we have been able to easily demon-
strate that the latest PBWM mechanisms, using the input
framework and training environment of the Rougier et al.
(2005) model, could quickly learn the core tasks (name
feature, match feature, compare feature) and could also
successfully learn to generalize across tasks just as in the
original.

Future developmental directions for the model

The question of how the PFC is functionally organized is
also prominent in the literature, and remains largely unre-
solved. We think this path of research can shed consider-
able light on this issue as well. Previously, we have pro-
posed that the anterior-posterior (and perhaps dorsal—
ventral) axis of the PFC might be organized along a
gradient from abstract to concrete, respectively (O'Reilly et
al.,, 2002; O'Reilly and Munakata, 2000). However, the
PBWM model currently has no mechanism for encourag-
ing such a gradient (or any other kind of gradient) to
develop in the stripes of the PFC (all stripes are equipotent
in their access to information). Therefore, an additional
avenue of research we plan to explore is to look at various
ways of biasing the model to develop a gradient of orga-
nization along its PFC stripes, and see what types of
gradients actually develop in response to the battery of
training provided, while assessing any behavioral implica-
tions this organization might have (e.g. does the organiza-
tional principle actually facilitate processing, and if so,
how?). One particular organizational bias suggested by the
biology is to have only the more posterior areas of PFC
connected (bidirectionally) with posterior cortical areas,
while more anterior PFC areas connect only with these
posterior PFC areas. Thus, anterior PFC areas might be
able to serve as more abstract biasing inputs to more
posterior PFC areas, which in turn bias more specific
processing in PC.

Understanding the human capacity for generativity
may be one of the greatest challenges facing the field of
“higher-level” cognitive function. We think that the mecha-
nisms of the PBWM model, and in particular its ability to
exhibit limited variable-binding functionality, may be critical
steps along the way to such an understanding. It may be
that, over the 20 or so years it takes to fully develop a
functional PFC, people have developed a systematic and
flexible set of representation that supports dynamic recon-
figuration of input/output mappings according to main-
tained PFC representations. Thus, these PFC “variables”
can be activated by task instructions, and support novel
task performance without extensive training. This and
many other important problems remain to be addressed in
future research.

Finally, while our model addresses the computational
role of BG DA in working memory, we are only beginning to
explore DA effects in PFC. In brief, we think that phasic DA
effects are critical for learning in the BG, whereas longer
lasting DA effects in PFC support robust maintenance of
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working memory representations (Durstewicz et al., 2000;
Seamans and Yang, 2004; Tanaka, 2002). In the model
described here, these dopaminergic effects in PFC were
abstracted and subsumed by a simple intracellular main-
tenance current—but these currents are known to depend
on a healthy level of tonic DA.

CONCLUSION

Although many theoretical models have been developed
purporting to explain aspects of working memory and ex-
ecutive function, the mechanistic basis underlying them
has remained inadequately described, often amounting to
a homunculus. In this paper, we have reviewed some of
the progress made by our colleagues and others in at-
tempting to deconstruct this implicit homunculus by eluci-
dating the precise computational and neural mechanisms
underlying them, particularly the role of the PFC. These
ideas can be specified at multiple levels. At a more ab-
stract level, we outlined six key functional demands that we
see underlying working memory, which need to be satis-
fied by the neural system. We also described a detailed
implementation of these functional demands in the PBWM
(PFC BG working memory) computational model. This
model attempts to incorporate detailed biological con-
straints in addition to the more abstract functional de-
mands, and is capable of learning complex working mem-
ory tasks strictly as a function of experience (without task-
specific knowledge having to be built in by the modeler).

We are currently applying this computational model to
a range of different working memory tasks, which should
strongly test the cognitive neuroscience validity of the
model. For example, the model can be used to explore
roles of the individual neural systems involved by perturb-
ing parameters to simulate development, aging, pharma-
cological manipulations, and neurological dysfunction, and
it promises to be extensible to a broad array of other
relevant manifestations of working memory and executive
function. Furthermore, we hope to use this platform to
explore fundamental questions regarding the neural basis
and origins of our uniquely flexible human intelligence and
capacity for cognitive control.
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