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Abstract

In computer science, reinforcement learning is a powerful framework with which artificial

agents can learn to maximize their performance for any given Markov decision process

(MDP). Advances over the last decade, in combination with deep neural networks, have

enjoyed performance advantages over humans in many difficult task settings. However,

such frameworks perform far less favorably when evaluated in their ability to generalize or

transfer representations across different tasks. Existing algorithms that facilitate transfer

typically are limited to cases in which the transition function or the optimal policy is portable

to new contexts, but achieving “deep transfer” characteristic of human behavior has been

elusive. Such transfer typically requires discovery of abstractions that permit analogical

reuse of previously learned representations to superficially distinct tasks. Here, we demon-

strate that abstractions that minimize error in predictions of reward outcomes generalize

across tasks with different transition and reward functions. Such reward-predictive repre-

sentations compress the state space of a task into a lower dimensional representation by

combining states that are equivalent in terms of both the transition and reward functions.

Because only state equivalences are considered, the resulting state representation is not

tied to the transition and reward functions themselves and thus generalizes across tasks

with different reward and transition functions. These results contrast with those using

abstractions that myopically maximize reward in any given MDP and motivate further experi-

ments in humans and animals to investigate if neural and cognitive systems involved in

state representation perform abstractions that facilitate such equivalence relations.

Author summary

Humans are capable of transferring abstract knowledge from one task to another. For

example, in a right-hand-drive country, a driver has to use the right arm to operate the

shifter. A driver who learned how to drive in a right-hand-drive country can adapt to

operating a left-hand-drive car and use the other arm for shifting instead of re-learning

how to drive. Despite the fact that both tasks require different coordination of motor

skills, both tasks are the same in an abstract sense: In both tasks, a car is operated and
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there is the same progression from 1st to 2nd gear and so on. We study distinct algorithms

by which a reinforcement learning agent can discover state representations that encode

knowledge about a particular task, and evaluate how well they can generalize. Through a

sequence of simulation results, we show that state abstractions that minimize errors in

prediction about future reward outcomes generalize across tasks, even those that superfi-

cially differ in both the goals (rewards) and the transitions from one state to the next. This

work motivates biological studies to determine if distinct circuits are adapted to maximize

reward vs. to discover useful state representations.

Introduction

A central question in reinforcement learning (RL) [1] is which representations facilitate re-use

of knowledge across different tasks. Existing deep reinforcement learning algorithms, such as

the DQN algorithm [2], construct latent representations to find a reward-maximizing policy

in tasks with complex visual inputs. While these representations may be useful for abstracting

across states in the service of optimal performance in a specific task, this article considers rep-

resentations that facilitate re-use across different tasks. Humans are adept at such flexible

transfer. As a lay example, consider shifting gears in a manual transmission car. In a right-

hand-drive country, the steering wheel is on the left side of the car and the right arm is used

for shifting, whereas the opposite is the case in a left-hand-drive country. A person who has

learned in one scenario can quickly generalize to the other, despite the fact that both tasks

require different coordination of motor skills. Both tasks are the same in an abstract sense: In

each case, there is a progression from 1st to 2nd gear and so on, which should be coordinated

with the clutch pedal and steering, and this structure can be generalized from a left-hand-drive

car to a right-hand-drive car [3, 4] and a driver does not have to learn how to drive from

scratch.

By treating two different sensory inputs or states as equivalent, an agent can generalize

what it has learned from one state to another and speed up learning [4, 5]. Such equivalences

can be modeled using state abstractions [3, 6], which map states to a compressed latent repre-

sentation. The usual RL framework considers Markov Decision Processes (MDPs) [7] in

which an agent’s sole objective is to maximize reward. In contrast, in transfer or lifelong learn-

ing, an agent observes a sequence of MDPs and attempts to learn a state abstraction that can

be re-used to speed up learning in a previously unseen task. State abstractions can be con-

structed in different ways, for example by merging states with the same optimal action or Q-

values into the same latent or abstract state. This article considers two types of state

abstractions:

1. reward-maximizing state abstractions, which allow an agent to maximize total reward, and

2. reward-predictive state abstractions, which allow an agent to predict future reward

sequences.

While many different RL transfer algorithms have been proposed (see [8] for a survey), this

article demonstrates that, while reward-maximizing state abstractions are useful for compress-

ing states within a given task, they fail to generalize across tasks that differ in reward and tran-

sition functions. In contrast, reward-predictive state abstractions can be leveraged to improve

generalization even when both transition and reward functions change across tasks. The pre-

sented analysis and simulations motivate the design of new RL algorithms that can discover
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such state abstractions as well as further experiments to investigate whether neural mecha-

nisms in biological agents facilitate learning of such representations.

Previous work [9] shows that reward-predictive state abstractions can be extracted from the

successor representation (SR) [10], which predicts the discounted expected frequency of visiting

future states given the current state. While re-using a previously learned SR has been shown to

speed up learning when reward functions change [11–13], these methods are only suitable if

transition functions are shared (e.g., if one is in the same maze but only the location of the goal

changes). Further, if the optimal decision-making strategy differs between two tasks, the SR

has to be re-learned [14]. In contrast, this article shows that reward-predictive state abstrac-

tions afford “zero-shot” transfer across tasks with variations in transition functions, reward

functions, and optimal policies and do not have to be adjusted or re-learned for each task.

Such “deep transfer” across environments, even in the absence of prior experience with spe-

cific transition or reward functions, is predicted by behavioral and neural signatures of human

structure learning [4, 15, 16] but not afforded by alternative algorithms that compress the tran-

sition function itself directly [17, 18].

To unpack the relative advantages of distinct state abstraction algorithms for generalization,

we proceed as follows. In the following section, we begin with a simple illustration of the state-

abstraction framework and then present the conceptual utility of reward-predictive state

abstractions. Next, we present our first result by examining this advantage quantitatively when

a single abstraction is possible for re-use across a range of task settings and assumptions about

the number of latent states (Transfer with single state abstractions). Subsequently, we consider

a curriculum-learning situation where multiple state abstractions might apply to different

MDPs and the agent has to select amongst them when learning a new MDP (Transfer with

multiple state abstractions). Extending our simulations to an online learning setting, we show

that this advantage is preserved even when the agent has to simultaneously learn the transi-

tions and rewards of the new MDP and perform inference (Learning to transfer multiple state

abstractions). Finally, we demonstrate how this advantage can be leveraged in a guitar playing

task, whereby an agent can reapply learned structure about the fret-board while learning a

musical scale to quickly learn to play other scales that differ in transitions, rewards, and policy

(Comparison to transferring successor features).

Methods

An MDP [1] is a quintuple M ¼ hS;A; p; r; gi with a state space S, an action space A, a transi-

tion function p : S �A� S ! ½0; 1�, and a reward function r : S �A� S ! R. (In this arti-

cle, we will always refer to the full transition function p of an MDP.) The interaction of an

agent in a particular task is modeled by a sequence of transitions between different states. Each

transition from state s to state s0 is initiated by an action a 2 A and is rewarded with a scalar

number r(s, a, s0). The probability of reaching state s0 from state s using action a is specified by

the transition function p(s, a, s0). How strongly short-term rewards are favored over long-term

rewards is controlled by the discount factor γ 2 [0, 1).

In model-free learning, for example Q-learning [19], the optimal decision-making strategy,

called a policy, is learned through trial and error interactions in an MDP. Throughout these

interactions, a policy is incrementally improved. During learning, only the policy π and some

form of cached values of the policy π are stored at any point in time. In other words, the agent

only learns and represents the net predicted reward value of an action in a given state, without

needing to represent the specific outcomes of each action in terms of the subsequent states that

will be encountered. In model-based learning [20, 21] an agent attempts to build a model of the

task’s transition and reward function and uses this model to predict sequences of future reward
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outcomes (r1, r2, . . .) given a start state s and a particular sequence of actions (a1, a2, . . .).

While more computationally intensive, this approach is orthogonal to model-free learning,

because using this model an RL agent can predict the value of any arbitrary policy, and it can

flexibly adjust its policy if the reward changes. In this case, the agent’s “knowledge” is sufficient

to generalize across the space of all possible policies [20].

For example, in an Atari game [22], the number of states in an MDP is large and it may be

inefficient to learn and memorize an optimal action for every possible image pixel configura-

tion. In this case, state abstractions [6, 23] provide a framework for simplifying the input space

into a lower-dimensional latent space. A state abstraction, also called state representation, is a

function ϕ mapping the state space S to some other latent space. Because state representations

are many-to-one relations, they can map different states to the same latent state and create a

partitioning of the state space. A state partition is a subset of the state space that maps to the

same latent or abstract state. An agent using a state abstraction ϕ operates on the space of state

partitions and generalizes knowledge learned in one state across the entire state partition. For

example, in Q-learning, a value update is applied to the entire state partition even if the update

is computed only from one specific state transition, resulting in faster learning if the state

abstraction is appropriate [4, 5].

While several approaches exist for constructing a useful state abstraction ϕ for complex

MDPs (e.g., Atari games), this article investigates which state abstractions facilitate re-use

across different tasks. Specifically, we consider the question of which algorithm should be used

to learn a state abstraction ϕ from a hypothesis space of all possible state abstractions H to

maximize the agent’s ability to reuse knowledge in future tasks. A state abstraction is a func-

tion mapping states to a smaller latent abstract state space S�. The state-abstraction hypothesis

space is then

H ¼ f� : S ! S�g ð1Þ

and a representation learning algorithm searches this space to identify a state abstraction ϕ. An

agent that uses a state abstraction ϕ operates directly on the latent space S� rather than the

underlying state space S. Depending on how ϕ constructs the latent state space S�, the agent

may or may not be able to distinguish between a rewarding and a non-rewarding state.

Fig 1 presents an example of how state representations simplify a task. The column world

task (Fig 1A) is a grid-world navigation task where an agent only receives reward by entering

the right column. For this task, Fig 1B illustrates a reward-predictive state representation that

generalizes across different columns, as indicated by the colouring. In this case, the 3 × 3 grid

world is compressed into a smaller 3 × 1 grid world where a reward is given for entering the

latent state ϕ3 (green) and no reward is given for the latent states ϕ1 (blue) and ϕ2 (orange).

While the compressed version of the grid world does not preserve all information about the

task, it still possible to predict future reward outcomes. For example, the path indicated by the

black boxes is mapped to a latent state sequence of (ϕ1, ϕ2, ϕ2, ϕ3). This latent state sequence

could then be mapped to a reward sequence of (0, 0, 0, 1). In this example, every possible path

in the original task is mapped to a path in the compressed task that produces the same reward

sequence. Hence, the smaller compressed task can be used to predict future reward outcomes

of the original task and the state representation is thus reward predictive.

A reward-predictive state abstraction � 2 H allows an agent to best predict which expected

reward sequence r1, . . ., rt will be observed after executing a decision sequence a1, . . ., at start-

ing at a specific state s. If the random variable Rt describes the reward that is observed after

PLOS COMPUTATIONAL BIOLOGY Reward-predictive representations generalize across tasks in reinforcement learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008317 October 15, 2020 4 / 27

https://doi.org/10.1371/journal.pcbi.1008317


following the action sequence a1, . . ., at starting at state s, then the expected reward sequence is

ðr1; :::; rtÞ ¼ E½ðR1; :::;RtÞ js; a1; :::; at�: ð2Þ

The expectation in Eq (2) is conditioned on the start state s and is computed over all possible

trajectories in an MDP that follow the action sequence a1, . . ., at. A reward-predictive state

abstraction needs to satisfy for any start state s and action sequence a1, . . ., an that

E½ðR1; :::;RtÞ js; a1; :::; at� ¼ E½ðR1; :::;RtÞ j�ðsÞ; a1; :::; at�: ð3Þ

The expectation on the right-hand side is conditioned on the latent state ϕ(s). Consequently

the expectation on the right-hand side is computed over all possible trajectories in a latent

space, while the expectation on the left-hand side is computed over all possible trajectories in

an MDP [9]. While this model is different to learning an explicit approximation of the MDP’s

transition and reward function, learning a reward-predictive state abstraction is akin to

model-based RL, because both systems are used to predict sequences of future reward

outcomes.

Fig 1C presents a reward-maximizing state representation. Because the optimal action is to

move right in this specific task, the task can be compressed into a single state in this example.

If rewards are only given when an agent enters the right column by moving right, then only

the right action is directly rewarded. In this case, the compressed task can still be used to find

an optimal policy, because only the move right action is rewarded; the remaining three actions

are not rewarded in any case. Nevertheless, the compressed task cannot be used to make accu-

rate predictions of future reward outcomes, because this state representation simplifies the

task into only one latent state (the agent does not know which column it is in: it is as if moving

right simply produces stochastic rewards). Because this state abstraction allows an agent to

recover the optimal policy, this state abstraction is reward maximizing in this example.

In this article, state abstractions are generated in one of two ways:

Fig 1. State-abstraction examples, adopted from [9]. (A) The column world task is a 3 × 3 grid world where an agent

can move up ("), down (#), left ( ), or right (!). A reward of +1 is given when the right column is entered from the

centre column by selecting the action “move right” (!). (B) A reward-predictive state representation generalizes

across columns (but not rows) and compresses the 3 × 3 grid world into a 3 × 1 grid world with three latent states

labelled with ϕ1, ϕ2, and ϕ3. In this compressed task, only the transition moving from the centre orange state ϕ2 to the

right green state ϕ3 is rewarded. (C): A reward-maximizing state representation compresses all states into one latent

state. In the 3 × 3 grid, there are three out of nine locations where an agent can receive a reward by selecting the action

move right (!). If states are averaged uniformly to construct the one-state compressed task, then the move right action

is rewarded with 1/3 and all other actions are not rewarded. In this case, an optimal policy can still be found using the

compressed task, but accurate reward predictions are not possible.

https://doi.org/10.1371/journal.pcbi.1008317.g001
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1. Enumerate all possible state abstractions using Algorithm U [24]. This method is used in

Figs 3 and 6.

2. Learning a state-abstraction function from transition data. This method is used in Figs 7

and 8.

Reward-predictive state abstractions can be learned using Linear Successor Feature Models

(LSFMs) [9] as a means to learn reward-predictive state abstractions. Successor Features (SFs)

[25] are a generalization of the SR [10], and predict the expected visitation frequencies in some

latent feature space:

ψp ðs; aÞ ¼ E½�ðs1Þ þ g�ðs2Þ þ g2�ðs3Þ þ � � � js ¼ s1; a ¼ a1; p�; ð4Þ

where the expectation is computed over all infinite length trajectories that start in state s with

action a and then follow the policy π. The discount factor γ 2 [0, 1) is used such that states in

the more distant future are weighted to a lesser degree in the summation in Eq (4). Intuitively,

SFs incorporate information about which latent state features are observed along a trajectory,

including their relative temporal positions, because for each time step t a different weight γt is

associated with the latent state feature vector ϕ(st) (Eq (4)) (allowing the state abstraction to

distinguish between a reward sequence “+1, −1” vs. “−1, +1”, for example). LSFMs extract this

temporal property from SFs and construct a state abstraction ϕ that is predictive of the order

with which particular latent state features are observed. Critically, the LSFM latent space is

constructed so as to most efficiently predict reward sequences without being tied to the specific

transitions or rewards, and thus permit a “deeper” form of transfer loosely akin to analogical

reasoning.

If such a state abstraction also associates each feature vector ϕ(st) with one-step reward out-

comes, then this state abstraction is reward-predictive. Mathematically, this intuition can be

generalized to predict reward outcomes for any start state s and action sequence a1, . . ., at and

indeed, learning LSFMs is equivalent to learning reward-predictive state abstractions [9].

Please refer to supporting S3 Text for a detailed description of how LSFMs are used.

Note that this LSFM approach contrasts with the typical application of SFs in which Q-val-

ues are expressed as a dot-product between the SF vectors ψπ(s, a) and a reward-model vector.

While that approach allows an agent to re-use SFs when rewards and the associated reward-

model vector change, it does not afford analogical transfer when transitions change. In fact,

because SFs depend on the transition function and a particular policy, a transferred SF has to

be relearned and adjusted to a specific task. In contrast to SFs, reward-predictive state abstrac-

tions are independent of a specific policy and can be used to generalize across all policies that

are defined in terms of the latent states. More concretely, a reward-predictive state abstraction

can be used to predict the value of any arbitrary abstract policy by first predicting which

reward sequence a specific policy generates and then computing the discounted sum over this

reward sequence [9, Theorem 4]. Fig 2 presents an intuitive transfer example and plots differ-

ent SFs for each task. Consequently, an agent would have to adjust a previously learned SF.

An alternative to using LSFMs are Linear Action Models (LAM), which predict the

expected next state instead of SFs. LAMs are very closely tied to LSFMs and can also be used to

learn reward-predictive state abstractions [9]. Because we found that LSFMs are easier to use

than LAMs in practice, this article focuses on LSFMs. Please refer to S2 Text for a more

detailed description of LSFMs and the connection to LAMs.
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Results

To generalize knowledge across different tasks, a compressed state abstraction is needed that

preserves key aspects of the tasks even if the details of transitions or rewards change. Consider

the transfer example in Fig 2, where an agent is first presented Task A, and then transfers a

state abstraction to Task B. The key similarity between the tasks is evident in that they both

have columnar structure, but transitions, rewards, and the optimal policy can all differ. In this

example, the reward-predictive state abstraction (Fig 2B) can be re-used to plan a different pol-

icy in Task B, while the reward-maximizing state abstraction (Fig 2C) cannot be re-used in

Task B. Of course, such a benefit is only possible if the two tasks share an abstract relation:

This columnar state abstraction would not be useful in subsequent MDPs that arranged in

rows. Below, we consider how multiple state abstractions can be learned and where generaliza-

tion involves an inference process to select which one of them is most applicable [3].

In principle, there always exists one state abstraction that is both reward-maximizing and

reward-predictive in a model-based agent: Trivially, if the identity map is used to map nine

distinct states into a latent space of nine distinct states, then such a state representation is

always reward maximizing and reward predictive. However, such a state representation is not

really “abstract” in that it does not inform an agent across which states information can be gen-

eralized. But, for the same reason, this representation preserves information that might be

needed in other tasks. We will further discuss this trade-off in the context of our online learn-

ing simulations in the following section (Learning to transfer multiple state abstractions).

Transfer with single state abstractions

The above example was illustrative for a single MDP designed to show the potential utility of

reward-predictive state abstractions. We next systematically assess the generalization potential

of reward-maximizing or reward-predictive state abstractions across a range of different tasks.

The goal of this experiment is to be algorithm agnostic: Rather than focusing on how a particu-

lar algorithm performs at transfer with a single learned state abstraction, we enumerated the

entire hypothesis space H for all possible partitions of the state space and evaluated them in all

transfer tasks. (Out of a set of tasks, one task was randomly chosen for evaluation of a single

state abstraction ϕ. Subsequently, this state abstraction ϕ is evaluated in all other remaining

transfer tasks. In all simulations, the evaluation and transfer tasks are distinct.) For each state

abstraction in H, we computed a compressed abstract MDP [23] for every tested MDP and

solved it using value iteration [1, Chapter 4.4] (please also refer to supporting S1 Text). A

reward-maximizing state abstraction is then identified by testing the computed policy in a sin-

gle randomly selected task for N trials over T time steps and computing the total reward

Rtotal ¼
1

N

XN

n¼1

XT

t¼1

rn;t; ð5Þ

where rn,t is the reward incurred in trial n at time step t. A reward-predictive state abstraction

is identified by sampling N random state-and-action sequence pairs (sn, an,1, . . ., an,T) and pre-

dicting the reward sequence r̂n;1; :::; r̂ n;T using the abstract MDP. The reward-sequence predic-

tion error is

RSerror ¼
1

N

XN

n¼1

XT

t¼1

jrn;t � r̂ n;tj: ð6Þ

We considered three types of tasks: column-worlds (like those in the motivating example), 100

randomly generated MDPs, and grid worlds (Fig 3A, 3B and 3C). For each transfer
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Fig 2. Transferring state abstractions between MDPs. (A) In both grid-world tasks, the agent can move up ("), down (#), left ( ), or

right (!) and is rewarded when a reward column is entered. The black line indicates a barrier the agent cannot pass. Both Task A and

Task B differ in their rewards and transitions, because a different column is rewarded and the barrier is placed at different locations. (B)

A reward-predictive state representation generalizes across different columns and the corresponding SFs are plotted below in (D). (D)

Each row in the shown matrix plots visualizes the entries of a three dimensional SF vector. Similar to the example in Fig 1, a reward-

predictive state abstraction merges each column into one latent state, as indicated by the colouring. In both tasks, reward sequences can

be predicted using the compressed representation for any arbitrary start state and action sequence, similar to Fig 1B. In this case the

agent simply needs to learn a different policy for Task B using the same compressed representation. In contrast, the matrix plots in the

bottom panels illustrate that SFs are different in each task and cannot be immediately reused in this example (because SFs are computed

for the optimal policy which is different in each task [14]). Note that states that belong to the same column have equal SF weights (as

indicated by the coloured boxes). LSFMs construct a reward-predictive state representation by merging states with equal SFs into the

same state partition. This algorithm is described in supporting S3 Text and prior work [9]. (C) One possible reward-maximizing state

abstraction may generalize across all states. While it is possible to learn or compute the optimal policy using this state abstraction in Task

A (i.e., always go right), this state abstraction cannot be used to learn the optimal policy in Task B in which the column position is

needed to know whether to go left or right. This example illustrates that reward-predictive state representations are suitable for re-use

across tasks that vary in rewards and transitions. While reward-maximizing state abstractions may compress a task further than reward-

predictive state abstractions, reward-maximizing state abstractions may also simplify a task to an extend that renders them proprietary to

a single specific task.

https://doi.org/10.1371/journal.pcbi.1008317.g002
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Fig 3. Minimizing reward-sequence prediction errors identifies state abstractions amenable for “deep transfer”. For each task set (A, B, C), all possible

state abstractions in H were enumerated using Algorithm U [24] to obtain a ground truth distribution over the hypothesis space H. In each grid-world task

(A, C) the agent can transition up, down, left, or right to move to an adjacent grid cell. If the agent attempts to transition of the grid or across one of the

black barriers in (C), then the agent remains at its current grid position. State abstractions were scored by compressing an MDP using the state abstraction

of interest [6]. The total reward score was computed by running the computed policy 20 times for 10 time steps in the MDP from a randomly selected start

state. The reward-sequence error was computed by selecting 20 random start states and then performing a random walk for 10 time steps. (D, E, F) The

histograms report averages over all repeats and transfer MDPs for all state abstractions that are possible in a nine state MDP. (G, H, I) The histograms

report averages over all repeats and transfer MDPs for all state abstractions that compress nine states into three latent states. For each histogram, the

Welch’s t-test was performed to compute the p-values of the difference in mean total reward being insignificant for each histogram.

https://doi.org/10.1371/journal.pcbi.1008317.g003
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experiment, all possible state abstractions are enumerated and the top 5% scoring state abstrac-

tions were re-evaluated on the remaining transfer MDPs and the total rewards generated by

these state abstractions are plotted as histograms in Fig 3. In all cases, state abstractions with

low reward-sequence prediction errors RSerror generate a higher total reward at transfer than

state abstractions that were selected based on their ability to construct a well performing policy

(produce a high Rtotal score) on the original MDP. Note that restricting the hypothesis space H
to abstractions that construct three latent states (second row of histograms in Fig 3) does not

change the overall result. This result indicates that reward-predictive state abstractions encode

information about an MDP that can be generalized across different MDPs that share the same

abstract structure. In the following two sections (Transfer with multiple state abstractions and

Learning to transfer multiple state abstractions), we will present an extension to environments

in which multiple structures are possible and have to be inferred.

Fig 3D and 3G present the results for the transfer experiment discussed in Fig 2. Both histo-

grams indicate that state abstractions with low reward-sequence prediction errors outperform

on average state representations that only maximize total reward in one of the tasks. Because

all three MDPs can be compressed into three latent states, constraining the hypothesis space H
to only contain state abstractions that create three latent states does not impact the total reward

generated at transfer time significantly. In this case, both histograms have equal support.

To further control for a potential dependency between the constructed MDPs and a partic-

ular state-representation type, the experiment in Fig 3B randomly generates transition and

rewards. This experiment is similar to the previous test case in that all 100 randomly generated

MDPs can be compressed with the same state representation. These MDPs are constructed by

generating random three-state MDPs and then “inflating” the state space size based on this

common but randomly generated state abstraction. Aside from this common “hidden” state

representation, these 100 MDPs differ in both transition and reward functions. The histograms

confirm the claim that abstractions yielding low reward-sequence prediction errors perform

best in generalization across different MDPs (Fig 3E and 3H). In contrast, state representations

that result in high total reward in any of the original MDPs generate on average less reward in

any of the remaining MDPs. Again, constraining the hypothesis space H to only include

abstractions that construct three latent states does not change the support of the histogram in

Fig 3H, but the shape changes and the median shifts. This shift can be explained by the fact

that incorrectly compressing a task and incurring approximation errors can quickly degrade

an agent’s ability to perform optimally. If a state abstraction does not maximally compress a

task, for example from nine to eight states, then performance may not degrade as quickly.

The above simulation assumed lossless compression (given that the abstraction was selected

and then inflated to generate larger state spaces). To test which state abstractions generalize

across tasks when no “hidden” state abstraction is embedded in the tasks, we next considered

situations in which state spaces could not be compressed without some information loss. Fig

3C presents a transfer experiment where two reward locations and four different wall place-

ments are permuted in a grid world. These changes in reward and wall locations resemble

changes in the transition and reward functions. In this experiment, the MDPs cannot be com-

pressed without incurring some loss, because the grid location is important for predicting

where the goal locations are and what action is optimal at each location. However, both histo-

grams in Fig 3F and 3I indicate that state abstractions that minimize the reward-sequence pre-

diction error criterion still perform better than those that maximize total reward. By nature,

grid worlds have a specific topology of the state space and state representations that cluster

only neighbouring states approximately preserve the grid location information and would be

expected to perform relatively well across all MDPs. If the hypothesis space H is constrained to

abstractions that compress nine states into three latent states, then the advantage shrinks. This
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difference can be explained by the fact that for arbitrary navigation tasks grid worlds should

ideally not be compressed (for efficient navigation an agent needs to be aware of its position),

and hence neither abstraction yields an optimal policy. However, the histogram in Fig 3F sug-

gests that there exist several state abstractions that compress nine states into six or seven latent

states that can still lead to (close to) optimal performance.

Note that the identity map, which does not compress the state space and can always be used

to construct an optimal policy, is also included in this histogram and occurs in the bin with

highest total reward. The identity map is included exactly once into each histogram that plots

the distribution for all abstractions, because this experiment tests each possible state abstrac-

tion once. This experiment highlights a trade-off between the ability to obtain an optimal pol-

icy in a task and re-use of a particular state abstraction that compresses a task.

Transfer with multiple state abstractions

The previous experiment assumes that all tasks share a common “hidden” state abstraction

that can be learned and re-used by an agent. In this section, we consider the situation in which

different MDPs might correspond to different abstractions. A non-parametric Bayesian model

maintains a belief space of possible state abstractions [3, 4], which it can use for inference.

Fig 4 illustrates how the curriculum of tasks is randomly generated. This task curriculum is

observed in sequence by the non-parametric Bayesian model and the model is signalled when

a switch between tasks occurs. Each task can be compressed in one of two different ways (this

approach can be expanded to larger numbers without loss of generality; two is used here for

clarity of exposition). Critically, this state abstraction is hidden from the learning agent. After

observing an MDP sequence M1, . . ., Mt, the agent updates its belief space Bt using a posterior

over which state abstraction is most suitable to solve a given task Mt:

Prð�jMt;Bt; ctÞ / Prð�jMtÞPrð�jBt; ctÞ; ð7Þ

Fig 4. Transfer with multiple state abstractions curriculum. (A) A curriculum of transfer tasks is generated by first constructing

the three-state MDP. At each state, only one action causes a transition to a different state. Only one state-to-state transition is

rewarded; the optimal policy is to select the correct action needed to cycle between the node states. (B) To generate a sequence of

abstract MDPs Mabs
1
; :::;Mabs

20
, the action labels are randomly permuted as well as the transitions generating positive reward (similar

to the Diabolical Rooms Problem [3]). Two hidden state abstractions ϕA and ϕB were randomly selected to “inflate” each abstract

MDP to a nine-state problem. One state abstraction was used with a frequency of 75% and the other with a frequency of 25%. The

resulting MDP sequence M1, . . ., M20 was presented to the agent, without any information about which state abstraction was used

to construct the task sequence.

https://doi.org/10.1371/journal.pcbi.1008317.g004
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where ct(ϕ) is the count of how often an abstraction ϕ was used in the previous t − 1 tasks.

These counts are used to construct a Chinese Restaurant Process (CRP) [26, 27] prior for an

intensity α> 0:

Prð�jBt; ctÞ ¼

ctð�Þ
t � 1þ a

if � 2 Bt

a

t � 1þ a
otherwise:

8
>>><

>>>:

ð8Þ

The posterior is also conditioned on the MDP Mt through the factor Pr(ϕ|Mt). Using a loss

function l (we consider both reward-maximizing and reward-predictive losses), each state

abstraction ϕ can be scored and for β� 0, the probability of this state abstraction being suitable

to solve Mt is the soft-max probability

Prð�jMtÞ / e� blð�Þ: ð9Þ

To determine which state abstraction should be added into the abstraction belief set Bt, the

non-parametric Bayesian agent has access to the best scoring state abstraction ϕnext-best not

included into Bt. The posterior Prð�jMt;Bt; ctÞ is computed over the set of state abstractions

Bt [ f�next� bestg. (The goal is not to design an algorithm that can solve a sequence of tasks effi-

ciently, but to analyze which state abstractions generalize across different tasks. Thus, for the

moment, we assume that the agent has access to an oracle that knows the transition function

of each new MDP and can score the loss for each compression. Using an oracle that tabulates

all possible state abstractions � 2 H gives insight into which state abstractions generalize

across different tasks, while being algorithm agnostic; below we relax the need for an oracle.)

In contrast to the previously presented simulation, this non-parametric Bayesian agent is con-

strained to only use state abstractions that compress nine-state MDPs to three-state MDPs.

Consequently, the model is forced to generalize across different states and cannot default to

only using the identity state abstraction, which does not compress an MDP and is both

reward-predictive and reward-maximizing. If α increases, the resulting prior and posterior

assign a higher probability to adding the next-best state abstraction ϕnext-best into Bt. In this

case, the CRP prior influences the posterior more strongly. If β increases, then more emphasis

is given on using the loss function l to determine which state abstraction should be used from

the set Bt [ f�next� bestg and the CRP prior is effectively ignored.

Rather than using the empirical scores Rtotal or RSerror, the agent is allowed to observe a tab-

ulation of all possible transitions and rewards to obtain a ground truth score for each abstrac-

tion. In these experiments, reward-maximizing state abstractions are identified by assessing

how much using a state abstraction impacts the value of the policy πϕ relative to that of the

optimal policy in the abstract MDP:

lmaximizingð�Þ ¼ max
s2S

�
Vp� ðsÞ � Vp�ðsÞ

�
; ð10Þ

where Vp� is the optimal discounted value function [1], π� is the optimal policy, and Vp� is the

discounted value function of the policy πϕ evaluated in the task itself. Reward-predictive state

abstractions are scored by the loss function lpredictive bounding the reward-sequence prediction

error

8i; 8a1; :::; at; lpredictiveð�ÞCg;t � jE½rtji; a1; :::; at� � r̂ tj; ð11Þ

where Cγ,t is a constant that depends on the action-sequence length t and discount factor γ.

The loss function lpredictive is computed using the SF model [9]. Supporting S2 Text presents all
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details on how to compute lpredictive. If any of the two loss functions evaluates to zero for a state

abstraction ϕ, then ϕ is either a globally optimal reward-maximizing or reward-predictive state

abstraction. For reward-predictive state abstractions, this property holds because each tested

task in Fig 1 can be compressed (by construction) and the LSFM Bisimulation Theorem [9,

Theorem 2] applies. In this case, if lpredictive = 0, then the state abstraction ϕ can be used to pre-

dict reward-sequences accurately. (Alternatively, one could also use RSerror as defined in Eq

(6).).

Fig 5 plots the results from testing the agent with each loss function for various α and β set-

tings. The agent selects its policy by using the posterior to mix the policies that would be opti-

mal in the respective abstract MDPs (as described in the previous section, policies are

computed using value iteration on the abstract MDP). Setting β =1means that the probabil-

ity Pr(ϕ|Mt) is deterministic: The highest scoring state abstraction is assigned a probability of

Fig 5. Results for transfer with multiple state abstractions experiment. (A, D) Plot of how different α and βmodel parameters influence the average size

of Bt after training. (B, E) Performance of each model (average total reward per MDP) for different α and βmodel parameters. After observing the

transition and reward tables of a task Mt in the task sequence, the average total reward was obtained by first computing a compressed abstract MDP for

each abstraction and then solving each compressed MDP using value iteration, as described in supporting S1 Text. The resulting mixture policy was then

tested in the task Mt for 10 time steps while logging the sum of all obtained reward. If β =1 the agent obtains an optimal total reward level when using

either loss function for ten time steps in each MDP. (C, F) Plot of the average count for the most frequently used state abstraction. As described in Fig 4, one

of two possible “hidden” state abstractions, ϕA and ϕB, were embedded into each MDP. Each task sequence consists of 20 MDPs and on average 15 out of

these 20 MDPs had the state abstraction ϕA embedded and the remaining MDPs had the state abstraction ϕB embedded. The white bar labelled “Ground

Truth” plots the ground-truth frequency of the “hidden” state abstraction ϕA. If the non-parametric Bayesian model correctly detects which state

abstraction to use in which task, then the average highest count will not be significantly different from the white ground truth bar. In total, 100 different

task sequences, each consisting of 20 MDPs, were tested and all plots show averages across these 100 repeats (the standard error of measure is indicated by

the shaded area and variations are very low if not visible).

https://doi.org/10.1371/journal.pcbi.1008317.g005

PLOS COMPUTATIONAL BIOLOGY Reward-predictive representations generalize across tasks in reinforcement learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008317 October 15, 2020 13 / 27

https://doi.org/10.1371/journal.pcbi.1008317.g005
https://doi.org/10.1371/journal.pcbi.1008317


one and all other state abstractions are assigned a probability of zero. This case is equivalent to

only using the loss function to select a state abstraction while ignoring the CRP prior

Prð�jBt; ctÞ, because the factor Pr(ϕ|Mt) is either zero or one in Eq (7). For low β settings, the

prior is used to determine which state abstraction is used. If α is high, then up to 20 state

abstractions are added into the belief set Bt. Because the prior influences the posterior heavily,

the total reward of the resulting agent is comparably low, because the agent is not well

informed about which state abstraction should be used on a given task. For β =1, the loss

function influences the posterior strongly.

The key difference between the two loss functions becomes apparent when analyzing how

the agent maintains the belief space Bt. Using the loss function lpredictive, which identifies

reward-predictive state abstractions, the agent identifies the correct ground truth state abstrac-

tions that were used to generate the task sequences. Fig 5F shows that the agent correctly learns

that one state abstraction occurs with a frequency of 75%. Because the agent only maintains

two belief abstractions, the agent correctly estimates that the other abstraction occurs with a

frequency of 25%.

In contrast, when the loss function lmaximizing is used, Fig 5A and 5B demonstrate that the

agent can only achieve optimal reward by isolating a significantly higher number of state abstrac-

tions than the reward-predictive model. At best, using lmaximizing and a small α value the agent is

capable of isolating between four and five state abstractions. For high α settings, the agent effec-

tively memorizes a solution for almost every task by increasing the size of its belief set Bt, because

a previously used state abstraction does not generalize to the next task. The model is thus able to

achieve optimal reward only if it constructs a new reward-maximizing abstraction for each

MDP. Note that this experiment does not account for any cost associated with learning or con-

structing a state abstraction for each task from scratch. In the following section, this assumption

is removed and the presented results illustrate how constructing a reward-maximizing state

abstraction results in slower learning. When using the loss function lpredictive, the agent can cor-

rectly identify which state abstraction to use for which MDP and obtain an optimal reward level

while only using two different state abstractions (green curves in Fig 5D and 5E). This confirms

the claim that reward-predictive state abstractions generalize across different tasks.

Learning to transfer multiple state abstractions

While the previous transfer experiment presents evidence that reward-predictive state abstrac-

tions generalize across different tasks, for exposition these previously presented simulations

assumed that a full tabulation of all transitions and reward is accessible for the agent to score

the loss. In addition, it was possible to configure both reward-predictive and reward-maximiz-

ing models such that an optimal reward level is always obtained given the agent can always

construct a new reward-maximizing abstraction. This section presents an experiment where

an intelligent system has to learn through trial-and-error interactions with a novel sequential

decision-making task thereby simultaneously learning the transitions and making inferences

about which abstraction is appropriate to reuse, in a Bayesian mixture of experts scheme [28]

that is updated after interacting for a certain number of episodes in a particular task. If an

intelligent agent is capable of extracting a particular structure from one task to accelerate

learning in another task, then this agent will generate more reward in certain tasks than an

agent that does not transfer any latent structure.

In the following simulation experiments, an agent is allowed to interact with a task for a cer-

tain number of trials, called episodes. The interaction data itself is a data set of transition qua-

druples of the form (s, a, r, s0) that describe a transition from state s to state s0 that occurs by

selecting action a and is rewarded with a scalar reward r.
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The generalized non-parametric Bayesian model maintains a belief space of state abstrac-

tionsBt that is updated after interacting for 200 episodes in a task. (We found that 200 epi-

sodes allow each tested algorithm to converge to an optimal policy.) Subsequently, the

collected data is used to learn a new state abstraction. A reward-predictive state abstraction is

obtained using the LSFM discussed in the Methods section. A reward-maximizing state

abstraction is obtained by clustering states with approximately equal Q-values into latent

states. Please refer to supporting S3 Text. for a detailed description of the algorithmic imple-

mentation and how hyper-parameters were tuned. After interacting with a task and learning a

new state abstraction, the belief setBt is updated using the posterior probabilities

Prð�jMt;Bt; ctÞ. During learning in the next task, the state abstractions stored in the belief set

Bt are used to generalize Q-values across different states during learning in a task. While the

agent observes transition data in a task Mt, a separate Q-learning agent is maintained for each

state abstraction � 2 Bt and another for the identity state abstraction ϕidentity: s 7! s. (The

motivation here is that the agent should consider not only the Q-values of actions that pertain

to previously seen abstractions but that it should also have potential to learn Q-values in the

full observable state space. We consider biological implications of this assumption in the dis-

cussion). Using a state abstraction ϕ, a state s 2 S is mapped to a latent state ϕ(s) and this latent

state ϕ(s) is given as input to the Q-learning algorithm. (If Q-learning would normally observe

a transition (s, a, r, s0), the algorithm now observes a transition (ϕ(s), a, r, ϕ(s0)). Because Q-

learning caches Q-values for latent states and multiple states map to the same latent state, the

agent now generalizes Q-values across multiple states and can thus converge faster.) The Q-

learning algorithm thus generalizes Q-values to multiple states that map to the same latent

state. As in the Bayesian mixture of experts scheme [3, 28], the agent selects its overall policy

by mixing the policies of each Q-learning agent using the posterior probabilities

Prð�jMt;Bt; ctÞ. Specifically, the probability of selecting action a at state s is

pðs; aÞ ¼
X

�2Bt[f�identityg

Prð�jMt;Bt; ctÞp�ðs; aÞ; ð12Þ

where πϕ are the action-selection probabilities of the Q-learning algorithm corresponding to

the state abstraction ϕ. For example, if the posterior probabilities place a high weight on a pre-

viously learned state abstraction � 2 Bt, then the agent will effectively select actions similar to

a Q-learning algorithm that is run on the latent state space constructed by the state abstraction

ϕ. In this case, an optimal policy should be obtained more quickly in comparison to not using

any state abstraction, assuming the state abstraction ϕ is constructed properly for the given

task. If the posterior places a high weight on the identity state abstraction ϕidentity, then the

model will effectively select actions similarly to the usual Q-learning algorithm.

While training, the non-parametric Bayesian model also uses all observed transitions (s, a,

r, s0) to construct a transition and reward table. After 200 training episodes on a particular

task, these transition and reward tables are used to construct either a reward-maximizing or

reward-predictive state abstraction ϕnext-best. Then, the posterior probabilities Prð�jMt;Bt; ctÞ
are computed as described in Eq 7 and a state abstraction is sampled using this posterior distri-

bution. Depending on the parameter settings for α and β, the newly learned state abstraction

ϕnext-best may be added into the belief setBtþ1 for the next task or previously learned state

abstraction � 2 Bt is re-used and its count ct(ϕ) is increased. When training on the first task,

the belief setB1 is initialized to the empty set.

This model is tested on the task sequence illustrated in Fig 6. The top row depicts two dif-

ferent maze maps that are used to construct a curriculum of five tasks. Each map is a 10 × 10
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grid world where the agent has to navigate from the blue start state to the green goal location.

Once the green goal location is entered, the agent receives a reward of +1 and the episode is

ended. The transition dynamics are the same in each task with the difference that the agent

cannot cross the black barrier. These two mazes are mirror images of another and the optimal

action is different at each grid cell. Consequently, transitions, rewards, and the optimal policy

of Maze A and Maze B are different at every state and cannot be immediately transferred from

one maze to another.

Using these two mazes, a task sequence is constructed by adding a “light/dark” variable or a

“red/green/blue” colour variable into the state that is irrelevant for navigation. This task

sequence is designed to demonstrate that if an algorithm learns to correctly generalize across

different states, then the algorithm can learn to solve the maze navigation task faster than an

algorithm that does not generalize correctly.

The schematic in Fig 6 illustrates how the task sequence is constructed and how additional

state variables are introduced. In the bottom left of Fig 6, the task “Maze A Light-Dark” is con-

structed by augmenting each state of the Maze A task with a binary “light/dark” variable. As an

agent transitions between different grid locations, this binary variable switches with equal

probability. By adding this variable, the state space is doubled to 200 states. Note that the state

s will be communicated to the agent as an index that ranges from 0 to 199. The agent is not

informed about the fact that states are augmented by a binary variable. To determine how this

200 state light-dark maze can be compressed, the agent would have to infer that state 0 and

state 100 are equivalent and can be compressed to one latent state, for example.

The task “Maze B Coloured” (second map in bottom row of Fig 6) is constructed by aug-

menting the right half of the maze with a “red/green/blue” colour variable. In this case, states

corresponding to the left half of the maze are not changed, but states that correspond to the

Fig 6. Maze curriculum. Maze A and Maze B are augmented with an irrelevant state variable to construct a five-task curriculum. In each

maze, the agent starts at the blue grid cell and can move up, down, left, or right to collect a reward at the green goal cell. The black lines

indicate barriers the agent cannot pass. Once the green goal cell is reached, the episode finishes and another episode is started. (These

rewarding goal cells are absorbing states.) Transitions are probabilistic and succeed in the desired direction with probability 0.95;

otherwise the agent remains at its current grid cell and cannot transition off the grid map or through a barrier. A five-task curriculum is

constructed by augmenting the state space either with a “light” or “dark” colour bit (first, third, and fourth task), or the right half of the

maze is augmented with the colour red, green, or blue (second and fifth task).

https://doi.org/10.1371/journal.pcbi.1008317.g006
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right half are augmented with either the colour red, green, or blue. Intuitively, as the agent

transitions into the right half of the maze, it will observe a coloured grid cell and colours will

randomly switch between either red, green, or blue. Conforming to the light-dark maze con-

struction, the state is presented to the agent as an index ranging from 0 to 199. The agent is not

given a state in a factored form, for example a grid position and colour.

The bottom row of Fig 6 depicts the five-task curriculum. In this experiment, an agent can

either learn how to maximize reward in each of the 200-state tasks or learn how to compress

each task into 100 latent states, generalize information across different tasks, and ultimately

learn an optimal policy faster and generate higher total reward.

Fig 7 presents the results of the learning experiment conducted on the maze-task curricu-

lum. The average-per-task episode length of each algorithm is plotted in Fig 7A. Because each

task is a navigation problem, a low average episode length indicates that an algorithm reaches

the rewarding goal using fewer time steps and can generate on average more reward per time

step. For Q-learning, the average episode length per task remains roughly constant (blue curve

Fig 7. Transferring state representations influences learning speed on the maze curriculum. (A) Performance comparison of each learning algorithm

that uses Q-learning to obtain an optimal policy. The reward-predictive model identifies two state abstractions and re-used them in tasks 3 through 5,

resulting in faster learning than the reward-maximizing model. (B) Performance comparison of each learning algorithm that uses SF-learning to obtain an

optimal policy. Similar to (A), the reward predictive model identifies two state abstractions and re-used them in tasks 3 through 5. Re-using previously

learned SFs across tasks (orange curve) degrades performance. (A, B) Each experiment was repeated ten times and the average across all repeats was plotted.

The shaded areas indicate the standard errors of measure. For each experiment, different learning rates and hyper-parameter settings were tested and the

settings resulting in the lowest average episode length are plotted. Supporting S3 Text describes the tested implementation and hyper-parameters in detail.

(C, D) Plot of the posterior distribution as a function of training episode. The orange rectangle indicates tasks in which the agent used the identity

abstraction to learn a new state representation that was added into the belief set after 200 episodes of learning.

https://doi.org/10.1371/journal.pcbi.1008317.g007
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in Fig 7A), because Q-learning does not transfer information across tasks. In comparison, the

reward-predictive non-parametric Bayesian model achieves a significantly lower average epi-

sode length on tasks three through four. This behaviour is explained by the posterior plotted in

Fig 7C and 7D. On the first two tasks, the reward-predictive model adds two new state abstrac-

tions into its belief set (Fig 7C). During training on task 1 and task 2, this model uses the iden-

tity state abstraction and does not (and cannot) generalize across two different states.

Consequently, there is no difference in performance between the reward-predictive model

and Q-learning. Task 1 and task 2 expose the agent for the first time to a light-dark and a

coloured maze and after learning in these two tasks the reward-predictive model adds a

new state abstraction into its belief set (orange boxes in Fig 7C, left panel). From task 3

onward, the agent detects within the first few episodes which state abstraction to re-use

in which task, resulting in faster learning and consequently shorter average episode lengths

on these tasks. Specifically, on Task 3 and Task 4 the reward-predictive model re-uses the

state abstraction learned in Task 1, though these tasks use different mazes (Maze A and Maze

B in Fig 6); indicating that the learned state abstraction only models light/dark state equiva-

lences and is independent of the transitions and rewards themselves. Similarly, on Task 5 the

reward-predictive model re-uses the state abstraction learned in Task 2, despite both tasks

using different mazes; indicating that this state abstraction only models colour state equiva-

lences and does not depend on the transitions or rewards of either maze. These results demon-

strate that the reward-predictive model is capable of extracting two state abstractions, one for

the light-dark scenario and one for the coloured scenario, and re-using these state

abstractions.

In contrast, the reward-maximizing model only performs comparably to the reward-predic-

tive model on the third task (orange curve in Fig 7A). The posterior probability plot for this

model (Fig 7D) indicates that only on task 3 a previously learned state abstraction is re-used.

This re-use occurs because the first and third tasks are identical and the first task’s solution can

be repeated on the third task. For all other tasks, the reward-maximizing model introduces a

new state abstraction into its belief set. This supports the hypothesis that the reward-maximiz-

ing model effectively memorizes a solution for each task and can only repeat previously

learned solutions.

Fig 7B compares the average episode length of the reward-predictive model with transfer-

ring and adjusting SFs, the system used in prior work [11–14, 17, 18, 29–31]. (Supporting S3

Text provides a description and re-production of how re-using previously learned SFs leads to

faster convergence.) In the tested grid-world tasks, we found that our SF-learning algorithm

implementation in combination with the used initialization heuristics converges faster to an

optimal policy than the Q-learning algorithm, resulting in a shorter average episode lengths.

The reward-predictive model can be adopted to use the SF-learning algorithm instead of the

Q-learning algorithm and this model is presented in Fig 7B. The blue curve in Fig 7B plots the

average episode length when the SF-learning algorithm is used to find an optimal policy. In

this simulation, the SF-learning algorithm does not transfer a representation and instead resets

its weights when switching between tasks. The orange curve plots the average episode length

when the SF-learning re-uses previously learned SFs instead of resetting its representation. Fig

7B demonstrates that re-using SFs degrades performance on the maze task sequence while the

reward-predictive model outperforms a SF-learning baseline. On tasks 3 and 5, the reward-

predictive model outperforms the SF transfer method because the reward-predictive model

identifies which state abstraction to use in which task, as previously discussed. Note that when

transitioning from task 3 to task 4, the underlying light-dark state abstraction is not changed

whereas in all other task changes the underlying state abstraction is changed as well. This result
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suggests that SFs themselves implicitly incorporate parts of the state abstraction helping the

SF-learning algorithm to converge faster in task 4.

Comparison to transferring successor features

Lastly, in this section, we illustrate the differences between re-using reward-predictive state

abstractions and re-using successor features themselves [11, 12, 18]. Although reward-predic-

tive state abstractions can be extracted from successor features, the resulting abstraction is a

more abstract aspect of an MDP than simply reusing the successor features. Fig 8 presents a

guitar-playing example to illustrate this idea. In this example, the task is to play a guitar scale, a

sequence of notes such as C-D-E-F-G-A-B. On a guitar, the note “C” can be played by holding

down a finger at one out of multiple possible locations on the fret board, as illustrated in Fig

8A. (Even within the same octave, the note “C” can be played in up to five different ways.) A

skilled guitarist has internalized a representation that links fret-board positions to the notes

they produce. In this example, a reward-predictive state abstraction captures this aspect of

mapping all positions on the fret board to a latent state of playing the note “C”.

The guitar-scale task illustrated in Fig 8A is constructed such that the agent always starts at

a separate start state. To play a scale correctly, the agent has to select an action sequence that

corresponds to playing the note sequence correctly. The state is represented as a bit matrix,

where each entry corresponds to a position on the fret board. In the guitar-scale task the agent

transitions through a sequence of fret-board locations by playing a sequence of notes. Rewards

are only maximized across time if the agent plays the correct scale (Fig 8A, bottom schematic).

For a sequence of two guitar-scale tasks, Fig 8B compares the performance of a reward-pre-

dictive model with that of transferring previously learned SFs. Note that these two guitar-scale

tasks differ in their transitions, rewards, and optimal policy. While all algorithms perform sim-

ilarly in learning the first scale (given that they have to learn the abstraction), only the reward-

predictive model (green curve) exhibits transfer to the second scale. Fig 8C plots the reward

obtained in each episode for both the reward-predictive model and the SF transfer algorithm

and illustrates that the reward-predictive model obtains an optimal policy faster on the second

task. This performance improvement can be attributed to the fact that the reward-predictive

model builds an internal representation that more closely models how to generalize across dif-

ferent fret-board locations, which is invariant to the scale (i.e, the reward sequence is identical

if the agent correctly plays the scale in any of the octaves). Because only equivalences across

fret-board locations are modelled, one would also expect a similar performance improvement

for any randomly chosen scale. In contrast, SFs encode the visitation frequencies of future

(latent) states under a specific policy, a property that changes between the two tasks. Note that

this result is not generated because a portion of the note sequence overlaps between the two

scales (C-D-E-F-G), otherwise the SF transfer algorithm would exhibit positive transfer on the

second scale. Thus, the performance discrepancy in Fig 8B comes about because SFs and

reward-predictive state abstractions model different aspects of an MDP.

Discussion

In reinforcement learning, the agent’s goal is to find a reward-maximizing policy. But, whereas

typical RL applications pertain to a single MDP, in a lifelong learning scenario (such as that

confronted by biological agents), the objective is to maximize reward across a variety of envi-

ronments. For this purpose, it is critical to discover state abstractions that can be efficiently re-

used and transferred across a variety of situations. While several approaches exist for discover-

ing useful state abstractions that reduce the complexity of a high dimensional task environ-

ment (e.g., using deep neural networks) in an attempt to maximize reward, this article
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demonstrates that, for longer term benefits, an agent should focus on learning reward-predic-

tive state abstractions. Our findings indicate that such abstractions permit an agent to discover

state spaces that can be re-used by way of analogy to previously seen state spaces, without

requiring the details of the task (transitions, reward functions, or optimal policy) to be

preserved.

Fig 8. Guitar-playing example. (A): Guitar-Scale task for scale C-D-E-F-G-A-B. The fret board is translated into a bit matrix, where each entry

corresponds to one circle. Because the note “C” can be played at multiple fret-board locations (orange circles), each location is mapped to the same latent

state. The bottom schematic illustrates how the guitar-scale MDP is constructed for one octave: Starting at the start state (black dot), the agent progresses

through different fret-board configurations by selecting which note to play next. Note that the illustrated state sequence is repeated three times, once for

each octave. (The schematic illustrates only one chain to simplify the presentation.) Which octave is played is determined at random and the transition

from the start state (black dot) into one of the fret boards that correspond to the note “C” is non-deterministic. This assumption allows us to reduce the

action space from 60 fret board positions to 12 notes (A, A#, B, C, C#, D, D#, E, F, F#, G, G#, A). For each correct transition, a reward of zero is given, and

for each incorrect transition a reward of −1 is given. The last fret board (a fret board corresponding to the note “B” in this example) is an absorbing state.

(B): Total reward for each algorithm after first learning an optimal policy for Scale 1 (C-D-E-F-G-A-B) and then learning an optimal policy for Scale 2

(A-B-C-D-E-F-G). Each algorithm was simulated in each task for 100 episodes and each simulation was repeated ten times. The supporting S3 Text

provides a detailed description of all hyper-parameters. (C): Reward per episode plot of one repeat for both the SF transfer and reward-predictive model.

For the first 50 episodes, which are spent in scale task 1, both algorithms converge to an optimal reward level equally fast and learn to play the scale

correctly. A recording of the optimal scale sequence is provided in supporting S1 Audio File. On scale task 2 (episodes 51 and onward), the reward-

predictive model can re-use a previously learned state abstraction and converge to an optimal policy faster than the SF transfer algorithm. After only ten

episodes in scale task 2, the reward-predictive model has learned how to play the scale correctly (please refer to supporting S2 Audio File) while the SF

transfer algorithm has not yet converged to an optimal policy and does not play the scale correctly (please refer to supporting S3 Audio File).

https://doi.org/10.1371/journal.pcbi.1008317.g008
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Our initial simulations considered situations in which a single abstraction could be trans-

ferred to a subsequent MDP. However, in a lifelong learning scenario, one must consider mul-

tiple possible abstract structures that may pertain to any novel situation. When a musician

picks up a banjo, they may quickly recognize its similarity to other string instruments—even

those with alternate tuning—and efficiently learn to play a scale; the same musician may re-

use a different structure when attempting to master the accordion. Previous theoretical work

relied on non-parametric Bayesian clustering models that assess which of several previously

seen structures might apply to a novel situation and be flexibly combined in a compositional

fashion [3], a strategy supported by empirical studies in humans [16]. However, such an

approach still requires the agent to recognize that the specific transition function and/or the

reward function is portable to new situations. Here, we applied a similar non-parametric

Bayesian agent to cluster reward-predictive state abstractions, affording “zero-shot” transfer of

state representations to novel environments that are only similar by way of analogy to previ-

ously seen scenarios. Because the reward-predictive model can identify which state abstrac-

tions are embedded in a task and re-use these state abstraction to accelerate learning, the

presented results suggest that reward-predictive state representations generalize across tasks.

Biologically, our findings motivate studies to investigate whether brain systems involved in

representing state spaces, such as the hippocampus and orbitofrontal cortex [32–34], have

learning rules that are guided by minimizing reward-predictive loss, rather than simply mini-

mizing the Bellman error as in classical temporal difference learning rules leveraged by striatal

dopaminergic systems [35, 36]. Indeed, dopaminergic learning signals themselves are diverse,

not only conveying reward prediction errors used for optimizing actions, but with some sig-

nals (perhaps projecting to distinct circuits) appearing to be used to learn about state transi-

tions that permit subsequent transfer [11, 18, 37, 38]. Our simulations motivate more tailored

experiments to investigate the potential role of such signals in compressing state representa-

tions such that they can be analogically reused.

Existing experiments searching for neural and behavioral correlates of the SR [11, 18] have

not varied both rewards and transitions, because (unlike the reward-predictive model), the SR

is not robust to these changes across environments. Our work motivates the development of

targeted experimental designs that would test if human subjects can reuse a latent structure

that is present in a set of tasks despite variations in transitions and rewards. For example, one

could design a human subject study similar to [16] where participants solve a sequence of

grid-world navigation problems, but augment the design to test if subjects reuse a latent struc-

ture present in a set of tasks despite variations in transitions and rewards, similar to the task

sequence presented in Fig 5. As illustrated in Fig 6, the specific pattern of generalization across

tasks is predicted to vary depending on whether agents use reward-predictive state abstractions

or re-use SR abstractions. Thus, our work provides a concrete testable behavioral prediction

that would discriminate between our work and existing work.

Offline hippocampal replay has been proposed to reflect sampling from a model to train

model-free RL and facilitate planning [39–42]. Our work provides a predicted amendment to

this notion: we suggest that replay may be prioritized in such a way that facilitates the con-

struction of reward-predictive state abstractions. In our work on learning (Learning to transfer

multiple state abstractions), while the agent is first interacting in a novel MDP, it retains an

identity (i.e., un-compressed) state abstraction. Only after sufficiently learning and interacting

in this task, the agent can then construct a new state abstraction that can be used for planning

in the future. Indeed, for efficient learning and generalization, retaining the identity map while

learning is critical; otherwise the agent is likely to create a sub-optimal abstraction that will not

generalize. We suggest that the online use of the identity matrix may depend on the highly pat-

tern-separated and conjunctive representations in the hippocampus, whereas the more
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abstract representations that facilitate generalization and transfer may be cortical [43]. More-

over, we speculate that one way this abstraction could be learned offline would be if, during

replay, hippocampal events could be sequentially sampled from regions of the state space that

are most similar in a reward-predictive sense (i.e., those that incur the least reward-predictive

loss). In this way, an abstract graph-like structure suitable for future planning could be con-

structed [44, 45] but further augmented so that it does not depend on temporal adjacency of

transitions within the graph itself, but rather in terms of the ability to predict future expected

reward sequences—facilitating a deeper form of transfer. This reward-predictive loss function

for guiding replay may also shed light on recent studies in rodents demonstrating that replay is

biased toward recently received rewards (e.g., food) rather than those that are currently desired

(e.g., water) after revaluation, even though behavior is directed toward the desired one [46].

While this pattern is counter-intuitive from the perspective that replay is used for future plan-

ning, it accords with that expected from an algorithm that compresses the state space based on

reward-predictive representations, where reward is defined by the previously experienced

reward function. Consequently, these representations do not generalize to any arbitrary task

and are restricted to variations in transitions, rewards, and optimal policy. This restriction of

reward-predictive state abstractions can be observed in Fig 1, where a representation learned

for the light-dark maze would not be re-used on the coloured maze. Because the presented

model demonstrates that generalization across different rewards and transitions is possible,

future studies on replay would test subjects for generalization across different tasks instead of

only testing for recall of a previously observed task structure.

The Tolman-Eichenbaum machine [47, 48] presents a model for generalization in the hip-

pocampal-entorhinal system [49]. Similar to reward-predictive state abstractions, this model

learns a latent representation that is predictive of future outcomes or stimuli but is also tied to

a fixed transition function. While this model is not formulated in the usual RL framework, pre-

dicting future outcomes or stimuli can also be understood as a form of reward prediction.

However, this model is trained directly on entire interaction sequences to predict future out-

comes, and the learned representations are thus tied to the transition function. The presented

transfer examples and simulations illustrate that reward-predictive state abstractions are not

restricted by these limitations and can be directly re-used, assuming certain state equivalences

are preserved.

Our approach also stands in contrast to prior attempts to leverage SFs [11–14, 17, 18, 29,

30] in which the SFs themselves are used to initialize learning in novel environments. Such an

approach can accelerate learning in some situations, but it can be fragile to changes in the opti-

mal policy [14] and transition function. A similar effect has also been shown for variations of

reward-maximizing state abstractions [5], but these abstractions are also adjusted to each task,

similar to SFs. While prior work mitigates this re-learning by associating a novel task with one

out of multiple previously learned SFs [13, 31], these methods still rely on initializing learning

with a previously learned representation to obtain a performance gain over solving a task from

scratch. Universal successor feature approximators (USFA) [50] mitigate the dependency of

previously learned SF to a single policy by defining SFs as a function ψπ(s, a; w), where the

weight vector w describes a particular MDP. While this approach only requires learning one

SF representation function for a family of policies, this model also assumes fixed transition

functions. In contrast, reward-predictive representations have the ability to abstract away irrel-

evant task features and these abstractions can be re-used without re-learning them. While the

presented reward-predictive model transfers state abstractions across tasks, this model has to

re-learn how individual latent states are associated with one-step rewards or SFs for each task.

In fact, the presented abstraction transfer models could be combined with prior work [3, 13,
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16, 31] that transfers SFs, latent transition functions, or latent reward functions to integrate the

benefits of each transfer system.

In related work [17], the SR of an MDP was compressed using PCA and the obtained repre-

sentations were demonstrated to be suitable for transfer and connections to place cells and

grid cells in the hippocampus. However, this compressed SR constructs a representation of the

transition function itself, and hence transfer is again limited to environments that share the

same transition function. In contrast, reward-predictive state abstractions separate the transi-

tion dynamics (and the SR) from the compression on the state space itself, and thus generate a

latent state representation of a task exploiting analogical task equivalences. Latent state abstrac-

tions are not tied to particular transitions [3, 4], and can thus circumvent this dependency

without adjusting the transferred representation itself.

While reward-predictive state abstractions do not limit an agent’s ability to obtain an opti-

mal policy for an MDP [9, 51], the solution space of possible reward-predictive state abstrac-

tions is far more constrained. Prior deep learning models [52] construct latent state

representations as part of a model-free and model-based hybrid model that constructs a latent

state representation and extracts the underlying state-transition dynamics. In contrast to their

method, reward-predictive state abstractions compress the state space by generalizing across

states that generate identical future expected reward sequences. While this article uses an exist-

ing SF model [9] to compute lpredictive, several other methods exist to evaluate reward-predic-

tive state abstractions [53–55].

Limitations and future directions

With the exception of Fig 3C, each simulation experiment assumes that a given task has an

(unknown) state-abstraction embedding. In this case, there always exists a state abstraction

which, if discovered, would allow any learning algorithm to find an optimal policy. A case that

has not been studied in this article and is left for future work is the case when a task is over-

compressed (i.e., lossy compression). Over-compressing a task induces approximation errors,

because the compression removes too much information or detail from the state space such

that accurate predictions are no longer possible [5, 9]. If only the latent state is given as state

input to an algorithm like Q-learning, the algorithm may not converge and learn an optimal

policy because the latent state is only providing partial information about the actual state of

the task. One could analyze the problem as a partially observable MDP (POMDP) [56], but

algorithms that can solve POMDPs also maintain a belief about which actual state they are in.

In this literature, the actual state is assumed to be unknown to the agent. Because this work

assumes that the actual state is known to the agent, the benefit of using such an algorithm is

not clear in the case where a task is over-compressed by a state abstraction. Under what

assumptions algorithms like Q-learning can be combined with state abstractions that over-

compress a task is left for future work.

The presented results consider finite MDPs, allowing the algorithm to tabulate a value or

latent state for each possible state. Another direction of future work is to extend the presented

models and algorithms to larger state spaces, such as images. Such an extension would inte-

grate neural networks or deep learning techniques, and allow the presented models to be

applied to more complex tasks, such as computer games [22] or visual transfer tasks that can

also be used in a human subject study [4].

Conclusion

The presented results suggest that reward-predictive state abstractions generalize across tasks

with different transition and reward functions, motivating the design of future transfer
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algorithms. The discussed connections to predictive representations in the brain and generali-

zation in human and animal learning motivate further experiments to investigate if biological

systems learn reward-predictive representations.

Supporting information

S1 Text. State abstractions.

(PDF)

S2 Text. Successor features identify reward-predictive state abstractions.

(PDF)

S3 Text. Hyper-parameter selection and implementation of learning experiments.

(PDF)

S1 Fig. Transfer experiment adopted from [14]. (A) In this experiment each algorithm was

simulated on a sequence of grid-world maps. For each grid map, the agent starts at the blue

grid cell and navigates to the green goal cell to collect a reward. The transitions are the same as

described in Fig 6, but these tasks do not contain any barriers. (B) Plot of the average episode

length as a function of the episode for the SF-learning agent. The gray lines indicate the start

or end of learning in one of the four tasks. After a certain number of episodes, the SF-learning

algorithm can find an optimal policy that navigates across the map in about ten time steps. (C)

Plot of the average episode length for each task and each tested algorithm. Each simulation was

repeated 20 times and averages across repeats are plotted. Standard errors indicated by the

shaded areas.

(TIF)

S2 Fig. Episode length averaged across tasks two through four from S1(A) Fig. (A) Episode

length of Q-learning and SF-learning under different transfer strategies when optimistic ini-

tialization is used. The configuration “Q-Learning Q-val. Transfer” re-used previously learned

Q-values. The configuration “SF-Learning SF transfer” only re-uses previously learned SFs

while the configuration “SF-Learning SF and reward transfer” re-uses both SFs and the learned

one-step reward predictions. (B) In this experiment both algorithms are initialized to produce

zero Q-values and an ε-greedy exploration policy is used. This exploration strategy selects

actions uniformly at random with ε probability and with 1 − ε probability actions are selected

greedily with respect to the current Q-value predictions. At the beginning of training ε = 1

(uniform random action selection) and by episode 80 ε was decreased to zero (greedy action

selection) using linear interpolation.

(TIF)

S3 Fig. Model parameters α and β control the belief space size of the non-parameteric

Bayesian online learning model (Learning to transfer multiple state abstractions). (A) Avg.

episode length of the reward-maximizing model. (B) Avg. belief space size of the reward-maxi-

mizing model. (C) Avg. episode length of the reward-predictive model. (D) Avg. belief space

size of the reward-predictive model.

(TIF)

S1 Audio File. Sound version of the optimal policy in the scale task 1.

(WAV)

S2 Audio File. Sound version of the optimal policy in the scale task 2.

(WAV)
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S3 Audio File. Sound version of the SF transfer algorithm’s policy after learning for 25 epi-

sodes in scale task 2.

(WAV)
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