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Cannot we be content with experiment alone? No, that is
impossible; that would be a complete misunderstanding of the
true character of science.. Science is built up of facts, as a
house is built of stones; but an accumulation of facts is no more
a science than a heap of stones is a house.

—Henri Poincaré, Science and Hypothesis, 1905
(Greenstreet WJ, transl, p. 157)

Philosophy [nature] is written in that great book which ever
lies before our eyes—I mean the universe—but we cannot
understand it if we do not first learn the language.in
which it is written. This book is written in the mathematical
language.without which one wanders in vain through a dark
labyrinth.

—Galileo Galilei, The Assayer, 1623 (quoted in Burtt EA,
The Metaphysical Foundations of Modern Science, p. 75)

Theory development is an intrinsic part of science. Radical
empiricism is a logical impossibility: the number of phenomena
that can be measured and manipulated is infinite, so the very
selection of phenomena to investigate must be driven by a
priori considerations. Loose facts, moreover, point to nothing
but themselves; only theories, even if incipient, have explan-
atory and predictive power extending beyond prior observa-
tions. Yet, theory is sometimes seen with suspicion. Cajal, a
giant in neuroscience history, wrote, “the theorist is a lazy
person masquerading as a diligent one.a scholar’s positive
contribution is measured by the sum of the original data that he
contributes.. Theories desert us, while data defend us” (1).
Cajal wrote this text more than 2 centuries after the scientific
revolution emphasized mathematical theories (consider
Galileo’s epitaph). Why? Later in the same paragraph, Cajal
writes, “So many apparently conclusive theories.have
collapsed in the last few decades! On the other hand, the well-
established facts of anatomy and physiology.and the laws
and equations of astronomy and physics remain” [(1), italics
added]. Cajal was therefore not arguing against mathematical
formulations of general principles—i.e., mathematical theories.
Instead, he was arguing against vague verbal descriptions that
constituted the theories in neuroscience at the time and that
still characterize most theories in psychiatry, neuroscience,
and related fields.

Theory-based computational psychiatry—the topic of this
special issue of Biological Psychiatry—aims to use mathe-
matically rigorous theories to help understand and hopefully
better treat psychiatric disorders. Theories are unavoidable;
theory-based computational psychiatry provides a frame-
work to ensure that they are rigorous, consistent, and
quantitative.
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This special issue is witness to the excitement raised by
computational psychiatry. Such excitement reflects the po-
tential of computational psychiatry to meet three important
challenges in psychiatry. First, psychiatric disorders involve
complex interactions between phenomena at multiple levels of
abstraction, ranging from the subcellular to the societal;
computational techniques are uniquely suited to characterize
such interactions (2–4). Second, psychiatry deals with
remarkably complex phenomena; computational approaches
enhance the comprehension, measurement, and prediction
of such phenomena, including—critically for treatment
development—prediction of the effects of manipulating vari-
ables (3). Third, the ever-increasing pace at which data are
accumulated requires novel, more powerful computational
tools. The first two aspects fall under the purview of theory-
based computational psychiatry and are well illustrated in
this issue. The third aspect falls under the purview of data-
rather than theory-driven approaches, so it is not addressed in
the issue, although it is also important.

The issue starts with two commentaries considering the
way forward for computational psychiatry (5,6). In the first
commentary, Moutoussis et al. (5) suggest approaches to
promote the development of clinically useful applications of
computational psychiatry, a topic that has recently received
substantial attention (7–9). They suggest, among other
directions, focusing on ecologically valid studies, relevant
individual variability, and treatment processes. Their sugges-
tion to use computational techniques to improve psychother-
apy is particularly noteworthy: psychotherapy is basically a
learning process, so it may benefit from the rich computational
understanding of learning processes.

In the second commentary, Pine (6) focuses on the use of
theory-driven, computationally defined mechanistic models to
understand anxiety disorders. Using fear conditioning as an
example, Pine addresses the usefulness of computational
approaches to 1) facilitate—even force—precise thinking;
2) infer latent constructs; 3) solve the problem of task impurity
(10); 4) disentangle multiple mechanisms that may produce the
same effects [see, e.g., (11)]; and 5) guide experimental design
to adjudicate among such mechanisms.

Following the commentaries, the issue contains four re-
views (12–15)—three of which (13–15) propose novel theoret-
ical perspectives—and two empirical reports (16,17). Together,
these articles span a broad range of topics in psychiatry.

Voon et al. (12) review the literature on goal-directed
(model-based) versus habitual (model-free) control and sug-
gest that impaired model-based control may characterize
compulsive behaviors cross-diagnostically. They support
this argument by reviewing evidence for impaired model-
based control in obsessive-compulsive disorder, alcohol
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and stimulant dependence, and binge eating disorder, and by
noting that a large factor-analytic study in the general pop-
ulation also found a selective relation to compulsivity (18).
They also raise the crucial point that at least some of the
tasks used to allegedly disentangle the model-based versus
model-free systems—e.g., the two-step task (19)—engage
the model-based system but may not be as sensitive to
variations in the model-free system [although a recent variant
of the two-step task addresses this limitation (20)]. What is
classified as habit-based control in these tasks may therefore
instead reflect superficial, partly incorrect, model-based
inference. This possibility would explain the surprising find-
ings, reviewed by Voon et al. (12), that increasing and
decreasing dopamine in humans seems to make behavior
more and less model-based, respectively. Rather than mak-
ing behavior more model-based, increasing dopamine may
simply make behavior that was already model-based more
accurate by improving working memory (WM) and other ex-
ecutive functions, which would enhance the ability to make
more complex inferences or better remember or use the
model. Indeed, as shown by Collins et al. in this issue (16)
and elsewhere (21), performance on even simple stimulus–
response-like reinforcement learning tasks is strongly influ-
enced by WM. Of course, substantial evidence shows that
dopamine also affects model-free learning in humans,
affecting learning from positive versus negative outcomes
differentially (20,22).

In their prior work seeking to disentangle WM from
model-free processes (21,23), Collins et al. used a task that,
like the two-step task, may have been more sensitive to WM
than to model-free processes. In their article in this issue
(16), they present a task variant with similar sensitivity to
WM but greater sensitivity to model-free processes. They
found that, in healthy subjects, model-free learning was
enhanced under high WM load. They also replicated their
earlier finding in chronically medicated patients with
schizophrenia (23) of profound deficits in WM contributions
to learning but surprisingly spared model-free learning.
Future work should investigate three possible explanations
for this dissociation: 1) model-free learning truly is spared; 2)
WM disturbances in patients mimic high-load conditions,
thereby upregulating model-free learning and masking an
inherent impairment; and 3) medications normalize model-
free learning. Regardless, this novel task moves away from
generalized deficits and presents an opportunity to study
interacting cognitive and motivational systems in psychiatry.

Although, as reviewed by Voon et al. (12), most evidence
links compulsivity to decreased model-based processes, not
to increased model-free processes, substantial evidence im-
plicates the model-free, habit-learning system in Tourette
syndrome. Maia and Conceição (13) review this evidence,
which suggests that tics are maladaptive motor habits. More
importantly, they use current computational ideas about the
specific roles of striatal phasic and tonic dopamine in action
learning and invigoration, respectively, to suggest that
increased striatal phasic and tonic dopamine in Tourette syn-
drome cause increased propensities to learn and express tics,
respectively. They also show how the same computational
ideas shed new light on the mechanisms of action of various
medications used to treat Tourette syndrome.
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Huys and Renz (14) focus on the problems that arise from
cognitive-resource constraints. Model-based inference is too
demanding computationally to be feasible in all but the
simplest cases. Addressing this problem is the purview of
meta-reasoning, which concerns the optimal allocation of
cognitive resources: put simply, determining what one should
think about to ensure one thinks of the best option. Unfortu-
nately, meta-reasoning is even more intractable than model-
based inference. Rather than allowing the problem to
become compounded recursively, Huys and Renz (14) suggest
that emotions may be used as approximate meta-reasoning
strategies. They further argue that, together with a construc-
tivist view of emotions as labels categorizing internal experi-
ences, this perspective accounts for various aspects of
emotion.

Petzschner et al. (15) propose a computational account of
body control by the brain based on active inference [see also
(24–27)]. Their framework unifies homeostasis and allostasis
with probabilistic inference. In active inference, actions are
aimed at reducing prediction errors (28). Their framework
therefore suggests setting prior expectations to the desired
physiological ranges (27); prediction errors then signal current
or anticipated deviations from those values, which elicit
homeostatic and allostatic control, respectively. Petzschner
et al. (15) also consider the implications of these ideas for
depression and autism spectrum disorders.

Huang et al. (17) report that subjects with high anxiety
exhibit increased lose-shift behavior (switching after losses)
even when it would be advantageous not to do so. This finding
may point to a difficulty using statistical regularities to infer
when to treat losses as spurious. However, these subjects’
performance was not impaired, so they may instead have
followed a different, but similarly adaptive, strategy.

Fully realizing the promise of theory-based computational
psychiatry will be a long-term process. Progress will likely be
gradual, rather than characterized by some watershed
moment(s). Ensuring the long-term sustainability of this pro-
cess without imperiling shorter-term advances will require a
constant balancing act between developing theory-based
approaches, seeking to apply them practically (8), and
continuing to pursue “pragmatic” approaches, computational
(7,29) or otherwise. Theory- and data-driven approaches
should also be closely integrated (7). Regardless, the articles in
this special issue demonstrate that progress is already here.
Much work remains to be done, but one thing is certain:
theory-based computational psychiatry is here to stay.

Acknowledgments and Disclosures
This work was supported by Swiss National Science Foundation Grant No.
320030L_153449/1 (to QJMH) and National Institute of Mental Health Grant
No. R01 MH080066-01 (to MJF).

MJF is a consultant for F. Hoffmann-La Roche Pharmaceuticals. The
other authors report no biomedical financial interests or potential conflicts of
interest.

Article Information
From the Institute for Molecular Medicine (TVM), Faculty of Medicine, Uni-
versity of Lisbon, Lisbon, Portugal; Centre for Addictive Disorders (QJMH),
Hospital of Psychiatry, University of Zurich, and Translational Neuro-
modeling Unit (QJMH), Institute of Biomedical Engineering, University of
Zurich and the Swiss Federal Institute of Technology Zurich, Zurich,
atry September 15, 2017; 82:382–384 www.sobp.org/journal 383

http://www.sobp.org/journal/www.sobp.org/journal


Commentary
Biological
Psychiatry
Switzerland; the Department of Cognitive, Linguistic and Psychological
Sciences (MJF), Department of Psychiatry and Human Behavior (MJF), and
the Brown Institute for Brain Science (MJF), Brown University, Providence,
Rhode Island.

TVM and QJMH contributed equally to this work.
Address correspondence to Tiago V. Maia, Ph.D., Institute for Molecular

Medicine, Faculty of Medicine, University of Lisbon, Avenida Professor Egas
Moniz, 1649-028 Lisbon, Portugal; E-mail: Tiago.V.Maia@gmail.com.

Received Jul 25, 2017; accepted Jul 25, 2017.

References
1. Ramón y Cajal S (1999): Advice for a Young Investigator [Swanson N,

Swanson LW, trans]. Cambridge, MA: The MIT Press, 85–86 [original
work published 1897; translation based on 4th edition, 1916].

2. Frank MJ (2015): Linking across levels of computation in model-based
cognitive neuroscience. In: Forstmann BU, Wagenmakers E, editors.
An Introduction to Model-Based Cognitive Neuroscience. New York:
Springer, 159–177.

3. Maia TV (2015): Introduction to the series on computational psychiatry.
Clin Psychol Sci 3:374–377.

4. Wang XJ, Krystal JH (2014): Computational psychiatry. Neuron
84:638–654.

5. Moutoussis M, Eldar E, Dolan RJ (2017): Building a new field of
computational psychiatry. Biol Psychiatry 82:388–390.

6. Pine DS (2017): Clinical advances from a computational approach to
anxiety. Biol Psychiatry 82:385–387.

7. Huys QJM, Maia TV, Frank MJ (2016): Computational psychiatry as a
bridge from neuroscience to clinical applications. Nat Neurosci
19:404–413.

8. Paulus MP, Huys QJM, Maia TV (2016): A roadmap for the develop-
ment of applied computational psychiatry. Biol Psychiatry Cogn
Neurosci Neuroimaging 1:386–392.

9. Huys QJM, Maia TV, Paulus MP (2016): Computational psychiatry:
From mechanistic insights to the development of new treatments. Biol
Psychiatry Cogn Neurosci Neuroimaging 1:382–385.

10. Wiecki TV, Poland J, Frank MJ (2015): Model-based cognitive neuro-
science approaches to computational psychiatry: Clustering and
classification. Clin Psychol Sci 3:378–399.

11. Maia TV, Cano-Colino M (2015): The role of serotonin in orbitofrontal
function and obsessive-compulsive disorder. ClinPsychol Sci 3:460–482.

12. Voon V, Reiter A, Sebold M, Groman S (2017): Model-based control in
dimensional psychiatry. Biol Psychiatry 82:391–400.

13. Maia TV, Conceição VA (2017): The roles of phasic and tonic dopa-
mine in tic learning and expression. Biol Psychiatry 82:401–412.

14. Huys QJM, Renz D (2017): A formal valuation framework for emotions
and their control. Biol Psychiatry 82:413–420.
384 Biological Psychiatry September 15, 2017; 82:382–384 www.sobp
15. Petzschner FH, Weber LAE, Gard T, Stephan KE (2017): Compu-
tational psychosomatics and computational psychiatry: Toward
a joint framework for differential diagnosis. Biol Psychiatry 82:
421–430.

16. Collins AGE, Albrecht MA, Waltz JA, Gold JM, Frank MJ (2017): In-
teractions among working memory, reinforcement learning, and effort
in value-based choice: A new paradigm and selective deficits in
schizophrenia. Biol Psychiatry 82:431–439.

17. Huang H, Thompson W, Paulus MP (2017): Computational dysfunc-
tions in anxiety: Failure to differentiate signal from noise. Biol
Psychiatry 82:440–446.

18. Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND (2016):
Characterizing a psychiatric symptom dimension related to deficits in
goal-directed control. Elife 5:e11305.

19. Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ (2011): Model-
based influences on humans’ choices and striatal prediction errors.
Neuron 69:1204–1215.

20. Doll BB, Bath KG, Daw ND, Frank MJ (2016): Variability in dopamine
genes dissociates model-based and model-free reinforcement
learning. J Neurosci 36:1211–1222.

21. Collins AGE, Frank MJ (2012): How much of reinforcement learning is
working memory, not reinforcement learning? A behavioral, compu-
tational, and neurogenetic analysis. Eur J Neurosci 35:1024–1035.

22. Maia TV, Frank MJ (2011): From reinforcement learning models to
psychiatric and neurological disorders. Nat Neurosci 14:154–162.

23. Collins AGE, Brown JK, Gold JM, Waltz JA, Frank MJ (2014): Working
memory contributions to reinforcement learning impairments in
schizophrenia. J Neurosci 34:13747–13756.

24. Barrett LF, Simmons WK (2015): Interoceptive predictions in the brain.
Nat Rev Neurosci 16:419–429.

25. Seth AK, Friston KJ (2016): Active interoceptive inference and the
emotional brain. Phil Trans R Soc B 371:20160007.

26. Pezzulo G, Rigoli F, Friston K (2015): Active inference, homeostatic
regulation and adaptive behavioural control. Prog Neurobiol 134:
17–35.

27. Stephan KE, Manjaly ZM, Mathys CD, Weber LAE, Paliwal S, Gard T,
et al. (2016): Allostatic self-efficacy: A metacognitive theory of
dyshomeostasis-induced fatigue and depression. Front Hum Neurosci
10:550.

28. Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, O’Doherty J,
Pezzulo G (2016): Active inference and learning. Neurosci Biobehav
Rev 68:862–879.

29. Paulus MP, Huang C, Harlé KM (2016): Call for pragmatic computa-
tional psychiatry: Integrating computational approaches and risk-
prediction models and disposing of causality. In: Redish AD,
Gordon JA, editors. Computational Psychiatry: New Perspectives on
Mental Illness (Strüngmann Forum Reports, vol. 20). Cambridge, MA:
MIT Press, 259–274.
.org/journal

mailto:Tiago.V.Maia@gmail.com
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref2
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref2
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref2
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref2
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref3
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref3
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref4
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref4
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref5
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref5
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref6
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref6
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref7
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref7
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref7
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref8
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref8
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref8
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref9
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref9
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref9
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref10
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref10
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref10
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref11
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref11
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref12
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref12
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref13
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref13
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref14
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref14
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref15
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref15
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref15
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref15
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref16
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref16
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref16
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref16
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref17
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref17
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref17
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref18
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref18
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref18
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref19
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref19
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref19
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref20
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref20
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref20
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref21
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref21
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref21
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref22
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref22
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref23
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref23
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref23
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref24
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref24
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref25
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref25
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref26
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref26
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref26
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref27
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref27
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref27
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref27
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref28
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref28
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref28
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref29
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref29
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref29
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref29
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref29
http://refhub.elsevier.com/S0006-3223(17)31816-4/sref29
http://www.sobp.org/journal/www.sobp.org/journal

	Theory-Based Computational Psychiatry
	References


