
1 Agent implementation details1

Actions were selected for each agent as follows. Because the reward and mapping functions in any given2

context are unknown, we use those given by the MAP clustering hypothesis for evaluating the value of the3

cardinal actions and for the policy. We first applied RMAP to solve the Bellman optimality equation for4

cardinal actions,5

Q∗c(s, acard) =
∑
s′

p(s′|s, acard)
[
RkRMAP (s′) + max

a′card

γ Q∗c(s
′, a′card)

]
,

where c is the current context and kR indexes the reward cluster to it has been assigned. Solutions were6

found through policy iteration. We next constructed a policy for the cardinal actions by taking a soft-max7

over Qc,8

πccard(acard|s) =
eβ Qc(s, acard)∑

acard∈Acard
eβ Qc(s, acard)

,

where β is an inverse temperature parameter. Similarly, we took the MAP hypothesis’ mapping function9

MkM
MAP to convert this into a policy in terms of literal actions (“key presses”),10

πc(a|s) =
∑

acard∈Acard

MkM
MAP (a|acard)πccard(acard|s),

where kM is the cluster to which context c has been assigned. Keys are then sampled randomly from this11

policy.12

Figure 1: By manipulating the concentration
hyperparameters {α} (associated with coloured
arrows), the hierarchical agent can be reduced
to behave like either the independent or joint
agent.

We encouraged initial optimistic exploration by initialis-13

ing all reward probabilities to Rc(r|s) = 1, as is common14

in RL (e.g. [1]). Mapping probabilities were initialized to15

P (acard|a, c) = 1/nactions, where nactions = 8 is the number of16

keys. As the agent interacted with the environment, probabil-17

ities were updated to reflect the maximum likelihood estimate18

given the data assigned to the relevant cluster.19

As the agent sees more contexts or rooms, the hypothesis20

space of possible clusterings expands exponentially, making it21

impossible to both store or perform computations over the full22

posterior distribution. For this reason, the DPs are instantiated23

as a set of particles sampled from the hypothesis space. The24

particles are then filtered every time the hypothesis space needs25

to be expanded. Specifically, in the non-hierarchical environ-26

ments, each time we add a new context to the clusterings, we27

first discard all but the 300 maximum a posteriori hypotheses;28

we then expand out the remaining hypotheses in all possible29

ways that the new context can be added to these clusterings30

but retained only the top 10000 hypotheses immediately after-31

wards. It has been shown that keeping the maximum a pos-32

teriori (MAP) hypotheses will minimize the Kullback-Leibler33

divergence between the particle representation and the true34

posterior [2]. In the hierarchical environments, we instead re-35

tained only the best 100 hypotheses. However, to speed up36

computation, we also discarded all but the top 20000 maximum a posteriori hypotheses immediately after37

expanding the hypotheses.38

Finally, it is important to note that at the level of reward and mapping clusters, all agents operate in39

exactly the same way. Ultimately, the only difference between agents lies in the structure of the hypothesis40

space of context clusterings; this determines the possible Bayesian priors used to support transfer and is,41

alone, responsible for any differences in performance between the agents.42
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2 Hierarchical agent subsumes the independent and joint agents43

Independent Joint

αroom type 0 arbitrary
αCh arbitrary 0
αP ∞ ∞

Table 1: Hyperparameters for forcing the
hierarchical agent into either the indepen-
dent or joint clustering agents.

The hierarchical agent subsumes the hypothesis spaces of both44

the independent and joint clustering agents, making the hierar-45

chical agent more general than either of the two. Indeed, by an46

appropriate choice of hyperparameters, we can actually force the47

hierarchical agent to behave exactly like either of the two agents,48

showing that they are special cases. We can force the hierarchi-49

cal agent to mimic the independent agent by setting αroom type to50

zero (Fig. 1, blue arrow) and setting αCh (Fig. 1, green arrows)51

to α in the independent agent. Setting αroom type to zero forces52

the agent to assign all contexts to only one room cluster, in which the reward and mapping functions across53

all gridworlds would get clustered independently of each other. Conversely, we can force the hierarchical54

agent to mimic the joint agent by setting αCh to zero (Fig. 1, green arrows), so that only one mapping and55

reward cluster gets created inside a room cluster. Each room cluster would then act like a joint cluster,56

and αroom type would act like α in the joint clustering agent. For both agents, we would also need αP to57

be infinite (Fig. 1, red arrows) so that the children CRPs always get a new cluster from the parent CRPs,58

rather than reusing a cluster already existing in the parent. We have summarised the hyperparameters for59

these two special cases in Table 1.60

3 Details of the non-hierarchical environments61

For these environments, goals were located at {(0, 0), (0, 5), (5, 0), (5, 5)}. In each gridworld, agents always62

started in a random location drawn randomly from {(x, y) |x ∈ [1, 5] and y ∈ [1, 5]}. All environments were63

repeated for a total of 150 simulations.64

The tables that follow indicate the number of distinct contexts for each pair of mapping and goal.65

Mappings were generated without overlap; that is, no keys will map to the same cardinal action if the66

mappings are different.67

Goal (0, 0) Goal (5, 5)
Mapping A 1 1
Mapping B 1 1

Table 2: Independent environment statistics

68

Goal (0, 0) Goal (0, 5) Goal (5, 0) Goal (5, 5)
Mapping A 2 0 0 0
Mapping B 0 2 0 0
Mapping C 0 0 2 0
Mapping D 0 0 0 2

Table 3: Joint environment statistics

69

Goal (0, 0) Goal (0, 5) Goal (5, 0) Goal (5, 5)
Mapping A 5 0 0 0
Mapping B 0 5 0 0
Mapping C 0 0 1 1
Mapping D 0 0 1 1
Mapping E 0 0 1 1
Mapping F 0 0 1 1
Mapping G 0 0 1 1

Table 4: Mixed environment statistics

70
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Goal (0, 0) Goal (0, 5) Goal (5, 0) Goal (5, 5)
Mapping A 1 1 0 0
Mapping B 1 1 0 0
Mapping C 1 1 0 0
Mapping D 1 1 0 0
Mapping E 0 0 1 1
Mapping F 0 0 1 1
Mapping G 0 0 1 1
Mapping H 0 0 1 1

Table 5: Conditionally independent environment statistics

71

4 Additional mixed statistics environments72

(a) Joint contexts consist of a single
mapping-goal pairing, such that the
mapping is perfectly predictive of the
goal.

(b) Independent training contexts consist of two dis-
tinct mappings (different from that in the joint con-
texts), and two distinct goals (one of which is the same
as in the joint context). The mappings are not always
predictive of the goals.

(c) Test contexts consist of two types. One context (left) is a joint context and repeats the
same mapping-goal pair as in Fig. 2a. The other two contexts (right) are more independent
contexts and use two novel mapping functions but the same two goals as in (Fig. 2b).

Figure 2: Additional mixed environment

While one might naturally assume that the hierarchical agent should favour the more popular goals and73

mappings across the entire environment, in actuality, clustering preferences depend on a complex interplay74

between its various CRPs. Indeed, as we shall show in two additional environments with mixed statistics, it75

is possible to alter the preference and have the agent favour less popular goals.76

The two environments are organised somewhat differently from before (Fig. 2). The agent first visits a77

series of “training” contexts followed by a series of “test” contexts. The test contexts are intended to assess78

how the agent transfers structures and components learnt during training. Contexts within each set are79

visited in random order. This training-test split provides another means of assessing transfer, since we can80

study how the agent transfers in the test set based on what it has seen in the training set.81

Training contexts consist of both joint contexts, where the mappings and goals are in an one-to-one82

relation (Fig. 2a), and independent contexts where mappings do not entirely predict goals (Fig. 2b). Test83

contexts also consist of joint and independent contexts (Fig. 2c). Joint contexts in training and test sets all84

use the same mapping-goal pair. Independent contexts use two goals, but importantly, one appears more85

frequently than the other in the training set. The goal that is more frequent is unique to the independent86

contexts while the other goal is shared with the joint contexts but less frequent. By manipulating the relative87

prevalence of these two goals in the training set, we can alter which goal the hierarchical agent will favour88

in independent test contexts, and this is the difference between the two versions of this mixed environment.89
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In one version, the hierarchical agent will favour the more popular goal, but in the other version, we can90

bias it to favour the less popular goal. Between the two versions, only the training set is changed; the test91

set remains the same. Independent training contexts use two mapping functions, but these are different92

from that of the joint context. Independent test contexts also introduce two new mappings, not seen in any93

training context. But because of this, the hierarchical agent will also need to infer which room cluster to94

assign these new contexts to, and that affects how it will transfer goal information. The contexts present in95

the two versions of the environment has been summarised in the Table 6. We shall refer to the environment96

where the agent favours the more popular goal at test time as “Environment 1” and the other version as97

“Environment 2”.98

Training contexts99

Before examining agent transfer in the test contexts, we shall first summarise their behaviour in the training100

contexts. Again, only the hierarchical agent is optimal across all contexts here (Fig. 3a and 3d). As expected,101

the joint agent performs well in the joint contexts but not the independent ones, while the converse is true of102

the independent agent (Figs. 3c, 3b, 3f, 3e). The independent agent has a prior that favours the most popular103

goal, but because the most popular goal has never been associated with a joint context, the independent104

agent cannot recognize this and will therefore attempt the wrong goal first.105

By the end of training, the hierarchical agent would have learned to assign all joint contexts to one room106

cluster with joint structure, and all independent contexts to another room cluster with more independent107

structure (Fig. 4). This clustering provides an inductive bias that determines how the agent transfers goal108

knowledge in the test contexts.109

Test contexts110

The agents’ performance in the two environments have so far been qualitatively similar. But as we shall now111

see, the hierarchical agent shows different transfer behaviour in the independent test contexts.112

First, we note that the joint agent is again optimal in the joint context only (Figs. 5a and 5d), showing113

it is successfully transferring the joint structure learnt during training. And it is again suboptimal in the114

independent contexts (Figs. 5b, 5c, 5e and 5f). Indeed, because the joint agent is unable to generalise115

compositionally, the novel mapping forces it to relearn familiar reward functions rather than transfer; thus116

its performance mimics that of the flat agent in these contexts.117

Less popular goal (0, 0) More popular goal (5, 5)
Mapping A 4 training, 1 test 0
Mapping B 1 training 14 training
Mapping C 1 training 14 training
Mapping D 1 test 0
Mapping E 0 1 test

(a) Environment 1. More popular goal favored in test contexts

Less popular goal (0, 0) More popular goal (5, 5)
Mapping A 4 training, 1 test 0
Mapping B 1 training 5 training
Mapping C 1 training 5 training
Mapping D 1 test 0
Mapping E 0 1 test

(b) Environment 2. Less popular goal favoured in test contexts

Table 6: Mixed statistics environments. In both tables, the first row corresponds to the joint contexts (both training
and test), the second and third rows correspond to the independent training contexts, while the last two rows
correspond to the independent test contexts.
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(a) Environment 1 – all training contexts (b) Environment 1 – joint training con-
texts

(c) Environment 1 – independent train-
ing context

(d) Environment 2 – all training contexts (e) Environment 2 – joint training con-
texts

(f) Environment 2 – independent train-
ing context

Figure 3: Agent performance in the training contexts for the two environments. Errorbars show standard error of
the mean.

On the other hand, the independent agent can compositionally generalise. It is suboptimal in the joint118

context simply because its CRP prior is biased against this goal which is less popular (Figs. 5a and 5d); it119

will instead attempt the incorrect (more popular) goal on its first attempt. For the same reason, it transfers120

poorly when independent contexts use the same goal (Figs. 5b, and 5e). But it shows positive transfer when121

the correct goal is the more popular one (Figs. 5c and 5f). Regardless of the context though, the agent is122

always optimal from the second visit onward; even when the agent attempted the incorrect goal first, it would123

immediately attempt the other (correct) goal next, as this is the only other goal it knows about. Notably,124

this recovery is something the joint agent is incapable of displaying, as it cannot transfer compositionally.125

The hierarchical agent, however, shows a distinctly different pattern of behaviour in the two environments.126

In the joint context, it is near optimal, showing that it is successfully associating this context with the joint127

room cluster. But in the independent contexts, it shows a bias towards the popular goal in Environment 1,128

but a bias towards the less popular one in Environment 2.129

As we alluded to earlier, this follows from an interplay between the various CRPs in the hierarchical130

agent and their different predilections for the two goals. When the agent is trying to reach a goal for the131

first time, it relies on its prior to decide which goal to attempt first. Specifically, the choice is determined132

by which room cluster the agent assigns the context to. Even though independent contexts involve novel133

mappings, nothing prevents the agent from assigning it to the joint cluster, thereby “breaking” the joint134

structure. If the context is assigned to the independent room cluster, the cluster’s reward CRP will favour135

the more popular goal, which is what we see in Environment 1. But if the context is assigned to the joint136

room cluster, then the agent will favour the less popular goal, because only that goal has been associated137

with the joint cluster; this is what we see in Environment 2. The interplay between the CRPs determines138

which room cluster is ultimately chosen.139

Naturally, the room-type CRP will favour the more popular room cluster, which happens to be the140
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Figure 4: Hierarchical agent’s clusterings after training in the mixed statistics environment. The agent discovers two
room structures: an independent room cluster in which M and R are clustered independently, and a joint room
cluster in which each context that forms part of the cluster is linked to a single M and R pair. Children clusters
inherit from parent clusters (burgundy arrows). Contexts are assigned to a mapping cluster (black arrows) and to a
reward cluster (grey arrows). Note, however, that the parental clusters at the top only receive a context assignment
when a child cluster first inherits from them; all subsequent assignments to the child cluster will not involve the
parent cluster. In general, the parental clusters can contain further contexts, with other children clusters inheriting
from them (e.g. as in the top-right parental reward cluster), but in this example, most of the parental clusters had
only one child cluster.

independent cluster in both versions of the environment. But their children CRPs will favour the joint141

cluster instead. This is because the decision of which room cluster to assign a context to simultaneously142

involves a decision of which pair of children CRPs (for the mapping and reward functions) to assign the143

context to. While assignment to one room cluster may be favoured by the room-type CRP, it might be144

disfavoured by its children CRPs. This is because the children CRPs must assign the context to one of145

its clusters (including possibly a new cluster), so the agent will prefer CRPs for which the probability of146

assignment is highest. If the context is assigned to a pre-existing cluster, then the agent will prefer the other147

clusters in the CRP to be far less popular or even non-existent. This is what happens with the reward CRPs.148

Before the agent has learnt anything about the goal in a novel context, it will prefer assigning the context to149

the most popular cluster in a reward CRP. From (9) in the main text, the log prior of such an assignment is150

log
N+

N+ +Nother + αγ
= log

1

1 + (Nother + αCh)/N+
,

where N+ is the number of contexts already assigned to the cluster, and Nother is the number of contexts151

assigned to all other clusters. This is maximised not just when N+ is large but specifically when the ratio152

(Nother + αCh)/N+ is also small. If one interprets αCh as effectively a “prior” number of contexts assigned153

to a novel cluster, what this means is that when choosing between alternative children CRPs, there will be a154

preference for those CRPs where the contexts in the most popular cluster far outnumber the contexts in all155

other clusters. The reward CRP in the joint room has only one cluster, so there are no alternative reward156

clusters. On the other hand, there is one alternative cluster in the independent room’s reward CRP. So the157

reward CRPs will actually favour the joint room cluster, in contrast to the room-type CRP. Indeed, this158
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(a) Environment 1 – joint test context.
The joint agent’s performance is equiva-
lent to that of the hierarchical agent and
is occluded by it.

(b) Environment 1 – independent test
context with less popular goal. The in-
dependent agent’s performance is equiva-
lent to that of the hierarchical agent and
is occluded by it.

(c) Environment 1 – independent test
context with more popular goal.

(d) Environment 2 – joint test context.
The joint agent’s performance is equiva-
lent to that of the hierarchical agent and
is occluded by it.

(e) Environment 2 – independent test
context with less popular goal.

(f) Environment 2 – independent test
context with more popular goal.

Figure 5: Mixed environment results. In this version, the hierarchical agent favours the more popular goal at test
time, as shown by its positive transfer in (f). Graphs show average number of steps taken by each agent in the training
contexts plotted against the number of visits to that context. Insets show the average fractional improvement of each
agent over the flat agent baseline (black graph in main plot) during the first visit to a context. Note that only the
hierarchical agent is adaptive across all contexts (g). Also note that many agents exhibit negative transfer in the
independent test context that uses the less popular goal, as revealed by the inset in (e). These agents have priors
that favour the more popular goal and will therefore navigate to the incorrect goal on the first attempt. However, the
hierarchical and independent agents show positive transfer once they have found the correct goal, as demonstrated
by their better performance from the second visit onwards in the graph. Errorbars show standard error of the mean.
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is a general behaviour of the hierarchical agent whenever it assigns novel contexts to pre-existing children159

clusters: it will prefer CRPs for which there is only one cluster, thus encouraging jointness.160

But there is also a preference for jointness when assigning contexts to novel children clusters, as is the161

case here with the mapping clusters. The agent quickly discovers that the mapping function is new, so it162

must assign the context to a new mapping cluster. From (9) in the main text, log prior of such an assignment163

is given by164

log
αCh

N + αCh
= log

1

1 +N/αCh
,

where N is the total number of contexts already assigned to this CRP. Like with the reward CRPs, αCh can165

be interpreted as effectively pre-assigning a “prior” number of contexts to the novel cluster. But we see that166

there will be a preference for CRPs where the ratio N/αCh is as small as possible, which translates to having167

N be as small as possible. In other words, there will be a preference for CRPs with the fewest number of168

contexts already assigned to it (or even with no clusters altogether). Because the joint room cluster was far169

less popular overall, the mapping CRPs favour assignment to this room cluster.170

Indeed, this analysis reveals several interesting effects in the interaction between the room CRP and171

the children CRPs within them. When a context is being assigned to a pre-existing cluster, there will be a172

preference for structures where the relevant cluster is more prevalent than any alternative. This has the effect173

of encouraging individual CRPs to represent only one type of cluster. And if both reward and mapping CRPs174

have only one cluster in each room, then these room clusters will have joint structures. On the other hand,175

whenever a new cluster is being created to represent a new reward or mapping, there will be a preference to176

assign this to less popular structures, thus balancing out the popularity of the different structures. In fact,177

there will actually be a preference for creating completely new children CRPs, which requires generating178

a new structure altogether. This propensity for balancing out structures will counteract the room CRP’s179

preference to always assign a novel context to the most popular structure, while the propensity for creating180

new structures entirely will further encourage the generation of joint structures. In sum, there is an overall181

propensity for the room-type CRPs to encourage parsimony in the number of structures and hence to favour182

structures with more independent statistics; but there is a counteracting propensity amongst children CRPs183

to encourage more joint structures.184

All contexts185

Finally, we note that while some contexts favoured the joint agent and others the independent agent, only186

the hierarchical agent consistently showed the better performance across all contexts, demonstrating the187

greater flexibility of its hierarchical hypothesis space of context clusterings (Fig. 6). In Figs. 7 and 8, we188

have provided violin plots showing the total number of steps taken by each agent in each context type in the189

two environments.190

(a) Environment 1 – all contexts (b) Environment 2 – all contexts

Figure 6: Results for all contexts
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(a) All training contexts (b) Joint training contexts (c) Independent training context

(d) Joint test context (e) Independent test context with less
popular goal

(f) Independent test context with more
popular goal

(g) All contexts

Figure 7: Non-hierarchical environment with mixed statistics (less popular goal favored by the hierarchical agent).
Violin plots showing the total number of steps taken by each agent. Red dashed line shows average number of steps
taken by the hierarchical agent.
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(a) All training contexts (b) Joint training contexts (c) Independent training context

(d) Joint test context (e) Independent test context with less
popular goal

(f) Independent test context with more
popular goal

(g) All contexts

Figure 8: Non-hierarchical environment with mixed statistics (more popular goal favored by the hierarchical agent).
Violin plots showing the total number of steps taken by each agent. Red dashed line shows the average number of
steps taken by the hierarchical agent.
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5 Details of the hierarchical environments191

In this environment, all upper level and sublevels were 6×6 grid with doors and exits located at {(1, 2), (2, 5),192

(3, 1), (4, 3)}. These four possible goal locations are known to the agent, but it is of course not given193

information as to which location is correct. This means the reward function will now model the reward194

probability at the four possible goal locations only. The agent always starts in the bottom left corner,195

specifically (0, 0). Whenever the agent returns from a sublevel, it would reappear in the square that it was196

in immediately before moving onto the door’s square. The agent receives a reward signal for reaching the197

correct door in a sequence or the correct sublevel exit.198

A set of eight mapping functions were randomly generated for each simulation. Mappings were mutually199

exclusive in the sense that no two mappings shared keys that would map onto the same cardinal direction.200

For each simulation, a set of eight mappings would be generated. To do this, an initial random assignment201

of keys to actions was generated – specifically, we generated a random permutation of the keys 0 to 7202

and assigned the first four keys to cardinal movements left, up, right, down, in that order. All subsequent203

mappings would be generated by cyclically permuting the assignment – as an example, if an initial assignment204

were [stay, U,R, stay, stay,D, stay, L], the next two mappings would be [L, stay, U,R, stay, stay,D, stay]205

and [stay, L, stay, U,R, stay, stay,D]. Finally, mappings for individual rooms and sublevels would be chosen206

randomly from this set according to the environment statistics. Some environments used fewer than eight207

mappings, so only the first few mappings in the set would be used. We note that both upper levels and208

sublevels used the same set of mappings. This allows agents to potentially reuse familiar mappings across209

all parts of the task hierarchy.210

At the expense of naturalism, for the independent environments only, we allowed doors to repeat within211

a sequence but with different visits leading to different random sublevel environments. This was to remove212

as much residual joint structure in the environment as possible. (In all other environments, door sequences213

are random permutations of all four doors).214

For each simulation, a random door sequences was chosen from among the 4! sequences possible, if doors215

did not repeat, or from among the 44 sequences if they did.216

In each room, exits for the three sublevels were generated in a similar manner. In general, exits were217

chosen so that the three sublevels had different exits. But to remove as much residual structure as possible218

in the independent environment, sublevel exits were allowed to repeat. The sequence of exits was chosen219

randomly from the 4! sequences possible, if exits did not repeat, or from the 44 sequences possible if they220

did.221

All environments were repeated for a total of 50 simulations.222

5.1 Independent statistics environment223

The independent environments used four mappings, four door sequences, and four exit sequences. The224

prevalences of these mappings and sequences are summarised in Table 7.225

Mappings 8 × mapping A 5 × mapping B 2 × mapping C 1 × mapping D
Door sequences 8 × sequence A 5 × sequence B 2 × sequence C 1 × sequence D
Exit sequences 8 × sequence A 5 × sequence B 2 × sequence C 1 × sequence D

Table 7: Independent environment. Prevalences of mappings, door sequences, and exit sequences.

Door sequences and exit sequences were randomly assigned to each room of the 16 rooms. The 16226

mappings were randomly assigned to the 16 upper levels. For each sequence position, we also have a set of227

16 sublevels. For each set, we used the same 16 mappings randomly assigned them to the sublevels in the228

set.229

5.2 Joint statistics environment230

This environment used eight mappings, which we shall denote mappings A through H, four door sequences,231

which we shall denote door sequences A through D, and four exit sequences, which we shall denote exit232

sequences A through D. The particular combinations of mappings and sequences is given in Table 8.233

11



R
o
om

ty
p

e
P

re
va

le
n

ce
D

o
o
r

se
q
u

en
ce

E
x
it

se
q
u

en
ce

U
p

p
er

S
u

b
le

ve
l

S
u

b
le

ve
l

S
u

b
le

ve
l

m
a
p

p
in

g
m

a
p

p
in

g
1

m
a
p

p
in

g
2

m
a
p

p
in

g
3

R
o
om

ty
p

e
1

4
ti

m
es

D
o
or

se
q
u

en
ce

A
E

x
it

se
q
u

en
ce

A
M

a
p

p
in

g
A

M
a
p

p
in

g
D

M
a
p

p
in

g
G

M
a
p

p
in

g
B

R
o
om

ty
p

e
2

3
ti

m
es

D
o
or

se
q
u

en
ce

A
E

x
it

se
q
u

en
ce

A
M

a
p

p
in

g
B

M
a
p

p
in

g
E

M
a
p

p
in

g
H

M
a
p

p
in

g
H

R
o
om

ty
p

e
3

3
ti

m
es

D
o
or

se
q
u

en
ce

B
E

x
it

se
q
u

en
ce

B
M

a
p

p
in

g
C

M
a
p

p
in

g
F

M
a
p

p
in

g
F

M
a
p

p
in

g
C

R
o
om

ty
p

e
4

3
ti

m
es

D
o
or

se
q
u

en
ce

C
E

x
it

se
q
u
en

ce
C

M
a
p

p
in

g
C

M
a
p

p
in

g
F

M
a
p

p
in

g
F

M
a
p

p
in

g
C

R
o
om

ty
p

e
5

3
ti

m
es

D
o
or

se
q
u

en
ce

D
E

x
it

se
q
u

en
ce

D
M

a
p

p
in

g
C

M
a
p

p
in

g
F

M
a
p

p
in

g
F

M
a
p

p
in

g
C

T
a
b
le

8
:

J
o
in

t
en

v
ir

o
n
m

en
t.

C
o
m

b
in

a
ti

o
n
s

o
f

m
a
p
p
in

g
s,

d
o
o
r

se
q
u
en

ce
s,

a
n
d

ex
it

se
q
u
en

ce
s

a
cr

o
ss

d
iff

er
en

t
ro

o
m

ty
p

es
.

R
o
om

ty
p

e
P

re
va

le
n

ce
D

o
o
r

se
q
u

en
ce

E
x
it

se
q
u

en
ce

U
p

p
er

m
a
p

p
in

g
S

u
b

le
ve

l
m

a
p

p
in

g
1

S
u

b
le

ve
l

m
a
p

p
in

g
2

S
u

b
le

ve
l

m
a
p

p
in

g
3

J
oi

n
t

R
o
om

ty
p

e
1

3
ti

m
es

D
o
o
r

se
q
u

en
ce

A
E

x
it

se
q
u

en
ce

A
M

a
p

p
in

g
A

M
a
p

p
in

g
A

M
a
p

p
in

g
A

M
a
p

p
in

g
A

In
d

ep
en

d
en

t

R
o
om

ty
p

e
2

1
ti

m
e

D
o
o
r

se
q
u

en
ce

B
E

x
it

se
q
u

en
ce

B
M

a
p

p
in

g
B

M
a
p

p
in

g
B

M
a
p

p
in

g
B

M
a
p

p
in

g
B

R
o
om

ty
p

e
3

1
ti

m
e

D
o
o
r

se
q
u

en
ce

B
E

x
it

se
q
u

en
ce

B
M

a
p

p
in

g
B

M
a
p

p
in

g
C

M
a
p

p
in

g
C

M
a
p

p
in

g
C

R
o
om

ty
p

e
4

1
ti

m
e

D
o
o
r

se
q
u

en
ce

B
E

x
it

se
q
u

en
ce

B
M

a
p

p
in

g
B

M
a
p

p
in

g
D

M
a
p
p

in
g

D
M

a
p

p
in

g
D

R
o
om

ty
p

e
5

1
ti

m
e

D
o
o
r

se
q
u

en
ce

B
E

x
it

se
q
u

en
ce

B
M

a
p

p
in

g
B

M
a
p

p
in

g
E

M
a
p

p
in

g
E

M
a
p

p
in

g
E

In
d

ep
en

d
en

t

R
o
om

ty
p

e
6

1
ti

m
e

D
o
o
r

se
q
u

en
ce

C
E

x
it

se
q
u

en
ce

C
M

a
p

p
in

g
C

R
a
n

d
o
m

p
er

m
u

ta
ti

o
n

o
f

m
a
p

p
in

g
s

{F
,F

,F
,

G
,G

,G
,

H
,H

,H
}

R
a
n

d
o
m

p
er

m
u

ta
ti

o
n

o
f

m
a
p

p
in

g
s

{F
,F

,F
,

G
,G

,G
,

H
,H

,H
}

R
a
n

d
o
m

p
er

m
u

ta
ti

o
n

o
f

m
a
p

p
in

g
s

{F
,F

,F
,

G
,G

,G
,

H
,H

,H
}

R
o
om

ty
p

e
7

1
ti

m
e

D
o
o
r

se
q
u

en
ce

C
E

x
it

se
q
u

en
ce

C
M

a
p

p
in

g
D

R
o
om

ty
p

e
8

1
ti

m
e

D
o
o
r

se
q
u

en
ce

C
E

x
it

se
q
u

en
ce

D
M

a
p

p
in

g
E

R
o
om

ty
p

e
9

1
ti

m
e

D
o
o
r

se
q
u

en
ce

C
E

x
it

se
q
u

en
ce

D
M

a
p

p
in

g
F

R
o
om

ty
p

e
10

1
ti

m
e

D
o
o
r

se
q
u

en
ce

C
E

x
it

se
q
u

en
ce

D
M

a
p

p
in

g
G

R
o
om

ty
p

e
11

1
ti

m
e

D
o
o
r

se
q
u

en
ce

D
E

x
it

se
q
u

en
ce

C
M

a
p

p
in

g
C

R
o
om

ty
p

e
12

1
ti

m
e

D
o
o
r

se
q
u

en
ce

D
E

x
it

se
q
u

en
ce

C
M

a
p

p
in

g
D

R
o
om

ty
p

e
13

1
ti

m
e

D
o
o
r

se
q
u

en
ce

D
E

x
it

se
q
u

en
ce

D
M

a
p

p
in

g
E

R
o
om

ty
p

e
14

1
ti

m
e

D
o
o
r

se
q
u

en
ce

D
E

x
it

se
q
u

en
ce

D
M

a
p

p
in

g
F

T
a
b
le

9
:

M
ix

ed
en

v
ir

o
n
m

en
t.

C
o
m

b
in

a
ti

o
n
s

o
f

m
a
p
p
in

g
s,

d
o
o
r

se
q
u
en

ce
s,

a
n
d

ex
it

se
q
u
en

ce
s

a
cr

o
ss

d
iff

er
en

t
ro

o
m

ty
p

es
.

12



5.3 Mixed statistics environment234

Like the joint environment, this environment also used eight mappings, four door sequences, and four exit235

sequences. The particular combinations of mappings and sequences is given in Table 9.236

6 Further agent details237

Hyperparameter Value

α 1.0
discount factor (γ) 0.75
inverse temp. (β) 5.0
Nmin particles 300
Nmax particles 10000

(a) Independent clustering agent

Hyperparameter Value

α 1.0
discount factor (γ) 0.75
inverse temp. (β) 5.0
Nmin particles 300
Nmax particles 10000

(b) Joint clustering agent

Hyperparameter Value

αP 1.0
αroom, αCh 0.5

discount factor (γ) 0.75
inverse temp. (β) 5.0
Nmin particles 300
Nmax particles 10000

(c) Hierarchical clustering agent

Table 10: Agent hyperparameters for non-hierarchical environments

Hyperparameter Value

α 1.0
discount factor (γ) 0.80
inverse temp. (β) 5.0
Nmin particles 100
Nmax particles 20000

(a) Independent clustering agent

Hyperparameter Value

αP , αCh 1.0
discount factor (γ) 0.80
inverse temp. (β) 5.0
Nmin particles 100
Nmax particles 20000

(b) Hierarchical clustering agent

Table 11: Agent hyperparameters for hierarchical environments

For the hierarchical environments, we imposed a cap on the total number of agent steps; if an agent238

exceeded the cap, the simulation was discarded. For the diabolical environments, the agent had to find the239

next goal within 500 steps. For the non-diabolical environment, we instead required the agent to complete240

an entire room in 2000 steps.241

Fig. 9 shows the full graphical model of the hierarchical agent used in the hierarchical environments.242

7 Information content of partial door sequences243

Each room contributes four partial sequences, corresponding to when 0, 1, 2, or 3 doors are revealed to the244

agent. Across 16 rooms, this corresponds to a total of 64 partial sequences for one simulation. Aggregated245

across 50 simulations, this gives a total of 3200 partial sequences.246

Partial sequences were divided into two sets. Sequences where the hierarchical correctly guessed the next247

door but not the independent agent were grouped into one set. All other sequences were placed in the second248

set; these correspond to sequences where either the hierarchical agent guessed incorrectly or the independent249

agent guessed correctly – in any case, the hierarchical agent cannot be considered to have performed better250

on these sequences.251

We first compared the average fractional information content in the two sets using a one-tailed t-test,252

assuming equal variance. The two sets were found to have significantly different information content (t = 7.5,253

p = 1.5× 10−13).254
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Figure 9: Hierarchical agent’s generative model for the hierarchical environment. This consists of several interacting
DPs and hDPs, including a DP for room clusters (dark green), an hDP for sublevel clusters (light green), an hDP
for door sequence clusters (orange), an hDP for mappings (blue), and an hDP for goals (red). Base distributions
Hroom, Hsublvl, Hdoor, HR, and HM generate environment-wide clusterings, respectively, of rooms ρ, sublevels Σ,
door sequences ∆, goals Γ, and mappings MP . A room cluster kroom is drawn from ρ and contains room-specific
clusterings of sublevels Sk, mappings for the upper level Mk, and door sequences Dk. Distribution Dk generates door
sequence clusters δ, which in turn consists of four further goal clusterings {Gd}, one for each door position, with
each cluster in Gd representing the reward function Rv for a door goal. Distribution Sk generates a further three
clusterings {σsublvl i} of sublevel structures s specific to each position in the door sequence. Each sublevel structure s
has further clusterings of mappings Ms and goals Gs specific to the sublevel. Finally, mapping clusters M and goal
clusters R, wherever they appear in the hierarchy, generate observed transitions t and rewards r. All parental DPs
use concentration hyperparameter αP , and all children DPs use concentration hyperparameter αCh.
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We then fitted a logistic model to predict the probability of the hierarchical agent performing better255

given a z-scored level of fractional information ī(s) for a partial sequence s,256

P [i(s)] =
1

1 + exp[−(a+ b · ī(s))]
,

where a and b are model parameters to be fitted and the z-scoring on i(s) is across all simulations and all257

upper levels. In other words, this is the probability that s belongs to the first set of partial sequences given258

its z-scored fractional information is ī(s). The best fitting parameters were a = −1.57 and b = 0.33. This259

was compared against an alternative model that did not depend on the fractional information,260

P [i(s)] =
1

1 + exp[−a]
.

The best fitting parameter was found to be a = −1.54. We compared the models using a likelihood ratio261

test and found the first model to be a significantly better fit to the data (Λ = 45.7, p = 1.35× 10−11).262

8 Additional results263

In the following figures, we present additional graphs for the simulations discussed in the main paper. In264

particular, we present violin plots showing the distribution of the total steps needed to solve an environ-265

ment for each agent; distributions are over all simulations. In Fig. 13, we provide histograms showing the266

distribution of the total number of steps needed by each agent to solve each of the hierarchical gridworld267

environments.268

(a) Independent environment (b) Joint environment

Figure 10: Additional results for the independent and joint non-hierarchical environment. Violin plots of total steps
taken across 150 simulations. Red dashed line shows average number of steps taken by the hierarchical agent.
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(a) All contexts (b) Joint contexts (c) Independent contexts

Figure 11: Additional results for the mixed non-hierarchical environment. Violin plots of total steps taken across 150
simulations. Red dashed line shows average number of steps taken by the hierarchical agent. Regardless of the type
of context, the hierarchical agent is highly adaptive. The joint agent is only adaptive within joint contexts, while the
independent agent is only adaptive in the independent contexts.

(a) Independent context set 1 (b) Independent context set 2

(c) All contexts (d) Independent context set 1 (e) Independent context set 2

Figure 12: Additional results for the conditionally-independent non-hierarchical environment. Red dashed lines in
the violin plots show the average number of steps taken by the hierarchical agent. Conditionally independent prevents
even the independent agent from being adaptive here. In this case, only the hierarchical agent is adaptive.
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(a) Independent environment statistics (b) Joint environment statistics (c) Mixed environment statistics

Figure 13: Hierarchical diabolical rooms environments. Histograms showing the total number of steps taken by each
agent in the environments with (a) independent, (b) joint, and (c) mixed statistics.

(a) Independent environment (b) Joint environment

Figure 14: Hierarchical, non-diabolical environments with (a) independent and (b) joint statistics. Violin plots of
the total number of steps taken by each agent. Red dashed line shows the average number of steps taken by the
hierarchical agent.
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(a) All contexts (b) All upper levels (c) All sublevels

(d) Joint contexts (e) Joint context - upper levels (f) Joint context - sublevels

(g) Independent contexts (h) Independent context - upper levels (i) Independent contexts - sublevels

(j) Mixed contexts (k) Mixed context - upper levels (l) Mixed contexts - sublevels

Figure 15: Hierarchical environment with mixed statistics
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(a) All contexts (b) All upper levels (c) All sublevels

(d) Joint contexts (e) Joint context - upper levels (f) Joint context sublevels

(g) Independent contexts (h) Independent context - upper levels (i) Independent contexts sublevels

(j) Mixed contexts (k) Mixed context - upper levels (l) Mixed contexts - sublevels

Figure 16: Hierarchical, non-diabolical environment with mixed statistics. Violin plots of the total number of steps
taken by each agent. Red dashed line shows the average number of steps taken by the hierarchical agent.
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