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Converging evidence implicates striatal dopamine (DA) in reinforcement learning, such that DA increases enhance “Go learning” to
pursue actions with rewarding outcomes, whereas DA decreases enhance “NoGo learning” to avoid non-rewarding actions. Here we test
whether these effects apply to the response time domain. We employ a novel paradigm which requires the adjustment of response times
to a single response. Reward probability varies as a function of response time, whereas reward magnitude changes in the opposite
direction. In the control condition, these factors exactly cancel, such that the expected value across time is constant (CEV). In two other
conditions, expected value increases (IEV) or decreases (DEV), such that reward maximization requires either speeding up (Go learning)
or slowing down (NoGo learning) relative to the CEV condition. We tested patients with Parkinson’s disease (depleted striatal DA levels)
on and off dopaminergic medication, compared with age-matched controls. While medicated, patients were better at speeding up in the
DEV relative to CEV conditions. Conversely, nonmedicated patients were better at slowing down to maximize reward in the IEV condi-
tion. These effects of DA manipulation on cumulative Go/NoGo response time adaptation were captured with our a priori computational
model of the basal ganglia, previously applied only to forced-choice tasks. There were also robust trial-to-trial changes in response time,
but these single trial adaptations were not affected by disease or medication and are posited to rely on extrastriatal, possibly prefrontal,
structures.
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Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder primar-
ily associated with dopaminergic cell death and concomitant re-
ductions in striatal dopamine (DA) levels (Kish et al., 1988; Brück
et al., 2006). The disease leads to various motor and cognitive
deficits including learning, decision making, and working mem-
ory, likely because of dysfunctional circuit-level functioning be-
tween the basal ganglia and frontal cortex (Alexander et al., 1986;
Knowlton et al., 1996; Frank, 2005; Cools, 2006). Further, al-
though DA medications sometimes improve cognitive function,
they can actually induce other cognitive impairments that are
distinct from those associated with PD itself (Cools et al., 2001,
2006; Frank et al., 2004, 2007b; Shohamy et al., 2004; Moustafa et
al., 2008). Many of these contrasting medication effects have been
observed in reinforcement learning tasks in which participants
select among multiple responses to maximize their probability of
correct feedback. Here we study the complementary role of basal
ganglia dopamine on learning when to respond to maximize re-
ward using a novel temporal decision making task. Although the
“which” and “when” aspects of response learning might seem

conceptually different, simulation studies show that the same
neural mechanisms within the basal ganglia can support both
selection of the most rewarding response out of multiple options,
and how fast a given rewarding response is selected. This work
builds on existing frameworks linking similar corticostriatal
mechanisms underlying interval timing with those of action se-
lection and working memory updating (Lustig et al., 2005), and
further explores the role of reinforcement.

Various computational models suggest that circuits linking
basal ganglia with frontal cortex support action selection (Berns
and Sejnowski, 1995; Suri and Schultz, 1998; Frank et al., 2001;
Gurney et al., 2001; Frank, 2006; Houk et al., 2007; Moustafa and
Maida, 2007) and that striatal DA modulates reward-based learn-
ing and performance (Suri and Schultz, 1998; Delgado et al.,
2000, 2005; Doya, 2000; Frank, 2005; Shohamy et al., 2006; Niv et
al., 2007). In the models, phasic DA signals modify synaptic plas-
ticity in the corticostriatal pathway (Wickens et al., 1996; Reyn-
olds et al., 2001). Further, phasic DA bursts boost learning in
“Go” neurons to reinforce adaptive choices, whereas reduced DA
levels during negative outcomes support learning in “NoGo”
neurons to avoid maladaptive responses (Frank, 2005) (see Fig.
2). This model has been applied to understand patterns of learn-
ing in PD patients (Frank, 2005), who have depleted striatal DA
levels as a result of the disease, but increased striatal DA levels
after DA medication (Tedroff et al., 1996; Pavese et al., 2006).

Supporting the models, experiments revealed that PD patients
on medication learned better from positive than from negative
reinforcement feedback, whereas patients off medication showed
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the opposite bias (Frank et al., 2004). Similar results have since
been observed as a result of DA manipulations in other popula-
tions and tasks (Cools et al., 2006; Frank and O’Reilly, 2006;
Pessiglione et al., 2006; Frank et al., 2007c; Shohamy et al., 2008).
Here, we examined whether the same theoretical framework can
apply to reward maximization by response time adaptation. Our
computational model predicts that striatal DA supports response
speeding to maximize rewards as a result of positive reward pre-
diction errors, whereas low DA levels support response slowing
caused by negative prediction errors. We test these predictions in
a novel task which requires making only a single response. In
addition to the main conditions of interest, the task also enabled
us to study rapid trial-to-trial adjustments, and a bias to learn
more about the frequency versus magnitude of rewards.

Materials and Methods
Sample. We tested 17 healthy controls and 20 Parkinson’s patients both
off and on medications (Table 1). Parkinson’s patients were recruited
from the University of Arizona Movement Disorders Clinic. The major-
ity of patients were taking a mixture of dopaminergic precursors
(levodopa-containing medications) and agonists. (Six patients were on
DA agonists only and three patients on DA precursors only.) Control
subjects were either spouses of patients (who tend to be fairly well
matched demographically), or recruited from local Tucson senior
centers.

Task. Participants were presented a clock face
whose arm made a full turn over the course of
5 s. They were instructed as follows.

“You will see a clock face. Its arm will make a
full turn over the course of 5 s. Press the ’spacebar’
key to win points before the arm makes a full turn.
Try to win as many points as you can!

“Sometimes you will win lots of points and
sometimes you will win less. The time at which
you respond affects in some way the number of
points that you can win. If you don’t respond by
the end of the clock cycle, you will not win any
points.

“Hint: Try to respond at different times along
the clock cycle to learn how to make the most
points. Note: The length of the experiment is con-
stant and is not affected by when you respond.”

The trial ended after the subject made a re-
sponse or if the 5 s duration elapsed and the
subject did not make response. Another trial
started after an intertrial interval (ITI) of 1 s.

There were four conditions, comprising 50
trials each, in which the probabilities and mag-
nitudes of rewards varied as a function of time
elapsed on the clock until the response. Before
each new condition, participants were instruct-
ed: “Next, you will see a new clock face. Try again
to respond at different times along the clock cycle
to learn how to make the most points with this
clock face.”

In the three primary conditions considered
here (DEV, CEV, and IEV), the number of
points (reward magnitude) increased, whereas
the probability of receiving the reward de-
creased, over time within each trial. Feedback

was provided on the screen in the form of “You win XX points!”. The
functions were designed such that the expected value
(probability*magnitude) either decreased (DEV), increased (IEV), or
remained constant (CEV), across the 5 s trial duration (Fig. 1). Thus in
the DEV condition, faster responses yielded more points on average,
whereas in the IEV condition slower responses yielded more points.
[Note that despite high frequency of rewards during early periods of IEV,
the small magnitude of these rewards relative to other conditions and to
later responses would actually be associated with negative prediction
errors (Holroyd et al., 2004; Tobler et al., 2005).] The CEV condition was
included for a within-subject baseline RT measure for separate compar-
isons with IEV and DEV. In particular, because all response times are
equivalently adaptive in the CEV condition, the participants’ RT in that
condition controls for potential overall effects of disease or medication
on motor responding. Given this baseline RT, an ability to learn adap-
tively to integrate expected value across trials would be indicated by
relatively faster responding in the DEV condition and slower responding
in the IEV condition.

In addition to the above primary conditions, we also included another
“CEVR” condition in which expected value is constant, but reward prob-
ability increases whereas magnitude decreases as time elapses (CEVR �
CEV Reverse). This condition was included for multiple reasons. First,
because both CEV and CEVR have equal expected values across all of
time, any difference in RT in these two conditions can be attributed to a
participant’s potential bias to learn more about reward probability than
about magnitude or vice versa. Specifically, if a participant waits longer in

Table 1. Demographic variables for seniors and PD patients

Group n Sex ratio (m:f) Age Years of education NAART (no. correct) Hoehn and Yahr stage Years diag

Seniors 17 7:10 65.6 (2.1) 16.5 (0.8) 39.8 (4.2) N/A N/A
PD patients 20 14:6 69.8 (1.5) 18.1 (0.8) 45.1 (1.8) 2.5 (0.5) 6.2 (1.2)

Groups were not gender-matched, but it is unlikely that this factor impacts on the results given that medication manipulations were within-subject. NAART, Number of correct responses (of 61) in the North American Adult Reading Test, an
estimate of premorbid verbal IQ. For PD patients, disease severity is indicated in terms of mean Hoehn and Yahr stage, and the number of years since having been diagnosed (Years diag) with PD. Values represent mean (SE).

Figure 1. Task conditions: DEV, CEV, IEV, and CEVR. The x-axis in all plots corresponds to the time after onset of the clock
stimulus at which the response is made. The functions are designed such that the expected value in the beginning in DEV is
approximately equal to that at the end in IEV so that if optimal, subjects should obtain the same average reward in both IEV and
DEV. a, Example clock-face stimulus; b, probability of reward occurring as a function of response time; c, reward magnitude
(contingent on a); d, expected value across trials for each time point. Note that CEV and CEVR have the same EV, so the black line
represents EV for both conditions.
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CEVR than in CEV, it can be inferred that the participant is risk averse
because they value higher probabilities of reward more than higher mag-
nitudes of reward. Moreover, despite the constant expected value in
CEVR, if one is biased to learn more from negative prediction errors, they
will tend to slow down in this condition because of the high probability of
their occurrence. Finally, the CEVR condition also allows us to disentan-
gle whether trial-to-trial RT adjustment effects reflect a tendency to
change RTs in the same direction after gains, or whether RTs might
change in opposite directions after rewards depending on the temporal
envelope of the reward structure (see below).

The order of condition (CEV, DEV, IEV, CEVR) was counterbalanced
across participants. A rest break was given between each of the conditions
(after every 50 trials). Subjects were instructed in the beginning of each
condition to respond at different times to try to win the most points, but
were not told about the different rules (e.g., IEV, DEV). Each condition
was also associated with a different color clock face to facilitate encoding
that they were in a new context, with the assignment of condition to color
counterbalanced.

To prevent participants from explicitly memorizing a particular value
of reward feedback for a given response time, we also added a small
amount of random uniform noise (�5 points) to the reward magnitudes
for each trial; nevertheless the basic relationships depicted in Figure 1
remain.

Relation to other temporal choice paradigms. Most decision making
paradigms study different aspects of which motor response to select,
generally not focusing on temporal aspects of when responses are made.
Perhaps the most relevant intertemporal choice paradigm is that of “de-
lay discounting” (McClure et al., 2004, 2007; Hariri et al., 2006; Scheres et
al., 2006; Heerey et al., 2007). Here, subjects are asked to choose between
one option that leads to small immediate reward, versus another that
would produce a large, but delayed reward. On the surface, these tasks
bear some similarity to the current task, in that choices are made between
different magnitudes of reward values that occur at different points in
time. Nevertheless, the current task differs from delay discounting in
several important respects. First, our task requires selection of only a
single response, in which the choice itself is determined only by its la-
tency, over the course of 5 s. In contrast, the delay discounting paradigm

involves multiple responses for which latency of the reward differs, over
longer time courses of minutes to weeks and even months, but in which
the latency of the response itself is not relevant. Second, our task is less
verbal, and more experiential. That is, in delay discounting, participants
are explicitly told the reward contingencies and are simply asked to reveal
their preference, trading off reward magnitude against the delay of its
occurrence. In contrast, subjects in the current study must learn statistics
of reward probability, magnitude, and their integration, as a result of
experience across multiple trials within a given context. This process is
likely implicit, a claim supported by the somewhat subtle (but reliable)
RT adjustments in the task, together with informal analysis of postex-
perimental questionnaires in young, healthy pilot participants (and a
subset of patients here), who showed no explicit knowledge of time-
reinforcement contingencies.

Analysis. Response times were log transformed in all statistical analyses
to meet statistical distributional assumptions (Judd and McClelland,
1989). For clarity, however, raw response times are used when presenting
means and SEs. To measure learning within a given condition, we also
compared response times in the first block of 12 trials within each con-
dition (the first quarter) to that of the last block of 12 trials in that
condition. Statistical comparisons were performed with SAS 9.1.3 proc
MIXED to examine both between- and within-subject differences, using
unstructured covariance matrices (which does not make any strong as-
sumptions about the variance and correlation of the data, as do struc-
tured covariances).

Computational modeling. In addition to the empirical study, we also
simulated the task using our computational neural network model of the
basal ganglia (Frank, 2006), as well as a more abstract “temporal differ-
ence” (TD) simulation (Sutton and Barto, 1998). The neural model sim-
ulates systems-level interactive neural dynamics among corticostriatal
circuits and their roles in action selection and reinforcement learning
(Fig. 2). Neuronal dynamics are governed by coupled differential equa-
tions, and different model neurons for each of the simulated areas to
capture differences in physiological and computational properties of the
regions comprising this circuit. We refrain from reiterating all details of
the model (including all equations, detailed connectivity, parameters,
and their neurobiological justification) here; interested readers should

Figure 2. a, Functional architecture of the model of the basal ganglia. The direct (“Go”) pathway disinhibits the thalamus via the interior segment of the GPi and facilitates the execution of an
action represented in the cortex. The indirect (NoGo) pathway has an opposing effect of inhibiting the thalamus and suppressing the execution of the action. These pathways are modulated by the
activity of the substantia nigra pars compacta (SNc) that has dopaminergic projections to the striatum. Go neurons express excitatory D1 receptors whereas NoGo neurons express inhibitory D2
receptors. b, The Frank (2006) computational model of the BG. Cylinders represent neurons, height and color represent normalized activity. The input neurons project directly to the pre-SMA in which
a response is executed via excitatory projections to the output (M1) neurons. A given cortical response is facilitated by bottom-up activity from thalamus, which is only possible once a Go signal from
striatum disinhibits the thalamus. The left half of the striatum are the Go neurons, the right half are the NoGo neurons, each with separate columns for responses R1 and R2. The relative difference
between summed Go and NoGo population activity for a particular response determines the probability and speed at which that response is selected. Dopaminergic projections from the substantia
nigra pars compacta (SNc) modulate Go and NoGo activity by exciting the Go neurons (D1) and inhibiting the NoGo neurons (D2) in the striatum, and also drive learning during phasic DA bursts and
dips. Connections with the subthalamic nucleus (STN) are included here for consistency, and modulate the overall decision threshold Frank (2006), but are not relevant for the current study.
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refer to Frank (2006) and/or the on-line database modelDB wherein the
previous simulations are available for download. The model can also be
obtained by sending an E-mail to mfrank@u.arizona.edu. The same
model parameters were used in previous human simulations in choice
tasks, so that the simulation results can be considered a prediction from
a priori modeling rather than a “fit” to new data.

Neural model high level summary. We first provide a concise summary
here of the higher level principles governing the network functionality,
focusing on aspects of particular relevance for the current study. Two
separate “Go” and “NoGo” populations within the striatum learn to
facilitate and suppress responses, with their relative difference in activity
states determining both the likelihood and speed at which a particular
response is facilitated. Separately, a “critic” learns to compute the ex-
pected value of the current stimulus context, and actual outcomes are
computed as prediction errors relative to this expected value. These pre-
diction errors train the value learning system itself to improve its predic-
tions, but also drive learning in the Go and NoGo neuronal populations.
As positive reward prediction errors accumulate, phasic DA bursts drive
Go learning via simulated D1 receptors, leading to incrementally speeded
responding. Conversely, an accumulation of negative prediction errors
encoded by phasic DA dips drive NoGo learning via D2 receptors, lead-
ing to incrementally slowed responses. Thus, a sufficiently high dopami-
nergic response to a preponderance positive reward prediction errors is
associated with speeded responses across trials, but sufficiently low stri-
atal DA levels are necessary to slow responses because of a preponderance
of negative prediction errors.

Connectivity. The input layer represents stimulus sensory input, and
projects directly to both premotor cortex (e.g., pre-SMA) and striatum.
Premotor units represent highly abstracted versions of all potential re-
sponses that can be activated in the current task. However, direct input to
premotor activation is generally insufficient in and of itself to execute a
response (particularly before stimulus-response mappings have been in-
grained). Rather, coincident bottom-up input from the thalamus is re-
quired to selectively facilitate a given response. Because the thalamus is
under normal conditions tonically inhibited by the globus pallidus (basal
ganglia output), responses are prevented until the striatum gates their
execution, ultimately by disinhibiting the thalamus.

Action selection. To decide which response to select, the striatum has
separate “Go” and “NoGo” neuronal populations that reflect striatoni-
gral and striatopallidal cells, respectively. Each potential cortical response
is represented by two columns of Go and NoGo units. The globus palli-
dus nuclei effectively compute the striatal Go � NoGo difference for each
response in parallel. That is, Go signals from the striatum directly inhibit
the corresponding column of the globus pallidus (GPi). In parallel, stri-
atal NoGo signals inhibit the GPe (external segment), which in turn
inhibits the GPi. Thus a strong Go � NoGo striatal activation difference
for a given response will lead to a robust pause in activity in the corre-
sponding column of GPi, thereby disinhibiting the thalamus and allow-
ing bidirectional thalamocortical reverberations to facilitate a cortical
response. The particular response selected will generally be the one with
the greatest Go � NoGo activity difference, because the corresponding
column of GPi units will be most likely and most quickly inhibited,
allowing that response to surpass threshold. Once a given cortical re-
sponse is facilitated, lateral inhibitory dynamics within cortex allows the
other competing responses to be suppressed.

Note that the relative Go-NoGo activity can affect both which re-
sponse is selected, and also the speed with which it is selected. [In addi-
tion, the subthalamic nucleus can also dynamically modify the overall
response threshold, and therefore response time, in a given trial by send-
ing diffuse excitatory projections to the GPi (Frank, 2006). This func-
tionality enables the model to be more adept at selecting the best response
where there is high conflict between multiple responses, but is orthogo-
nal to the point studied here, so we do not discuss it further.]

Learning attributable to DA bursts and dips. How do particular re-
sponses come to have stronger Go or NoGo representations? Dopamine
from the substantia nigra pars compacta modulates the relative balance
of Go versus NoGo activity via simulated D1 and D2 receptors in the
striatum. This differential effect of DA on Go and NoGo units, via D1 and
D2 receptors, affects performance (i.e., higher levels of tonic DA leads to

overall more Go and therefore a lower threshold for facilitating motor
responses and faster RTs), and critically, learning. Phasic DA bursts that
occur during unexpected rewards drive Go learning via D1 receptors,
whereas phasic DA dips that occur during unexpected reward omissions
drive NoGo learning via D2 receptors. These dual Go/NoGo learning
mechanisms proposed by our model (Frank, 2005) are supported by
recent synaptic plasticity studies in rodents (Shen et al., 2008).

Because there has been some question of whether DA dips confer a
strong enough signal to drive negative prediction errors, we outline here
a physiologically plausible account based on our modeling framework
(Frank and Claus, 2006). Importantly, D2 receptors in the high-affinity
state are much more sensitive than D1 receptors (which require signifi-
cant bursts of DA to get activated). This means that D2 receptors are
inhibited by low levels of tonic DA, and that the NoGo learning signal
depends on the extent to which DA is removed from the synapse during
DA dips. Notably, larger negative prediction errors are associated with
longer DA pause durations of up to 400 ms (Bayer et al., 2007), and the
half-life of DA in the striatal synapse is 55–75 ms (Gonon, 1997; Venton
et al., 2003). Thus, the longer the DA pause, the greater likelihood that a
particular NoGo-D2 unit would be disinhibited, and the greater the
learning signal across a population of units. Furthermore, depleted DA
levels as in PD would enhance this effect, because of D2 receptor sensi-
tivity (Seeman, 2008) and enhanced excitability of striatopallidal NoGo
cells in the DA-depleted state (Surmeier et al., 2007).

To foreshadow the simulation results, responses that have had a larger
number of bursts than dips in the past will therefore have developed
greater Go than NoGo representations and will be more likely to be
selected earlier in time. Early responses that are paired with positive
prediction errors will be potentiated by DA bursts and lead to speeded
RTs (as in the DEV condition), whereas those responses leading to less
than average expected value (negative prediction errors) will result in
NoGo learning and therefore slowing (as in the IEV condition). More-
over, manipulation of tonic and phasic dopamine function (as a result of
PD and medications) should then affect Go vs NoGo learning and asso-
ciated response times.

Model methods for the current study. We include as few new assump-
tions as possible in the current simulations. The input clock-face stimu-
lus was simulated by activating a set of four input units representing the
features of the clock – this was the same abstract input representation
used in other simulations. Because our most basic model architecture
includes two potential output responses [but see Frank (2006) for a
four-alternative choice model], we simply added a strong input bias
weight of 0.8 to the left column of premotor response units. The exact
value of this bias is not critical; it simply ensures that when presented with
the input stimulus in this task, the model would always respond with only
one response (akin to the spacebar in the human task), albeit at different
potential time points. Thus this input bias weight is effectively an abstract
representation of task-set.

Models were then trained for 50 trials in each of the conditions (CEV,
IEV, DEV, CEVR) in which reward probability and magnitude varied in
an analogous manner to the human experiments. The equations govern-
ing probability, magnitude and expected value were identical to those in
the experiment, as depicted in Figure 1. We also had to rescale the reward
magnitudes from the actual task to convert to DA firing rates in the
model, and to rescale time from seconds to units of time within the
model, measured in processing cycles.

Specifically, reward magnitudes were rescaled to be normalized be-
tween 0 and 1, and the resulting values applied to the dopaminergic unit
phasic firing rate during experienced rewards. A lack of reward was sim-
ulated with a DA dip (no firing), and maximum reward is associated with
maximal DA burst. Furthermore, because phasic DA values are scaled in
proportion to reward magnitude, only relatively large rewards were as-
sociated with an actual DA burst that is greater than the tonic value.
Rewards smaller than expected value lead to effective DA dips. This func-
tion was implemented by initializing expected value at the beginning of
each condition to zero, and then updating this value according to the
standard Rescorla-Wagner � rule: V(t � 1) � V(t) � �(R � V(t)), where
� is a learning rate for integrating expected value and was set to 0.1. Thus,
as the model experienced rewards in the task, subsequent rewards were
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encoded relative to this expected value and then
applied to the phasic DA firing rate. Together
these features are meant to reflect the observed
property of DA neurons in monkeys, where
phasic firing is proportional to reward predic-
tion error rather than reward value itself, and
where firing rates are normalized relative to the
largest current available reward (Tobler et al.,
2005). Similar relative prediction error encod-
ing has been observed in humans using electrophysiological measures
thought to be related to phasic DA signaling (Holroyd et al., 2004). The
implication in the current task is that, for example, in the IEV condition,
although reward frequency is highest early in the trial, the magnitude of
rewards is lower than average in this period, and therefore should be
associated with a “dip” in DA to encode the low expected value of this
period.

Time was rescaled from a maximum of 5 s of real time to a maximum
of 200 cycles of processing in the model, where each cycle reflects one
update of neuronal membrane potentials as a function of their updated
weighted inputs and subject to time constants of ionic channel activation
and membrane capacitance. The model response time was measured as
in previous work (Frank et al., 2007b,d) (T. V. Wiecki, K. Riedinger, A.
Meyerhofer, W. J. Schmidt, and M. J. Frank, unpublished observations).
Specifically, as described above, the basal ganglia select responses by
removing tonic inhibition onto the thalamus (Mink, 1996; Chevalier and
Deniau, 1990). Thus a response is selected when the associated thalamus
units’ activity exceeds 50% maximal firing. (Because the BG gating of
thalamic activity is required to facilitate a cortical response, similar re-
sults are obtained by probing output unit activity, however the thalamic
activity is a more direct assessment of BG output, given that an output
unit can still sometimes fire noisily).

Parkinson’s disease and DA medications were also simulated as re-
ported previously (Frank et al., 2004, 2007b; Frank, 2005). To simulate
PD, we reduced the number of intact DA units from 4 to 2, such that
overall DA activity, both tonic and phasic, was reduced. To simulate DA
medications, DA activity was restored but prevented from decreasing all
the way to zero during DA dips. That is, there was a non-zero minimum
value of DA activity, simulating the tonic stimulation of DA agonist
medication onto D2 receptors even during potential pauses in actual DA
unit firing (Frank et al., 2004; Frank, 2005). This effectively impairs net-
works from learning NoGo to non-rewarded responses.

Temporal difference model. We also examined whether a standard tem-
poral difference (TD[�]) reinforcement learning model (Montague et al.,
1996; Schultz et al., 1997; Sutton and Barto, 1998; McClure et al., 2003)
could capture the pattern of behavior observed in the humans and neural
network model. In this model, the TD reward prediction error � in trial t
at time point i is computed according to current rewards plus summed
discounted future rewards relative to the current value estimate: �t,i

� rt,i � �Vt,i�1 � Vt,i, where r is reward value, � is a discount param-
eter, and V is the expected value at each time point. Then the value
Vt�1,i is updated according to Vt,i � ��t,iei, where i is the time step
within each trial (we used 10 time steps) � is a learning rate, and ei is the
eligibility trace of the stimulus representation xi. This eligibility trace is
calculated based on a “complete serial compound” representation of the
stimulus, in which a different xi represents a stimulus at each point in
time, and the weights for these xi remain eligible to learn for an exponen-
tially decaying period thereafter. Specifically, the eligibility trace is up-
dated at each time step: ei � ��ei�1 � xi, where � is the trace decay
parameter. [Eligibility traces are also scaled by � because the credit as-
signed to previous time points must be discounted by the relatively
longer wait to future reward (Sutton and Barto, 1998).] This TD[�]
implementation allows the algorithm to immediately assign reward
credit to events that occurred in the past, and in effect causes temporal
representations to be “smeared” such that reward values occurring at
particular times are generalized to a range of earlier time points.

These equations should allow the algorithm to learn the reward values
of the clock face stimulus at different points in time. To generate response
times, we follow McClure et al. (2003), who captured aspects of incentive
motivation literature using TD by assuming that response times are a

function of reward prediction error at any given time [based on previous
work by Egelman et al. (1998)]. Specifically, at each time point during the
trial, the model generates a probability of responding P � �1/�1
� e�m��i�b���, where m is a scaling constant and was set to 0.8, and b
affects the base-rate probability and was set to 2 (such that on average
with � � 0, the model responds halfway through the trial, as in the BG
model. When the model makes a response, a probability and magnitude
of reward is calculated according to the equations used for the subjects
and neural network model described above. Response times are scaled
such that each time step in the model corresponds to 500 ms for humans.

We ran simulations using all combinations of �, � and � from 0.1–1 in
steps of 0.1. Each point in parameter space was simulated 20 times, each
time initializing the weights (i.e., 20 different “subjects”). Our analysis
approach was to select parameters based on the model’s performance in
two control tasks. In the first control task, the model was given a reward
at time � 30 on each trial (equal magnitude on each trial), and was
rewarded in different conditions with probability of 25%, 50%, 75%, or
100%. The idea is that the model should respond earlier during condi-
tions with higher probability of reward, because value increases and
propagates backwards in time to the onset of the stimulus. The second
control task varies the magnitude of reward as well as probability and
tests whether the RT is modulated by expected value, given that this is a
requirement of the experimental task. The model performed both of
these control tasks well at most parameter settings. The following
average of parameters produced a linear decrease in response time
with increasing reward probability: � � 0.6 – 0.8; � � 0.6 – 0.7; � �
0.3– 0.4. We then plotted the responses of the model during the ex-
perimental task using these same parameters, but also searched a
range of other parameter sets.

Results
We predicted that increases in striatal DA in medicated PD
should enhance Go learning but impair NoGo learning, because
of blockade of DA dips needed to learn NoGo (Frank et al., 2004;
Frank, 2005). In contrast, depleted striatal DA should potentiate
NoGo learning at the expense of reduced Go learning. Thus we
predicted that patients on medication would show relatively
speeded RTs in the DEV condition, but would not slow down in
IEV, whereas patients off medication would show the opposite
pattern. We further predicted that any trial-to-trial adjustments
in RT should not be related to BG DA levels (Frank et al., 2007a),
but might instead reflect integrity of prefrontal cortex and asso-
ciated dopamine innervation.

Table 2 shows the mean RT in each condition (across all tri-
als), and Figure 3 shows RTs as a function of trial number in each
condition. There were no differences between patients and con-
trols, or medication effects, on baseline RTs in the CEV condi-
tion, or on overall response time ( p values �0.3). Overall, across
all subjects, response times in the IEV condition were signifi-
cantly higher than those in the DEV condition (t(36) � 4.72, p �
0.0001). Thus, although participants were not optimal, which
would require responding immediately in DEV and waiting until
just before 5 s elapsed in IEV, they nevertheless learned to adapt
RTs in the direction expected. However, any differences between
DEV and IEV themselves could be attributed to speeding (Go
learning) in DEV, or slowing (NoGo learning) in IEV, or both.
Thus, the main measures of interest are DEV (within-subject
speeding in DEV relative to baseline CEV) and IEV (within-

Table 2. Response times (milliseconds) in each task condition for each group, across all trials

Block/group DEV IEV CEV CEVR

Seniors 1697 (142) 2211 (136) 1988 (122) 2516 (119)
PD off medication 1831 (152) 2393 (235) 1940 (196) 2148 (154)
PD on medication 1785 (139) 2244 (150) 1967 (114) 1995 (123)

Values reflect mean (SE).
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subject slowing in IEV relative to baseline CEV), which are mea-
sures of Go and NoGo learning, respectively.

As predicted, while on medication, PD patients were better
able to speed up in the DEV condition, as measured by their RT
change from the first to last block. The interaction between med-
ication status (off vs on) and block in the DEV condition was
significant (F(1,35) � 5.63, p � 0.02). Conversely, the opposite
pattern of results was observed in IEV: while off medication,
patients were better able to slow their responses across blocks
(F(1,35) � 6.7, p � 0.02). Moreover, a within-subject analysis of
the difference between Go learning (DEV) and NoGo learning
(IEV) conditions reveals a significant interaction between medi-
cation status and block (F(1,35) � 5.25, p � 0.03). Neither patients
on or off medication differed significantly from age-matched
controls in DEV or IEV ( p values �0.2). Further, controls’ per-
formance did not differ between the first and last blocks in DEV
(Go) (F(1,35) � 0.02), IEV(NoGo) (F(1,35) � 0.29), or the differ-
ence between DEV and IEV (F(1,35) � 0.18) conditions. Never-
theless, the lack of learning effect across blocks in healthy controls

reflects the fact that they learned early
within the first block, whereas patients re-
quired more training trials to differentiate
between the conditions (Fig. 3). Indeed,
when measured across all trials, healthy se-
niors showed learning in both conditions,
as reflected by DEV and IEV which were
both significantly greater than zero (p ��
0.05 for both comparisons). This pattern
of results confirms the above mentioned
hypothesis that speeding or slowing down
RT is respectively enhanced by increases or
decreases in striatal DA levels (Frank et al.,
2004; Cools et al., 2006; Frank and
O’Reilly, 2006).

We also analyzed RT performance in
the last block by itself (which should reflect
stabilized learning). Mirroring the above
significant findings across blocks, there
was marginal interaction between DEV
and IEV and medication status (F(1,35) �
3.6, p � 0.06), such that the on medication
state was associated with relatively better
Go learning but worse NoGo learning (Fig.
4a).

Finally, we found that DEV negatively
correlated with IEV across all participants
(r(36) � �0.33, p � 0.02). This correla-
tion was significant in PD patients alone
(r(19) � �0.4, p � 0.02) but not in con-
trol subjects (r(16) � �0.17, p � 0.47),
suggesting that this negative correlation is
accentuated by having DA levels restricted
to the low or high end. This finding sup-
ports the hypothesis that the same mech-
anism that leads to adaptive DEV re-
sponding causes impairment in IEV, and
vice versa. Overall, these results also
confirm the hypothesis that DA manip-
ulations modulate Go and NoGo learn-
ing in opposite directions (Fig. 4a), a
finding that was captured by the BG neu-
ral network model (Fig. 4b), but not the
temporal difference simulations (Fig. 5)

(see below for detailed analysis and discussion).

Probability-magnitude bias
We also analyzed the difference in RT between CEV and CEVR
conditions as a measure of probability-magnitude bias (PM-
bias � CEVR � CEV). We found PM-bias to be positive across all
groups (Fig. 6), indicating an avoidance of choices associated
with low reward probability, consistent with risk aversion behav-
ior (Kahneman and Tversky, 1979). We also found medicated
patients to be less risk averse in this sense than control subjects
(F(1,35) � 5.46, p � 0.02), with a similar trend when compared
with their nonmedicated state (F(1,35) � 3.12, p � 0.08). These
results are consistent with those described above, in that “risk
aversion” in this context depends on learning in CEVR that re-
wards are improbable for early responses and to therefore slow
down. Thus the observation that medicated patients show less of
a PM-bias is consistent with their impaired NoGo learning, as
evidenced in the IEV condition as well.

Figure 3. a– c, Response times as a function of trial number, smoothed with a 10 trial kernel, in healthy seniors (a), patients
off medication (b), and patients on medication (c).

Figure 4. a, Relative within-subject biases to speed RTs in DEV compared with CEV (Go learning) and to slow RTs in IEV
compared with CEV (NoGo learning). Values represent mean (SE) in the last block of 12 trials in each condition. b, Similar pattern
of results from neural network model of the basal ganglia. c, d, Raw response times are shown for each condition in participants
in this study (c) the neural model (d) (see Materials and Methods, Model methods for the current study, for quantification
of model RTs).
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Trial-to-trial RT adaptation
Finally, to further investigate the source of
the learning biases, we analyzed trial-to-
trial changes in RT as a function of
whether the previous trial led to a reward
or not. Across all subjects, we found an
effect of feedback type on RT adaptation.
In the DEV, CEV, and IEV conditions,
subjects had significantly longer RTs after
receiving positive than negative feedback
(all p values �0.02) (Fig. 7). The opposite
pattern held true for the CEVR condition
(t(36) � �2.09, p � 0.04). Could these
trial-to-trial effects form the basis for the
learning biases above? Notably, there was
no effect of medication on this RT adapta-
tion from single rewards or the lack
thereof, in any task condition (all comparisons insignificant, and
all but one p � 0.3; Fig. 7). Critically, the trial-to-trial adaptations
were for the most part in the opposite direction to the cumulative
RT changes: in the three primary conditions (CEV, DEV, IEV)
participants actually slowed down after wins, and sped up after
non-rewards. These contrast with the incremental adjustments in
which conditions associated with high gains overall early in time
were associated with response speeding (Go learning in DEV)
across trials, whereas conditions associated with low gains early in
trial were associated with response slowing (NoGo learning in
IEV).

At first glance, these findings appear that participants change
their RTs such that after wins, they are more willing to risk a low
probability of reward to potentially win a larger gain, and after
reward omissions, they become more conservative. However,
further scrutiny of the data reveals that these effects are entirely
the result of the fact that participants tend to speed up after slow
responses and slow down after fast responses, as they explore the
space of reward structure for different response times. Figure 7d
shows RT adjustments across all conditions after responses that
are faster or slower than the mean response. These effects are of
much larger magnitude than those conditionalized on previous
rewards, described above. Indeed, the apparent differential ad-
justment after rewards and lack thereof is an artifact of a sampling
bias: in the three primary conditions, gains are more frequent
after faster responses (by design), and losses are more frequent
after slower responses; this relationship reverses in CEVR. When
RT analysis is confined to a particular range (e.g., within a SD of
the mean), the differences resulting from previous rewards dis-
appear. Thus the rapid trial-to-trial adjustments seem to reflect
participants’ explicit tendency to explore the space to determine
the reward structure. A more explicit investigation of these ef-
fects, along with a mathematical model that attempts to rational-
ize exploratory tendencies based on the uncertainty of reward/
response contingencies, will be presented in future work (M. J.
Frank, B. B. Doll, J. Oas-Terpstra, and F. Moreno, unpublished
observations).

Basal ganglia model simulation results
The finding that dopaminergic medication status affects incre-
mental Go vs NoGo RT adaptation provides converging confir-
matory support for a computational model of basal ganglia func-
tion (Fig. 2), hitherto applied to simulate DA medication effects
on various other reinforcement learning phenomena in both hu-
mans (Frank et al., 2004, 2007b; Frank, 2005) and rats (Wiecki,
Riedinger, Meyerhofer, Schmidt, and Frank, unpublished obser-

vations). Here we show explicitly that this same model captures
the qualitative pattern of results found in this study (see above for
methods).

All reported results are averaged across 25 networks with dif-
ferent sets of initial random synaptic weights in each model con-
dition (intact, PD, medication). As can be seen in Figure 4b,
simulated DA manipulation mirrored that seen in PD patients on
and off medication, albeit in a somewhat more idealized form.
Simulated Parkinson networks were impaired at speeding up in
the DEV condition relative to their CEV baseline RT, but showed
enhanced ability to slow down in the IEV condition. This is be-
cause low DA levels potentiated NoGo learning, which in turn led
to enhanced IEV slowing (see also Wiecki, Riedinger, Meyer-
hofer, Schmidt, and Frank, unpublished observations).

In direct contrast, simulated DA medication restored speed-
ing in the DEV condition but led to an inability to slow down in
IEV, because of an effective blockade of DA dips needed to learn
NoGo – and therefore an inability to learn that the small magni-
tude rewards are actually “worth” less than expected. Finally,
intact networks showed some degree of both Go and NoGo learn-
ing. Although the pattern in this case was such that Go learning
was somewhat potentiated relative to NoGo learning, which was
not seen in healthy seniors, we note that the exact quantitative
data are not critical here (given that we did fit the model to the
data), but rather the qualitative pattern of data as a function of
DA manipulation.

Finally, we also ran the model in the CEVR condition, and
found that in the intact case, there was no significant difference
between RT in the last block of the CEV condition, showing no
probability or magnitude bias (mean PM-bias � �6.3 cycles,
SE � 5.3). However, simulated PD networks showed longer RTs

Figure 5. Temporal difference model results. Control task 1, Control task showing that the TD implementation can successfully
speed responses for stimuli that have a greater probability of being followed by a reward with constant delay (i.e., showing
Pavlovian to instrumental transfer) across a range of parameters. Control task 2, Similar results for increasing expected value.
Experimental task, The same TD model fails to differentially modulate RTs across conditions within our experimental task. See
Results, Temporal difference simulation results.

Figure 6. Relative within-subject biases to prefer high probability over high magnitude,
controlling for equal expected value (CEVR � CEV). Senior controls and patients off medication
showed risk aversion, whereas those on medication did not. Values represent mean (SE) in the
last block of trials in each condition.
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in CEVR than CEV (mean PM-bias � 22 cycles, SE � 4.8),
whereas medicated networks showed the reverse pattern (mean
PM-bias � �20.8 cycles, SE � 4.8). Thus, although networks on
average did not show risk aversion (greater propensity to seek
high probability rewards), the model nevertheless captured the
relatively greater tendency for nonmedicated than medicated pa-
tients to do so. This result likely occurred because the simulated
PD networks have a NoGo learning bias, causing them to avoid
responding early in time in the CEVR condition when rewards
are very infrequent, together with reduced representation of re-
ward magnitude caused by depleted phasic DA levels. In contrast,
medicated networks were not “averse” to responding early in
CEVR, because of NoGo learning deficits, and their enhanced
(relative to PD networks) phasic DA bursts reinforced these early
responses during large magnitude rewards.

In sum, the BG model provides an account for (1) increased
DEV, (2) decreased IEV, and (3) decreased PM-bias in medicated
relative to nonmedicated patients.

Temporal difference simulation results
The TD model does not inherently include a means to capture
response times. However, as described in Materials and Methods,
previous work showed that some aspects of incentive motivation
can be captured by assuming that the probability of a response
being executed scales with the TD prediction error at that point in
time (Egelman et al., 1998; McClure et al., 2003). Here we employ
that model and show that it does successfully respond faster to
stimuli that have a greater probability of being followed by re-
ward, or greater expected value (both of which are associated with
enhanced prediction errors at stimulus onset). However, when
trained with the current temporal decision making task, the same
model does not successfully learn to speed up RTs in the DEV

condition or to slow down in IEV relative
to CEV baseline (Fig. 5). Results shown are
for the same parameter range producing
satisfactory results for the control task, al-
though we investigated the full range of
parameters and still did not find a range of
parameters that reliably produced the cor-
rect pattern of RTs. One reason for this
failure is likely that TD propagates reward
value back to the earliest predictor of its
occurrence. In IEV, rewards are high late
in the trial, but only if a response is made
later. A problem with this is that as reward
value is propagated to its earliest predictor,
responses will then become faster, leading
to lowered reward value, and causing in-
stability. This issue is reminiscent of a fail-
ure of standard TD to maximize rewards
in certain challenging RL tasks as a result
of melioration (Montague and Berns,
2002). It is also likely that the variability in
reward timing in the task (which are depen-
dent on when responses are made), also
posed somewhat of a challenge, given the
known issues with timing variability in stan-
dard TD (Daw et al., 2003; O’Reilly et al.,
2007).

Nevertheless, these simulation results
certainly do not discomfirm or falsify the
TD model. Our implementation assumes a
very specific transformation of prediction

errors to produce response times (that of McClure et al., 2003),
and it is entirely possible that others, with additional assump-
tions, might learn the task appropriately (Niv et al., 2007) (see
Discussion). Thus these simulations simply show that the stan-
dard TD model does not obviously capture results from this task
(let alone account for effects of DA manipulation), in contrast to
the neural model. It is not the added complexity of the neural
model that allows it to capture these findings, as an abstract (re-
duced) mathematical implementation of our neural model can
capture the RT adaptations by including a simple Go learning
mechanism that accumulates positive prediction errors to drive
RT speeding and a NoGo learning mechanism that accumulates
negative prediction errors to drive RT slowing (Frank, Doll, Oas-
Terpstra, and Moreno, unpublished observations).

Discussion
We showed that Parkinson’s patients’ tendency to adapt response
times to maximize expected reward value depends on dopami-
nergic medication status. While off medication, patients tended
to slow their responses to avoid early low expected values, but
were less able to speed up when their early responses were re-
warded. The opposite pattern was observed when the same pa-
tients were on dopaminergic medication; patients showed better
response speeding, and worse response slowing, to maximize ex-
pected value. These results cannot be explained by overall differ-
ences in motor responding, because (1) there were no effects of
medication status on overall RT in this task, and (2) the Go and
NoGo learning measures were computed with respect to each
individual’s baseline “default” CEV response time. Moreover the
same pattern of results was observed in our a priori model of
reinforcement learning in the basal ganglia.

Our analysis rests on the idea that accumulated positive re-

Figure 7. a– d, Trial-to-trial adjustments in RT from previous to current trial, conditionalized according to whether the last trial was
rewarded (Win) or not in senior controls (a), PD patients off medication (b), and patients on medication (c). d, Trial-to-trial adjustments
across all conditions after faster and slower than average responses. Note difference in scale. Values represent mean (SE).
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ward prediction errors implicitly drive basal ganglia-dependent
Go learning to speed responses, whereas negative prediction er-
rors drive NoGo learning and slowing. In choice paradigms, DA
medications potentiate Go learning while also impairing NoGo
learning (Frank et al., 2004, 2007b; Frank, 2005; Cools et al., 2006;
Frank and O’Reilly, 2006; Pessiglione et al., 2006; Shohamy et al.,
2008). Thus, the increased DEV-related speeding in medicated
patients may reflect a combination of enhanced Go learning from
positive feedback and reduced NoGo learning from omitted re-
wards (which would normally cause slowing). Similarly, in-
creased IEV-related slowing in nonmedicated patients may re-
flect a combination of enhanced NoGo learning after outcomes
that are worse than expected, and reduced Go learning after large
positive outcomes.

This account is in accord with evidence from rodents and
non-human primates that basal ganglia dopamine acts to speed
responding when faced with rewarding cues (Satoh et al., 2003;
Berridge, 2007; Niv et al., 2007), a process that is likely reliant on
D1-dependent Go function. For example, the tendencies to speed
responses to obtain large rewards and to approach a reward-
predicting stimulus are both dependent on striatal D1 receptors
(Dalley et al., 2005; Everitt and Robbins, 2005; Nakamura and
Hikosaka, 2006). Conversely, striatal D2 receptor antagonism
produces slowed responding when faced with lower than average
rewards (Nakamura and Hikosaka, 2006). These D1 and D2 data
converge with a recently reported study showing that these recep-
tor types modulate synaptic plasticity in striatal Go and NoGo
populations (Shen et al., 2008), and with human genetic data
examining polymorphisms within dopaminergic genes and their
effects on Go and NoGo learning (Frank et al., 2007a).

We note that in principle, speeded DEV responses could arise
either from positive feedback/Go learning (as emphasized here),
and/or participants could explicitly decide to change strategies
after realizing that slowed responses produce bad outcomes. To
the extent that such strategies are used in this task, they might be
supported by other rule-based brain systems (e.g., Ashby and
O’Brien, 2005; Daw et al., 2005). As far as the implicit basal gan-
glia reinforcement learning system is concerned, positive predic-
tion errors accrued over multiple trials should serve to speed
responses to associated stimuli, whereas negative prediction er-
rors should slow responding. These incremental RT changes
across trials lead to subtle differences between conditions (in the
order of 200 ms), despite explicit decisions to respond early or
late in any given trial.

Although the abstract TD model failed to produce the correct
pattern of results between conditions, other variants might well
be able to do so. For example, Niv et al. (2007) presented a model
in which average reward rate, posited to be reported by tonic DA
levels, served to increase vigor of responding. The formulation
assumed that longer response latencies are associated with greater
opportunity cost (caused by missed potential for rewards during
the waiting period) and that this cost is directly proportional to
the average reward rate. This model successfully captured obser-
vations that rats in free-operant tasks increase their response rates
in proportion to the average reward rate. The authors note one
possible way in which tonic DA levels come to represent average
reward is via temporal integration/accumulation of phasic DA
signals. With this assumption, the Niv et al. (2007) model may
also capture the data reported here. Indeed, our BG model does
so precisely because the DEV condition is associated with early
positive prediction errors, phasic DA bursts, Go learning, and
ultimately faster responding (and vice versa for IEV and negative
prediction errors). Thus modulation of Niv’s tonic DA/reward

rate parameter to simulate PD and DA medications could poten-
tially account for the cross-over-interactions observed here. Such
an account can explain the clinical observation of bradykinesia in
Parkinson’s disease in motivational terms, whereby movement
incurs a larger motivational cost because of lowered effective re-
ward rate (Mazzoni et al., 2007; Niv and Rivlin-Etzion, 2007). In
our model, this effect arises because of relatively increased acti-
vation and synaptic potentiation of striatopallidal “NoGo” neu-
rons in the DA-depleted state (Surmeier et al., 2007; Shen et al.,
2008).

Trial-to-trial adaptation
In addition to the incremental RT changes across trials, we also
found evidence for rapid trial-to-trial RT adaptation that were in
the opposite direction. Specifically, in the three primary condi-
tions, participants tended to slow down after gains and speed up
after losses. However, these effects were not affected by disease or
medication status, and are therefore likely to rely on distinct neu-
ral systems. Further analysis revealed that these effects are likely
to reflect trial-by-trial exploration, whereby fast responses are
followed by slower responses and vice versa, as participants sam-
ple the probabilistic reward structure of each clock-face. In a
recent genetic study, we reported that trial-to-trial adaptations
were predicted by genetic factors controlling prefrontal dopami-
nergic function, whereas incremental probabilistic learning was
predicted by genetic factors controlling striatal DA measures
(Frank et al., 2007a). According to the neural models (Maddox
and Filoteo, 2001; Ashby and OBrien, 2005; Frank and Claus,
2006), trial-to-trial adaptations rely on active maintenance of
recent outcomes in the orbitofrontal cortex, whereas probabilis-
tic learning depends on incremental synaptic weight changes in
the basal ganglia (Knowlton et al., 1996; Packard and McGaugh,
1996; Graybiel, 1998, 2004; Delgado et al., 2000, 2005). However,
our existing neural models of PFC function do not account for
the trial-to-trial adaptations seen here, which may be more ex-
ploratory in nature. Indeed, we recently collected genetic data
from 70 young healthy participants in this task, and found that
prefrontal genetic function was associated with trial-to-trial ex-
ploration, whereas striatal D1 and D2-related genes were predic-
tive of Go/NoGo learning in DEV and IEV conditions, respec-
tively (Frank, Doll, Oas-Terpstra, and Moreno, unpublished
observations).

Probability-magnitude bias
Overall, participants were biased to learn more about probability
than magnitude of rewards (evidenced by a positive PM-bias).
This result is consistent with the existence of a nonlinear utility
function described in behavioral economics, whereby higher
magnitude gains are preferred to lower gains, but at a declining
rate (e.g., Kahneman and Tversky, 1979). Our model embodies a
particular set of mechanisms that gives rise to these effects,
whereby the basal ganglia enhances the contrast between rein-
forcement probabilities by subtracting Go and NoGo associa-
tions from each other, but underweights large magnitudes
(Frank, 2005; Frank and Claus, 2006). Moreover, the diminished
PM-bias in medicated patients is accounted for in the model by
suppressed learning from negative prediction errors frequent in
CEVR (i.e., the same mechanism that leads to reduced perfor-
mance in IEV).

Conclusion
This study supports the hypothesis that striatal DA effects on
temporal decision making and probabilistic selection paradigms
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tap into common mechanisms, as supported by computational
and experimental data. To our knowledge, this is the first study to
test the effect of PD and DA medications on this rewarding aspect
of temporal decision making.
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