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The limitations of the state-of-the-art in nosology in psychiatry have been 
much debated in the context of the development of the new edition of the 
Diagnostic and Statistical Manual of Mental Disorders (DSM). There is 
widespread agreement that the current symptom-based system of clas-
sification must eventually be replaced with a system based on patho-
physiology1. However, the current understanding of the neurobiology 
and genetics of psychiatric disorders remains too limited to form the 
backbone of nosology2. This limited understanding is also reflected in 
the state-of-the-art in treatment, with most psychiatric medications 
having been found by serendipity, rather than through rational design. 
Neurology typically deals with disorders with better understood etiology 
(for example, loss of dopaminergic neurons in Parkinson’s disease), but 
even then it is often unclear how these etiological processes produce 
complex patterns of symptoms and why treatments can alleviate some 
deficits while exacerbating, or even causing, others3,4. Part of the problem 
is the complexity of the brain and mind and the many levels of analysis 
that span the two. Computational models are a valuable tool for taming 
this complexity, as they foster a mechanistic understanding that can span 
multiple levels of analysis and can explain how changes to one component 
of the system (for example, increases in striatal D2 receptor density) can 
produce systems-level changes that translate to changes in behavior.

One area in which substantial progress has been made in integrat-
ing computational modeling and empirical research in neuroscience 
is reinforcement learning5. This approach has produced models of the 
roles of dopamine and cortico-basal ganglia-thalamo-cortical (CBGTC) 
loops in learning about reinforcers (rewards and punishments) and in 
guiding behavior so as to acquire rewards and avoid punishments5. 
Existing models address a variety of functions of these circuits, 
including Pavlovian conditioning, instrumental conditioning and their 

interactions; habits, goal-directed actions and their interactions; and the 
inter-related issues of incentive salience, motivation and vigor5–9.

Organizing behavior in ways that obtain outcomes appropriate for 
the current motivational state (for example, acquiring food if hungry) 
and that avoid harmful outcomes is crucial for survival and is therefore 
a central organizing principle of the nervous system. Not surprisingly, 
then, disturbances of the dopaminergic system and CBGTC circuits 
have a key role in several psychiatric and neurological disorders. 
Reinforcement learning models have recently started to be applied to 
these disorders and have been shown to have substantial explanatory 
and predictive power10–14. The approach builds on an understand-
ing of the computations that these circuits perform in healthy indi-
viduals and investigates how pathophysiological processes alter these 
computations, producing symptoms. We therefore start by reviewing 
the computational neurobiology of the normal functioning of these 
circuits. We then discuss several disorders that have benefited or are 
ripe to benefit from the use of reinforcement learning models. We 
close by discussing the future implications of this body of work for 
nosology and treatment.

In addition to conveying the specifics of how reinforcement learning 
models provide insights into psychiatric and neurological disorders, 
we hope that this review will also help to foster the development of the 
emerging disciplines of computational psychiatry and computational 
neurology. A powerful set of computational techniques can now be 
used to investigate pathophysiological processes and their relation to 
behavior (Fig. 1). We hope that the work reviewed here serves as an 
example that prompts the concerted and widespread use of these tech-
niques across multiple model types and disorders.

Reinforcement learning in the brain
Dopamine and prediction errors. Dopamine neurons code rein
forcement prediction errors5, a key signal in many reinforcement 
learning models15. Prediction errors signal the difference between the 
observed and expected outcomes: a positive prediction error signals 
that the outcome was better than expected, and a negative prediction 
error signals that the outcome was worse than expected. The magnitude 
of phasic dopamine-neuron bursts quantitatively represents positive 
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Over the last decade and a half, reinforcement learning models have fostered an increasingly sophisticated understanding of the 
functions of dopamine and cortico-basal ganglia-thalamo-cortical (CBGTC) circuits. More recently, these models, and the insights 
that they afford, have started to be used to understand important aspects of several psychiatric and neurological disorders that 
involve disturbances of the dopaminergic system and CBGTC circuits. We review this approach and its existing and potential 
applications to Parkinson’s disease, Tourette’s syndrome, attention-deficit/hyperactivity disorder, addiction, schizophrenia and 
preclinical animal models used to screen new antipsychotic drugs. The approach’s proven explanatory and predictive power bodes 
well for the continued growth of computational psychiatry and computational neurology.

r e v i e w 	 c o m p u tat i o n  a n d  s y s t e m s
©

 2
01

1 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

http://www.nature.com/natureneuroscience/
http://www.nature.com/doifinder/10.1038/nn.2723


r e v i e w

nature neuroscience  VOLUME 14 | NUMBER 2 | FEBRUARY 2011	 155

b Deductive approach

(4) M
easure

(4) M
easure

(3) P
redict

(3) P
redict

Healthy controls Patients

(1)
Compare biology

(using PET,
MRI, etc.)

Biological abnormalities
in patients

Model of normal
function

(2)
Modify
model

Model with changes
to reflect
biological

abnormalities Neural
activity

(5)
Compare

Neural
activity

Behavior Behavior
(5)

Compare

If predictions are accurate, model provides
mechanistic bridge from biological abnormalities

to abnormal behavior and/or neural activity

d Quantitative abductive approach

Healthy controls

(1) B
ehav.

expt(s).

(1) B
ehav.

expt(s).

(1) C
linical

ratings

Model with
few free

parameters

Patients

Behavior Behavior Symptom
severity

Parameters for
healthy controls

Parameters
for patients

(3)
Compare

(2)
Fit model to

individual subjects′
behavior

(3)
Correlate

Differences indicate
mechanistic neurocognitive

abnormalities in patients

Positive correlations indicate core
disease mechanisms or vulnerability
factors; negative correlations indicate

protective or compensatory factors

c

(3) P
redict

(3) P
redict

(3) P
redict

(3) P
redict

(3) P
redict

(3) P
redict

(4) M
easure

(4) M
easure

Abductive approach

Healthy controls
(1) Inconclusive

prior studies

Patients

Model of normal
function

Alternative hypotheses
concerning biological

abnormalities in patients

(2) Modify model
according to each

hypothesis

Model with changes
to reflect

hypothesis 1

Neural
activity 1

Behavior
1

Behavior
2

Behavior
n

(5) Compare each predicted behavior
and/or neural activity to patients′ behavior

and/or neural activity

Hypothesis that gives the best fit
represents most likely abnormality

Behavior

Neural
activity 2

Neural
activity n

Neural
activity

Model with changes
to reflect

hypothesis 2

Model with changes
to reflect

hypothesis n

Model of normal functiona

M
easure

M
easure

P
redict

P
redict

Healthy controls
Model of normal

function

Neural
activity

Neural
activity

Similar
Behavior Behavior

Similar

Figure 1  Principles of computational psychiatry and computational neurology. (a) The starting 
point in computational psychiatry and computational neurology is a model of normal function 
that captures key aspects of behavior, neural activity or both. Models at various levels of 
abstraction can be useful (for example, algorithmic models from machine learning or neural models from computational cognitive neuroscience). Several 
approaches can then be pursued. (b) With detailed neural models, pathophysiological processes can be simulated by making principled changes to the model 
that mimic biological alterations in the disorder under consideration (for example, alterations in striatal dopaminergic innervation). The systems-level and 
behavioral implications of these changes can then be explored, leading to testable predictions. We call this approach ‘deductive’ because the models are 
used to recreate the mechanistic link between causes (the biological abnormalities) and their consequences (abnormalities in systems-level neural activity 
and behavior). (c) A second approach involves using a model to try to infer the causes of the observed abnormalities in neural activity or behavior. We call 
this approach ‘abductive’ because it involves reasoning from consequences (the behavior or systems-level neural activity) to their possible causes (the 
underlying biological abnormalities). In this approach, alternative a priori hypotheses concerning possible biological abnormalities in a given disorder can be 
compared to determine which, if any, produce the same abnormalities in behavior and neural activity that are found in the disorder (T.V.M. and B.S. Peterson, 
unpublished). (d) A third approach, used more often with algorithmic than with neural models (largely because the former tend to have fewer parameters), 
involves fitting the model’s parameters to the behavior of individual subjects on a suitable task or set of tasks and then determining if there are parameter 
differences between diseased and healthy subject groups or correlations between parameters and disease severity. We call this approach ‘quantitative 
abductive’ because it also involves reasoning from behavior to its mechanistic causes. A fourth approach (not shown) also involves fitting a model to subjects’ 
behavior, but the goal is to estimate, on a trial-by-trial basis, each subject’s putative internal representation of the quantities embedded in the model (for 
example, state values or prediction errors). These predicted internal representations are then used as regressors in functional imaging (for example, functional 
magnetic resonance imaging, electroencephalography), to find their neural correlates, which are then compared across the diseased and healthy groups. Each 
of these four approaches can also be adapted to study the effects of treatments (for example, medication or neurosurgery). Furthermore, additional leverage 
can sometimes be gained by the synergistic use of different approaches or models at different levels of abstraction. Behav. expt(s)., behavioral experiment(s).
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prediction errors16. Whether phasic reductions in dopaminergic neuron 
firing quantitatively represent negative prediction errors is more contro
versial because the low tonic firing rate of dopamine neurons implies 
that variations in such reductions are somewhat limited. The duration 
of the pause in dopaminergic neuron firing, however, seems to repre-
sent negative prediction errors quantitatively17. This asymmetric coding 
between positive and negative prediction errors (burst magnitude for 
positive and pause duration for negative) may be justified biologically, 
both because it permits lower tonic firing, which is advantageous meta-
bolically, and in terms of the postsynaptic effects of these signals on D1 
and D2 receptors, as discussed below. An alternative or complementary 
hypothesis is that negative prediction errors may be coded by serot-
onin18. This hypothesis, however, has not yet been adequately tested5.

Although the majority of dopamine neurons burst to positive pre-
diction errors, smaller proportions of these neurons also burst under 
other conditions19. For example, some dopamine neurons burst both 
to positive prediction errors and to negative events and stimuli that 
predict negative events5. Despite some attempts to reconcile these 
findings with reinforcement learning20, additional research is needed 
in this area. The predominant function of dopamine bursts, however, 
is to code positive prediction errors19. Indeed, phasic optogenetic 
stimulation of dopamine neurons induces a subsequent preference 
for the place in which such stimulation occurred21, just as if reward 
had been delivered at that place.

The basal ganglia and action selection. Prediction errors are used 
to learn the values (or ‘goodness’) of states (stimuli or situations), 
state-action pairs or both. These values are then used to select optimal 
actions15. A model of this process that has been used to account for 
many behavioral and neural findings is the actor-critic5,22,23. The 
actor-critic view of action selection in the brain suggests that the 
cortex represents the current state and the basal ganglia implement 
two computational modules: the critic, which learns state values and 

may be implemented in the ventral striatum5,23 and possibly in the 
amygdala and orbitofrontal cortex (OFC)5, and the actor, which learns 
stimulus-response associations and may be implemented in the dorsal 
striatum5,23. The critic and the actor both use the prediction errors 
signaled by dopamine to update their estimates (of state values and 
stimulus-response strengths, respectively). The mapping of the actor-
critic to the basal ganglia is consistent with the view that the basal 
ganglia are crucial for stimulus-response learning, but with differ-
ent portions of the striatum (which are involved in distinct, parallel 
CBGTC loops24) having distinct roles25.

A related, but slightly different, view suggests that the basal ganglia 
are responsible not for generating actions, but for arbitrating between 
actions that are under consideration in cortex, by facilitating the most 
appropriate action while suppressing competing actions26–28. In other 
words, whereas according to the actor-critic view, the basal ganglia are 
fully responsible for selecting the action on the basis of the current 
state alone, this alternative view suggests that the cortex itself initially 
generates candidate actions (for example, on the basis of the frequency 
with which they have previously been executed in the current state28) 
and that the basal ganglia then arbitrate between these actions (likely 
on the basis of their learned reinforcement probabilities28,29) to 
facilitate (gate) the best one. The commonalities between these views 
substantially outweigh their differences, however, so we will not delve 
into this distinction further.

The basal ganglia anatomy consists of direct, indirect and hyper-
direct pathways from cortex to basal ganglia output structures30–32 
(Fig. 2a). Neurocomputational models28,33–36 have refined verbal 
theories26,30–32 of the role of these pathways in action selection. An 
influential account, originally proposed to explain the pathophysio
logy of several neurological disorders30,31, suggests that the direct 
pathway provides focused facilitation of the appropriate action(s) for 
the current state, whereas the indirect pathway suppresses actions that 
are inappropriate for that state. Although the original version of this 

Figure 2  Anatomy and modeling of CBGTC loops. 
(a) Anatomy. Striatal medium spiny neurons in 
the direct pathway (Go neurons) express mostly 
D1 receptors40 and project directly to the globus 
pallidus internal segment and the substantia 
nigra pars reticulata (GPi/SNr). Go neurons  
inhibit the GPi/SNr, which in turn results in 
disinhibition of the thalamus, thereby facilitating 
execution of the corresponding action. Striatal 
medium spiny neurons in the indirect pathway 
(NoGo neurons) express mostly D2 receptors40 
and project to the globus pallidus external 
segment (GPe), which in turn projects to the  
GPi/SNr. NoGo neurons produce a focused 
removal of the tonic inhibition of the GPe  
on the GPi/SNr, thereby disinhibiting the 
GPi/SNr, which in turn results in suppression 
of the corresponding action in the thalamus. 
Neurons in the subthalamic nucleus (STN) receive direct projections from the cortex in the hyperdirect pathway and project to both the GPe and GPi/SNr. 
The projections from the STN to the GPe and GPi/SNr are diffuse26, so they are believed to modulate all actions rather than a specific action. (b) The basal 
ganglia Go/NoGo model28,35. The connections in the model are consistent with the anatomical connections shown in a. The model learns to map inputs, 
representing the current state, to actions in the pre-supplementary motor area (preSMA) (or the SMA). Corticocortical projections from the input layer to 
preSMA activate in preSMA candidate actions appropriate for the current state. The basal ganglia then facilitate (gate) the best action, that is, the action 
with the best reinforcement history for the current state, while simultaneously suppressing the other actions (at the level of the thalamus). Distributed 
populations of Go and NoGo units represent the positive and negative evidence, respectively, for the candidate actions in the current state. Lateral inhibition 
between the Go and NoGo pathways ensures that the probability of selecting a given action is a function of the difference between the positive and negative 
evidence for that action. The positive and negative evidence for each action in each state is learned on the basis of past reinforcement history, through the 
actions of dopamine on D1 and D2 receptors in striatal Go and NoGo units, respectively. The weights from the input layer to preSMA are themselves learned, 
but through Hebbian mechanisms, thereby allowing these corticocortical projections to activate candidate actions in preSMA in proportion to their prior 
probability of being executed in the given state. The STN prevents facilitation of suboptimal responses in high-conflict situations35.
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account was based on a somewhat oversimplified view of basal ganglia 
anatomy and function, recent findings strongly support this distribu-
tion of function between the direct (or Go) and indirect (or NoGo) 
pathways37–39. This distribution of function finds formal expression 
in the basal ganglia Go/NoGo (BG-GNG) model28 (Fig. 2b), in which 
the probability that a given action is selected is proportional to the 
difference between the Go and NoGo activity for that action in the 
current state. Consistent with this scheme, electrophysiological find-
ings demonstrate that the positive and negative values of actions are 
represented in distinct striatal populations, with greater activity in the 
neurons that represent the positive value of an action predicting selec-
tion of that action and greater activity in the neurons that represent 
the negative value of an action predicting selection of an alternative 
action29. The BG-GNG model further shows how aspects of basal 
ganglia anatomy that were not considered in the original account sub-
serve other aspects of basal ganglia function. For example, the model 
suggests that the hyperdirect (or Global NoGo) pathway provides 
global inhibition of all actions during the early stages of process-
ing, particularly in high-conflict situations (that is, when multiple 
actions are strongly activated simultaneously), to prevent premature, 
suboptimal responding35.

The BG-GNG model also shows how the direct and indirect path-
ways can learn which actions to facilitate and suppress in each state, 
respectively, using the prediction errors conveyed by dopamine28. 
The direct and indirect pathways predominantly express D1 and D2 
receptors, respectively40. In the model, when an action is followed by 
a dopamine burst, the corticostriatal synapses in the direct pathway 
into active Go units (which encode the conjunction between the state 
and the action that was executed) are strengthened via D1-dependent 
long-term potentiation (LTP), and the corticostriatal synapses in the 
indirect pathway into active NoGo units for the executed action are 
weakened via D2-dependent long-term depression (LTD). When an 
action is followed by a dopamine dip, the reverse occurs. These dual 
effects of dopamine on D1- and D2-mediated plasticity have been 
supported by empirical evidence41, as has the model prediction that 
the direct and indirect pathways mediate learning from positive and 
negative outcomes, respectively38.

The dynamics of dopamine effects on D1 and D2 receptors may also 
explain why burst magnitude and pause duration code for positive 
and negative prediction errors, respectively. D1 and D2 receptors have 
relatively low and high affinities for dopamine, respectively42. D1 
stimulation is therefore hypothesized to depend on phasic dopamine 
bursts, with larger bursts producing greater stimulation. Burst 
magnitude is therefore crucial for D1-mediated LTP as a result of 
positive prediction errors. D2 receptors, in contrast, are hypothesized 
to be stimulated tonically by baseline dopamine levels. The effect 
of pauses in dopaminergic neuron firing on D2 receptors therefore 
depends on dopamine reuptake, with longer pauses allowing greater 
reuptake and therefore producing a larger dip in dopamine concen-
tration. Pause duration is therefore crucial for D2-mediated LTP as a 
result of negative prediction errors. LTD mechanisms are also consist-
ent with a key role for magnitudes and durations in coding positive 
and negative prediction errors, respectively. Positive prediction errors 
stimulate D2 receptors directly, producing LTD in the indirect path-
way. Negative prediction errors may not strongly affect D1 receptors, 
because D1 receptors may not be substantially stimulated by tonic 
dopamine. In the BG-GNG model, negative prediction errors instead 
produce LTD in the direct pathway indirectly, via their effects on D2 
receptors (dependent on reuptake and therefore pause duration) and 
subsequent inhibition of the direct pathway by the indirect pathway, 
leading to activity-dependent LTD in the direct pathway.

In addition to the role of phasic dopamine in learning, tonic 
dopamine increases excitability in the direct (Go) pathway and 
decreases excitability in the indirect (NoGo) pathway because D1 
receptors are excitatory (at least for neurons receiving strong con-
comitant glutamatergic input) and D2 receptors are inhibitory28. 
Increases in tonic dopamine therefore produce a Go bias, whereas 
decreases produce a NoGo bias. Simulations using the BG-GNG 
model show that these biases exert strong effects on action selection 
and reaction times10,28,43, with tonic dopamine promoting the exe
cution and speed of actions (particularly actions with greater positive 
differences between their previously learned Go and NoGo associa-
tions). Dopamine therefore modulates not only learning, but also the 
expression of prior learning.

Although multiple parallel (albeit interacting44) CBGTC loops 
course through the basal ganglia24, a common division is into sensori
motor, associative and limbic loops, which connect to sensorimotor 
cortical areas, dorsolateral prefrontal cortex, and OFC and anterior 
cingulate cortex, respectively45. The BG-GNG model has been applied 
not only to motor action selection, involving the sensorimotor loop, 
but also to the selection of cognitive ‘actions’, particularly working 
memory updating46,47, likely involving the associative loop. The idea 
in the latter case is that Go signals facilitate the gating of a stimulus 
into working memory, whereas NoGo signals prevent such gating (for 
example, for stimuli that are irrelevant for the task). Consistent with 
this idea, basal ganglia damage interferes with the ability to selectively 
gate only task-relevant stimuli into working memory48.

The limbic loop, which involves the ventral striatum, may imple-
ment the critic, as noted above, learning the values of states. It is 
tempting to speculate that the direct and indirect pathways learn the 
positive and negative values of states, respectively. Consistent with 
this idea, in conditioned place preference, which involves learning 
the values of places (states) and depends on the nucleus accumbens49, 
learning a positive value for a place depends on neurotransmission 
in the direct, but not the indirect, pathway38. Furthermore, cocaine-
induced conditioned place preference is increased by optogenetic acti-
vation of the direct pathway in the nucleus accumbens during learning 
and is decreased by activation of the indirect pathway50.

The OFC has been hypothesized to implement working memory 
for state reinforcement values, helping to guide action selection when 
these values change rapidly, among other scenarios51. If so, the limbic 
loop may also implement Go and NoGo for ‘actions’ that determine 
when the values maintained in OFC should be updated so as to ensure 
adaptive, flexible behavior.

Clinical applications
These ideas and models, when applied to both motor and cogni-
tive domains, explain a variety of findings across several disorders. 
Given dopamine’s central role in reinforcement learning, we focus 
on disorders with strong dopaminergic involvement: Parkinson’s 
disease, Tourette’s syndrome, attention-deficit/hyperactivity disorder 
(ADHD), drug addiction and schizophrenia. Of course, these dis
orders often also involve nondopaminergic disturbances (for example, 
Tourette’s syndrome involves abnormalities in striatal interneurons52, 
ADHD involves noradrenergic abnormalities53, etc.). Furthermore, in 
some cases, the dopaminergic disturbances themselves may be caused 
by upstream abnormalities. For example, schizophrenia involves 
increased mesolimbic and decreased mesocortical dopamine54,55, 
both of which may be caused, at least in part, by dysregulated cortical 
control of dopamine neurons as a result of NMDA-receptor abnor-
malities56. (In fact, NMDA abnormalities may directly contribute to 
many of the symptoms of schizophrenia by disrupting the stability of 
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cortical attractors57.) Comprehensive models of these disorders will 
ultimately have to integrate these various abnormalities. However, 
even a more limited focus on the small number of principles articu-
lated above concerning the computational functions of dopamine and 
CBGTC circuits provides substantial leverage to understand multiple 
aspects of these disorders.

Parkinson’s disease. Dopaminergic cell death in Parkinson’s disease 
results in reduced striatal dopamine, thereby producing an exagger-
ated tendency for NoGo10,28. Simulations using the BG-GNG model 
have shown that this tendency explains not only Parkinson’s disease 
hypokinetic symptoms, but also a variety of cognitive deficits that 
accompany this disorder10,28,58. For example, as noted above, the 
model suggests that Go and NoGo signals in the associative loop 
facilitate and prevent working memory updating, respectively46,47. The 
hyperexcitable NoGo pathway in Parkinson’s disease should therefore 
produce a deficit in working memory updating, while simultaneously 
producing increased resistance to distractors. Furthermore, l-DOPA 
and dopamine agonists should reverse these effects. Empirical studies 
confirmed these predictions59,60.

Subjects’ tendency to learn better from positive or from nega-
tive feedback (Go and NoGo learning, respectively) can be assessed 
using the probabilistic selection task58 (Fig. 3). Healthy controls 
are equally good at learning to obtain positive outcomes (Go learn-
ing) and avoid negative outcomes (NoGo learning) in this task4,58 
(although there are individual differences in Go versus NoGo learning 
among healthy controls, which are predicted by genetic variations 
affecting dopamine function in the direct and indirect pathways37). 
Consistent with the predictions of the BG-GNG model, unmedicated 
individuals with Parkinson’s disease are better at NoGo learning than 
at Go learning58. Medication reverses these biases: medicated indivi
duals with Parkinson’s disease are better at Go than at NoGo learning 
and are worse at NoGo learning than unmedicated individuals with 
Parkinson’s disease or controls4,58. These medication effects were also 
predicted by the model, under the assumption that dopaminergic 
medications reduce dopamine dips during negative prediction errors 
(because dopaminergic medications result in continued occupation of 
postsynaptic dopamine receptors during pauses in firing of dopamine 
neurons)58. Such blunting of negative prediction errors reduces learn-
ing from negative outcomes, producing the deficit in NoGo learning. 
Similar findings for both unmedicated and medicated individuals 
with Parkinson’s disease have been obtained using several other tasks 

that also assess the degree to which subjects learn more from positive 
or negative outcomes10. These asymmetries in learning from positive 
and negative outcomes may have clinical implications. For example, 
the medication-induced tendency to learn more from positive than 
from negative outcomes may explain why medication induces patho-
logical gambling in a subset of individuals with Parkinson’s disease.

The BG-GNG model also suggests that the subthalamic nucleus 
(STN), the key node in the hyperdirect pathway, provides a Global 
NoGo signal that transiently inhibits all actions during action selec-
tion35. Activation of the STN, and therefore the Global NoGo signal, 
is dynamically modulated by the amount of response conflict (see 
also ref. 33). The Global NoGo signal is therefore particularly strong 
in situations of high conflict, in which actions with relatively similar 
reinforcement histories are being considered. In such situations, the 
Global NoGo inhibition provides time for the best action to win the 
competition, preventing premature, suboptimal actions from being 
facilitated. The model therefore predicted that disruption of STN 
processing—for example, by deep brain stimulation (DBS)—would 
disrupt subjects’ ability to slow down in such high-conflict situa-
tions, resulting in faster, but suboptimal, responses4. This predic-
tion was confirmed experimentally in individuals with Parkinson’s 
disease undergoing DBS of the STN (and the deficit was resolved 
when DBS was turned off)4. Furthermore, as predicted by the model, 
dopaminergic medications and DBS had doubly dissociable effects: 
medications affected the asymmetry in learning from positive and 
negative outcomes, but not the ability to slow down in high-conflict 
situations, whereas DBS had the opposite effects4. The adverse effects 
of medications and DBS on real-life behavior in a subset of individuals 
with Parkinson’s disease may therefore be produced by disruptions in 
distinct neurocognitive processes.

Tourette’s syndrome. Tourette’s syndrome is characterized by recur-
rent, stereotyped movements and vocalizations, known as tics. Tics 
have been hypothesized to reflect abnormal activation of subsets of 
striatal neurons that provide Go signals for the tic61. Evidence from 
Tourette’s clinical pharmacology and from experimental work in 
animals suggests that tics may result from excessive excitability or 
plasticity in the direct (Go) relative to the indirect (NoGo) path-
way. First, D2 blockers, the standard pharmacological treatment for 
Tourette’s, boost the indirect pathway (because the D2 receptor is 
inhibitory). Second, administration of dopamine, amphetamine, or 
a combination of D1 and D2 agonists into the striatum, all of which 
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Figure 3  The probabilistic selection task58. The probabilistic selection task 
assesses whether participants learn better from positive or negative outcomes. 
During training, in each trial, participants are presented with one of the pairs 
shown on top (AB, CD and EF) and select one of the two stimuli. Feedback 
then indicates if the choice was correct or incorrect. The probabilities of each 
stimulus leading to correct feedback are indicated in the figure. Participants 
may learn to perform accurately during training (that is, learn to select A,  
C and E) by learning which stimulus in each pair is associated with positive 
feedback (Go learning), by learning which stimulus in each pair is associated 
with negative feedback (NoGo learning) or both. The test phase assesses the 
degree to which participants learned better from positive or from negative 
feedback. Participants are presented with novel pairs of stimuli consisting of 
either an A or a B paired with each of the other stimuli (C through F, which 
on average had a 50% probability of positive feedback during training). No 
feedback is provided during testing. If participants perform better on the pairs 
that include A than on those that include B, that indicates that they learned 
better to select the most positive stimulus (A) than to avoid the most negative 
stimulus (B), so they learn better from positive feedback (Go learning). If they perform better on the pairs that include B, they learn better from negative 
feedback (NoGo learning). The test phase can also be used to assess how participants adjust their behavior as a function of conflict (for example, whether they 
slow down to improve accuracy in high-conflict situations, such as when deciding between stimuli A and C, which have very similar reinforcement histories).
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simultaneously boost the direct pathway (via D1 receptors) and 
inhibit the indirect pathway (via D2 receptors), causes stereotypies 
in animals62,63. Several findings suggest that the effects on the two 
pathways work synergistically to induce stereotypies; for example, 
stereotypies induced by striatal amphetamine administration are 
reduced by pretreatment with either D1 or D2 antagonists62.

Excessive Go relative to NoGo activity in Tourette’s syndrome may 
be a consequence of excessive dopamine or dopaminergic receptor 
sensitivity in the striatum. Indeed, Tourette’s syndrome has been 
associated with increases in dopamine release, dopaminergic inner
vation and D2 receptors in the striatum (although the evidence for 
the latter two alterations is somewhat inconsistent across studies)55,64. 
All of these potential alterations would result in a boosted Go rela-
tive to NoGo pathway. Consistent with a possible excess of striatal 
dopamine, unmedicated individuals with Tourette’s syndrome learn 
better from rewards than from punishments65. These biases are the 
opposite of those shown by unmedicated individuals with Parkinson’s 
disease4,58,65, mirroring the fact that the symptoms of these two dis-
orders are also, to a limited extent, the opposite: Parkinson’s disease is 
a hypokinetic disease, whereas Tourette’s syndrome is a hyperkinetic 
disease. In fact, medication inverts these learning biases, making 
individuals with Parkinson’s disease medicated with l-DOPA and 
dopamine agonists perform similarly to unmedicated individuals 
with Tourette’s syndrome (learning better from rewards than from 
punishments) and making individuals with Tourette’s syndrome 
medicated with D2 blockers perform similarly to unmedicated indi-
viduals with Parkinson’s disease (learning better from punishments 
than from rewards)65. The mechanistic explanation for the former 
finding has already been discussed; the latter finding is consistent 
with the results of simulations showing that D2 blockade increases 
excitability and plasticity of the indirect pathway, thereby promoting 
NoGo learning10. This enhancement of NoGo learning by D2 block-
ade suggests that acute administration of D2 antagonists may be an 
effective adjunct for behavioral therapies that work by assigning nega-
tive value to tics (for example, contingency management, in which 
tics are followed by punishment or the absence of tics is positively 
reinforced, or massed negative practice, in which tics become aversive 
owing to fatigue). Whether acute D2 blockade would also be useful 
as an adjunct to habit reversal training, the best current behavioral 
treatment for Tourette’s syndrome, is unclear because this procedure 
does not obviously involve aversive learning.

Excessive Go relative to NoGo activity in the motor CBGTC loop 
may also explain the premonitory urges that are a prominent feature 
of Tourette’s syndrome. These urges are hypothesized to be caused by 
abnormal activation in the supplementary motor area (SMA) because 
electrical stimulation of the SMA causes similar urges66. Consistent 
with this idea, the SMA is active before tics67, and SMA activation is 
greater with tics than with movements that mimic tics (and that are 
visually indistinguishable from tics) performed by healthy controls 
(Z. Wang, T.V.M., R. Marsh, T. Colibazzi, A. Gerber et al., unpublished 
data). The SMA is the primary target of the motor CBGTC loop24, so 
abnormal SMA activation could be a consequence of excessive relative 
Go activity in that loop. Alternatively, or in addition, the abnormal 
SMA activation could be driven by the corticocortical projections 
between the state and the SMA (or preSMA), as in the BG-GNG 
model (see Fig. 2b). In the model, these connections are learned via 
Hebbian mechanisms, so repeated gating of a tic by the basal ganglia 
in one or multiple states (initially because of excessive Go relative 
to NoGo activity) would strengthen the connections between those 
states and that tic’s motor plan in the SMA. That SMA motor plan 
would then tend to become activated in those states, producing the  

urge (which could then be gated by the basal ganglia into an actual tic 
emission, but could also be prevented from doing so). This account, 
if correct, would explain important clinical features of Tourette’s 
syndrome. For example, it would explain the state dependency of 
tics (that is, the fact that tics do not occur equally frequently in all 
contexts). It would also explain why treatments that prevent tic per-
formance, such as habit reversal training, over time result in reduction 
of the urges: repeated activation of the tic-eliciting states without 
corresponding tic emission would produce Hebbian unlearning of 
the association between those states and the tics. More broadly, this 
account suggests that Tourette’s syndrome involves a vicious cycle: 
performing a tic strengthens the urges to perform that tic (through 
corticocortical Hebbian learning), which in turn increases the ten-
dency to tic (through corticocortical activation of the tic motor plan 
in the SMA, which increases the likelihood of basal ganglia gating 
of that tic).

ADHD. ADHD is characterized by abnormal levels of inattention, 
hyperactivity and impulsivity. The classical theory of ADHD is that 
it results from a primary deficit in inhibitory control, which causes 
several deficits in executive function68. Another prominent theory is 
that ADHD results from excessive discounting of delayed rewards69. 
‘Multiple-pathway’ accounts suggest that executive dysfunction and 
excessive delay discounting are both involved70. ADHD seems to 
involve a hypofunctioning dopaminergic system11,71.

One reinforcement learning theory suggests that tonic dopamine 
in the ventral striatum determines the discount factor (the degree to 
which future reinforcers are discounted relative to immediate ones) in a 
reinforcement learning system that can look ahead because it includes 
an internal model of the environment72. Reduced tonic dopamine 
in the ventral striatum in ADHD would produce a smaller discount 
factor, causing excessive discounting of delayed rewards72. This 
idea seems consistent with some circumstantial evidence: systemic 
administration of dopamine blockers increases delay discounting, and 
increasing dopamine via administration of psychostimulants or selec-
tive dopamine reuptake inhibitors generally decreases delay discount-
ing73. However, dopamine depletion in the nucleus accumbens does 
not seem to produce excessive delay discounting74, whereas dopamine 
depletion in the OFC does75. Excessive delay discounting in ADHD 
may therefore be caused by low dopamine in the OFC.

Biophysically realistic neurocomputational models suggest that 
dopamine stabilizes representations in PFC76. Given the key role of 
top-down biases from PFC in attention, cognitive control (including 
inhibitory control) and working memory77, the hypothesized low PFC 
dopamine in ADHD could underlie deficits in all of these executive 
functions. This idea contrasts with the idea that the primary problem 
in ADHD is with inhibitory control, with problems in the remaining 
areas being secondary68. Cognitive deficits in ADHD need not be 
caused solely by low PFC dopamine, however: low striatal dopamine 
in the associative loops may cause, for example, reduced gating of 
working memory11. Conversely, PFC dysfunction need not only cause 
executive dysfunction: the lateral PFC appears to be involved in the 
ability to choose delayed rewards78 (as is the OFC), so a dysfunctional 
PFC could also contribute to excessive delay discounting. The rela-
tionship between neurobiological abnormalities and cognitive and 
motivational deficits may therefore not be one to one and may vary 
across individuals with ADHD.

Drug addiction. The importance of fast, phasic-like changes in striatal 
dopamine in the reinforcing effects of drugs79 makes addiction a 
natural candidate for reinforcement learning modeling. An influential  
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reinforcement learning theory suggests that these fast increases func-
tion as positive prediction errors that occur every time the drug is 
received14. This effect of drugs contrasts with the effect of natural 
rewards, for which the prediction error becomes zero after the reward 
is expected. The recurring drug-induced positive prediction errors 
produce a boundless increase in the values of states (or actions) that 
lead to drug receipt, prompting compulsive drug use. This theory 
explains important features of addiction14, but a subsequent study 
refuted one of its key predictions. The theory predicted that when 
drugs are used as the unconditioned stimulus, blocking should not 
occur. Blocking is a procedure in which a stimulus, A, is first paired 
with an unconditioned stimulus and, subsequently, simultaneous 
presentations of A and another stimulus, B, are paired with the uncon-
ditioned stimulus. Usually, no learning occurs for B, as A already 
predicts the unconditioned stimulus, so there is no prediction error 
to support new learning. If, however, drugs always produce a positive 
prediction error, then subjects should learn to associate B with the 
unconditioned stimulus—but they do not80. This finding prompted a 
search for alternative reinforcement learning accounts of addiction.

One approach moved from standard temporal-difference learning to 
average-reward reinforcement learning81. In average-reward reinforce-
ment learning, reinforcements are evaluated relative to an average rein-
forcement value R–t calculated using a slowly changing weighted average 
of past reinforcements. The ‘effective’ reinforcement at time t is therefore  
rt − R–t, where rt is the received reinforcement. Part of the motivation 
for this approach to addiction was to capture the decrease in sensiti
vity to natural rewards that long-term drug use induces. Intuitively, 
if drugs are extremely reinforcing, long-term drug use inflates R–t, 
making natural rewards less reinforcing. The model, however, added 
further to this effect by artificially inflating R–t even more with each 
drug use. The model showed decreased sensitivity to natural rewards 
following long-term drug use and also showed blocking and other 
relevant effects81.

The search for simple, single-factor theories of addiction will 
undoubtedly continue, but multiple aspects of reinforcement learn-
ing are likely involved in addiction82. For example, chronic drug use 
induces functional and structural changes in important reinforce-
ment learning brain regions (for example, the OFC83), thereby further 
dysregulating reinforcement learning and potentially contributing to 
the maintenance or aggravation of addiction. As another example, 
optogenetic findings in mice demonstrate that direct or indirect path-
way stimulation during drug administration increases or decreases 
the reinforcing effects of the drug, respectively50, suggesting that 
reduced indirect relative to direct pathway activity could be a risk 
factor for addiction. In fact, reduced indirect pathway activity would 
also explain the reduced sensitivity to negative outcomes that char-
acterizes addiction.

Schizophrenia. Schizophrenia is characterized by positive symptoms 
(for example, delusions and hallucinations), negative symptoms (for  
example, anhedonia and avolition) and cognitive symptoms 
(for example, disturbances in attention and cognitive control). 
Schizophrenia involves excessive dopamine and D2 receptors in the 
striatum, but reduced dopamine in PFC54,55.

One theory, based on the idea that dopamine signals incentive 
salience84, suggests that dysregulated dopaminergic firing in schizo-
phrenia imbues percepts, thoughts and memories with abnormal 
salience and that such abnormal salience experiences underlie 
delusions and hallucinations85. Another theory suggests that psycho-
sis results from abnormal prediction errors that produce inappropriate 
associations, causal attributions and attentional salience86. Individuals 

with psychosis do exhibit abnormal neural activity during predic-
tion errors87,88, but a causal relation between these abnormalities and  
psychosis remains hypothetical.

Negative symptoms might conceivably reflect reduced reward 
sensitivity, but the evidence for this is mixed. Consistent with this 
hypothesis, individuals with schizophrenia exhibit reduced neural 
responses to positive prediction errors, with weaker putamen 
responses associated with greater avolition89. Individuals with schizo-
phrenia also exhibit reduced Go learning13,43,90, but these deficits do 
not seem to correlate with negative symptoms43,90. In these studies, 
negative symptoms were instead associated with indicators of PFC 
dysfunction13,43. Anhedonia, in particular, was associated with 
reduced uncertainty-driven exploration (in which alternative actions 
are explored in proportion to the uncertainty about their reinforce-
ment statistics relative to the uncertainty about the reinforcement 
statistics of the currently preferred action)90. This may reflect the 
fact that the anhedonia assessment that was used partly relies on the 
frequency with which individuals engage in pleasurable activities, 
which may depend on strategic processes such as exploration.

Reduced striatal responses to positive prediction errors89 and 
reduced Go learning13,43,90 in schizophrenia are suggestive of reduced 
phasic striatal dopamine. Increased tonic striatal dopamine, as in 
schizophrenia54, may reduce phasic dopamine via inhibitory auto
receptors. In fact, individuals with schizophrenia exhibit an overall 
Go bias (consistent with increased tonic striatal dopamine) coupled 
with decreased Go learning (consistent with decreased phasic striatal 
dopamine)43. In the associative loop, the tonic Go bias may produce 
excessive updating of PFC representations with irrelevant information. 
Reduced PFC dopamine likely adds additional lability to PFC repre-
sentations76. The resulting extreme lability of PFC representations may 
underlie cognitive symptoms and contribute to positive symptoms.

Preclinical animal models. Reinforcement learning models can also 
shed light on preclinical animal models used to test new medica-
tions. One example is the use of conditioned avoidance to screen 
antipsychotics91. In conditioned avoidance, a warning stimulus 
is followed by shock unless animals perform a certain avoidance 
response after the onset of the warning stimulus, but before the shock. 
The avoidance response produces a transition from a state with nega-
tive value (in which shock is expected) to a state with neutral value (in 
which no shock is expected), so it elicits a positive prediction error22. 
These positive prediction errors are hypothesized to strengthen the 
stimulus-response association between the warning stimulus and the 
avoidance response in an actor-critic architecture22. Consistent with 
this idea, lesions of the ventral striatum (expected to damage the critic) 
and of the nigrostriatal dopaminergic projection (expected to prevent 
delivery of prediction errors to the actor) disrupt avoidance learn-
ing92,93. Disrupting dopaminergic signaling in the dorsal striatum 
only following training (through, for example, nigrostriatal lesions 
or dorsal striatal D2 blockade) does not, however, disrupt avoidance 
performance92,94. These findings are also consistent with the predic-
tions of the actor-critic account, because dopaminergic signaling of 
prediction errors in the dorsal striatum is necessary for stimulus-
response learning, but not for stimulus-response expression.

Unlike in the dorsal striatum, D2 blockade in the nucleus 
accumbens following training disrupts avoidance performance94. In 
fact, the standard use of conditioned avoidance to test antipsycho
tics is to administer them following training. The standard finding 
is that low antipsychotic doses disrupt avoidance, but not escape 
from ongoing shock, an effect that is mediated by the nucleus 
accumbens91. Dopamine in the nucleus accumbens can modulate 
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the activation of instrumental behavior95,96, possibly via the striato-
nigro-striatal spirals that allow the nucleus accumbens to influence 
the dorsal striatum44,96. The disruption of avoidance responding by 
antipsychotics may therefore reflect a decrease in the activation of 
instrumental behavior. Escapes would be less affected because the 
immediacy of pain would activate an innate flight response. An ana
logous situation is found in the appetitive domain: systemic or intra-
accumbens administration of low doses of dopamine antagonists 
disrupts instrumental lever-pressing for food without affecting food 
approach or consumption95.

Conclusions
We focused on a small number of reinforcement learning principles 
and examined how they can shed light on multiple disorders. 
Other aspects of reinforcement learning and related computational 
approaches also seem likely to be relevant for psychiatric and neuro
logical disorders. For example, models of the role of the OFC in 
reinforcement learning51 may be relevant for obsessive-compulsive 
disorder, which involves prominent OFC disturbances97; models of 
the role of serotonin in reinforcement learning18 may be relevant 
for disorders that involve serotonergic abnormalities; and models of 
Pavlovian conditioning and extinction98,99 may be relevant for some 
anxiety disorders (and have in fact already been shown to explain 
complex findings in fear conditioning in humans100).

To conclude, reinforcement learning models have been used to 
explain a wealth of findings across several psychiatric and neurological 
disorders. Although disorders as seemingly disparate as Parkinson’s 
disease, Tourette’s syndrome, ADHD, schizophrenia and addiction 
might seem to have little in common, they all involve disturbances 
in dopamine and CBGTC loops. The work reviewed above demon-
strates that a mechanistic, computationally grounded understanding 
of the functions of these circuits sheds important light on all of these 
disorders. This approach relates to the new Research Domain Criteria 
initiative from the US National Institute of Mental Health, which calls 
for research that cuts across diagnostic criteria and focuses instead 
on neurocognitive domains and how they go awry in a variety of 
DSM-defined conditions. The work reviewed above exemplifies this 
strategy. This work also demonstrates the new level of theoretical 
sophistication that computational psychiatry and computational 
neurology bring to the venerable disciplines of psychiatry and neuro
logy. Such theoretical sophistication and depth is essential if we are to 
fulfill the promise of a neuroscience-based, mechanistically detailed 
approach to diagnosis and treatment, which many agree should char-
acterize the psychiatry and neurology of the future.
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