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Schizophrenia is characterized by abnormal perceptions and beliefs, but the computational mechanisms through which these abnor-

malities emerge remain unclear. One prominent hypothesis asserts that such abnormalities result from overly precise representa-

tions of prior knowledge, which in turn lead beliefs to become insensitive to feedback. In contrast, another prominent hypothesis

asserts that such abnormalities result from a tendency to interpret prediction errors as indicating meaningful change, leading to the

assignment of aberrant salience to noisy or misleading information. Here we examine behaviour of patients and control subjects in

a behavioural paradigm capable of adjudicating between these competing hypotheses and characterizing belief updates directly on

individual trials. We show that patients are more prone to completely ignoring new information and perseverating on previous

responses, but when they do update, tend to do so completely. This updating strategy limits the integration of information over

time, reducing both the flexibility and precision of beliefs and provides a potential explanation for how patients could simultan-

eously show over-sensitivity and under-sensitivity to feedback in different paradigms.
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Introduction
Schizophrenia is a mental illness characterized by diverse

symptomology. Many patients with schizophrenia experi-

ence positive symptoms, such as delusions or hallucinations,

as well as negative and cognitive ones. Delusions common

to schizophrenia often involve persisting false beliefs.

However, the mechanism through which these false beliefs

arise is unclear and the computational and biological factors

giving rise to them are actively debated.

One influential theory speculates that delusions emerge as

a result of aberrant salience assigned to information through

dopaminergic overactivation (Kapur, 2003; Howes and

Kapur, 2009). Recently, this theory has been interpreted in a

computational framework originally applied to learning in

dynamic environments in which salient information is
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regarded as suggesting a likely environmental change that

requires rapid updating of beliefs (Nassar et al., 2010).

Within this framework, aberrant salience can be thought of

as resulting from an abnormally high estimate of the rate at

which the environment is changing, or hazard rate, thereby

leading to more rapid belief updating in changing environ-

ments (Stephan et al., 2016). Consistent with this interpret-

ation of aberrant salience theory, patients with

schizophrenia updated beliefs more rapidly than control sub-

jects, were best described by models that overestimated the

hazard rate of the environment, and displayed task-related

connectivity between prefrontal and midbrain regions that

predicted the severity of delusions (Kaplan et al., 2016).

Nonetheless, previous work leaves open a number of ques-

tions regarding the exact computations that are altered in

schizophrenia.

One such question is how this high hazard rate character-

ization, which implies increased sensitivity to prediction

errors under many conditions (Nassar et al., 2010), can be

reconciled with the slower rates of learning and persevera-

tive responding characteristic of patient behaviour in many

other tasks (Goldberg et al., 1987; Laws, 1999; Leeson

et al., 2009; Reddy et al., 2016; Baker et al., 2019). Indeed,

computational formulations of the latter observations sug-

gest that they arise because of overly precise prior represen-

tations that reduce the speed with which beliefs are updated

according to unpredicted events (Corlett et al., 2019; Horga

and Abi-Dargham, 2019). The coexistence of over-updating

and under-updating phenotypes is perplexing from a compu-

tational standpoint, as these extreme behaviours are thought

to occupy opposite ends of a spectrum of belief updating

policies that ranges from those emphasizing stability (slow

learning) versus those emphasizing flexibility (rapid learning)

(Behrens et al., 2007; Nassar et al., 2010).

A possible resolution to this apparent discrepancy is that

patient learning is not stationary but is instead sensitive to

statistical context. In this view, perseveration and promiscu-

ous updating may be both observed, depending on the statis-

tical context and whether, normatively, extreme events

should drive more or less learning within it. Here we exam-

ined how patients with schizophrenia update beliefs in differ-

ent statistical environments in order to better characterize

the computations affected by the illness. We utilized a task

that probed beliefs directly on each trial (Nassar et al.,

2010) and could measure both over- and under-learning in

separate statistical contexts that favour either more or less

learning from surprising events (Nassar et al., 2019).

Specifically, our framework dissociated salience from learn-

ing by including surprising events that should either be used

for updating or ignored (d’Acremont and Bossaerts, 2016;

Nassar et al., 2019), allowing us to define the computational

differences between patients and controls.

We found that while average rates of learning did not dif-

fer systematically between schizophrenia patients and con-

trols, patients showed a pronounced reduction in a specific

category of moderate belief updates. Patients relied instead

on a combination of total belief updates (as might be

predicted by the aberrant salience account) and non-updates

(as might be predicted by an overly strong prior). This led

patients to form beliefs that were both less flexible after

change-points and less precise during periods of stability

than those formed by control subjects. Patient behaviour

could be described by an extension of the normative updat-

ing model in which belief updates are omitted as a probabil-

istic function of their expected magnitude. Parameter

estimates from this model could predict patient status on an

individual basis. Together, these results provide a unified ac-

count of the seemingly contradictory observations that

schizophrenia patients over-interpret noisy information, but

also underuse feedback for learning. In particular, our

results suggest that both of these behaviours emerge from a

single deficiency in the sort of moderate belief updates that

facilitate integration of information across multiple

observations.

Materials and methods

Participants

To determine the effect of psychotic illness on directed and ran-
dom exploration, 108 subjects with a diagnosis of schizophrenia
or schizoaffective disorder (referred to, collectively, as PSZ) and
33 healthy age-matched community volunteers performed our
behavioural task at the Maryland Psychiatric Research Center
(MPRC), University of Maryland School of Medicine. All partic-
ipants gave informed consent, and the research was approved
by the Institutional Review Board at the University of Maryland
School of Medicine.

Clinical and cognitive measures

Patients were clinically and pharmacologically stable (no change
in drug or dose for at least 4 weeks) outpatients from the
MPRC or other nearby clinics. Almost all PSZ patients were
being treated with antipsychotic medications (Supplementary
Table 1). The presence of a schizophrenia spectrum disorder in
patients, as well as the absence of a current Axis I disorder
(including drug dependence) and lifetime diagnosis of a psychot-
ic disorder in healthy volunteers, was verified by screening with
the Structured Clinical Interview for DSM-IV (First et al.,
1997). The absence of a neurological disorder, cognitively
impairing medical disorder (e.g. chronic, untreated hypertension
or diabetes), and psychosis in first-degree relatives was verified
by self-report. PSZ patients were further assessed with the Scale
for the Assessment of Negative Symptoms (SANS) (Andreasen,
1984), and the Brief Psychiatric Rating Scale (BPRS) (Overall
and Gorham, 1962).

Patients with schizophrenia and healthy volunteers were
tested using a cognitive battery including the Wechsler
Abbreviated Scale of Intelligence (WASI; Wechsler, 1999), the
Wechsler Test of Adult Reading (The Psychological
Corporation, 2001) and the Measurement and Treatment
Research to Improve Cognition in Schizophrenia (MATRICS)
Consensus Cognitive Battery (Green et al., 2004). There were
significant differences between patients and community control
subjects on all measures of cognition (Table 1).
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Predictive Inference Task

All participants performed a modified predictive inference task
programmed in MATLAB (The Mathworks, Natick, MA),
using the MGL (https://github.com/justingardner/mgl),
SnowDots and Tower-Of-Psych toolboxes (https://github.com/
TheGoldLab/Lab-Matlab-Control/). The task was an extension
of previous predictive inference tasks (Nassar et al., 2010, 2012)
in which participants were asked predict the next in a series of
outcomes, but cast in terms of catching bags dropped from a
helicopter (McGuire et al., 2014). Ours incorporated an add-
itional condition in which surprising outcomes were not indica-
tive of an underlying change in the generative process
(d’Acremont and Bossaerts, 2016; Nassar et al., 2019), and in
fact uninformative about the underlying mean of the distribu-
tion. This condition allowed us to measure the degree to which
participants appropriately attributed surprising information
according to its most likely source (Nassar et al., 2019).

Participants were instructed to place a bucket at a horizontal
position on the ground in order to maximize the chances of
catching bags that would be dropped from a helicopter
(Fig. 1A). On each trial, a bag was dropped from the helicopter
at the top of the screen with a probabilistic horizontal displace-
ment described in detail below. During training, the helicopter
was visible to participants and they were capable of observing
the variability from trial to trial in the distribution of bags
around it. Bucket placement was accomplished using a gamepad
that contained right and left buttons that controlled movement

of the bucket from its previous position and a separate button

to confirm bucket placement. Both patients and controls tended

to place buckets under the helicopter in this training task, rather

than placing it at the most recent bag location, suggesting that

they had a basic understanding of the generative process

(Supplementary Fig. 1). During the subsequent test phase, the

helicopter was obscured by clouds, forcing participants to infer

its position based on previously observed bag locations. To min-

imize the need for working memory necessary to represent the

previous bag location the task provided a visual depiction of the

prediction error from the previous trial, spanning the range

from the middle of the previous bucket position to the most re-

cent bag location (small red line in Fig. 1A). Here we report

only data from the test phase as the training data simply

required participants to move a bucket underneath a visible

helicopter.

A key manipulation in our design was how the helicopter lo-

cation evolved from one trial to the next. The task involved two

distinct statistical contexts that were capable of disambiguating

surprise from learning and the methods and mathematical justi-

fication for this approach have previously been reported

(Nassar et al., 2019). In all conditions, helicopter, bag, and

bucket locations were generated and recorded on a scale ranging

from 0 (left side of screen) to 300 (right side of screen).

Depending on the condition, the helicopter would either (i) re-

main stationary on the majority of trials and re-aim to a ran-

dom location on the 0–300 interval, with a hazard rate of 0.125

Table 1 Demographic, cognitive, and clinical measures in samples of patients and controls included in final analyses

Measure Patients (n = 94) Controls (n = 31) Inferential

statisticMean (SD) Mean (SD)

Demographic

Age 37.1 (10.0) 37.2 (10.3) t = –0.05

Gender 33 F, 61 M 11 F, 20M v2 = 0.001

Race 45 C, 38 AA, 4 AS, 6 M/O 17 C, 12 AA, 0 AS, 2 M/O v2 = 1.554

Subject education 13.2 (2.2) 15.0 (2.1) t = –3.94***

Parental education 14.3 (3.0) 14.0 (2.5) t = 0.52

Cognitive

WASI Estimated IQ (four subtests) 94.4 (14.4) 111.4 (14.3) t = –5.71***

WRAT-Reading Scaled Score 96.7 (15.0) 109.4 (15.4) t = –4.05***

WTAR Scaled Score 99.0 (18.1) 110.7 (14.4) t = –3.31**

MATRICS Composite Score 33.2 (12.7) 51.4 (11.3) t = –7.08***

MATRICS Domain Scores

Processing Speed 38.4 (12.8) 53.1 (12.2) t = –5.60***

Attention/Vigilance 40.1 (11.3) 52.9 (11.4) t = –5.46***

Working Memory 39.9 (10.8) 52.5 (11.5) t = –5.52***

Verbal Learning 37.8 (8.1) 50.7 (9.0) t = –7.52***

Visuospatial Learning 36.4 (12.0) 45.0 (10.8) t = –3.52**

Reasoning/Problem Solving 43.6 (10.3) 49.6 (10.0) t = –2.80**

Social Cognition 41.9 (12.2) 54.2 (8.0) t = –5.24***

Clinical

BPRS Mean Item Score–All Items 1.7 (0.4)

BPRS Mean Item Score–Psychosis 2.2 (1.2)

BPRS Mean Item Score–Depression 1.9 (0.9)

SANS Mean Item Score–All Items 1.5 (0.6)

SANS Mean Item Score–Avolition/Anhedonia 2.0 (0.8)

AA = African-American; AS = Asian; BPRS = Brief Psychiatric Rating Scale; C = Caucasian; F = female; M = male; M/O = mixed/other; MATRICS = Measurement and Treatment

Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery; WASI = Wechsler Abbreviated Scale of Intelligence; WRAT-Reading = Wide-Ranging Achievement

Test, Reading Subtest; WTAR = Wechsler Test of Adult Reading.

*P5 0.05; **P5 0.01; ***P5 0.001.
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Figure 1 A modified predictive inference task to measure behavioural adjustment in response to surprising outcomes. (A) In

each trial, participants moved a bucket to the location at which they expected a helicopter (obscured by clouds) to drop a bag of potentially

rewarding contents (top left). After the participant indicated satisfaction with the bucket placement, a bag fell from the top of the screen, which

provided new information about the true location of the helicopter (in the bag location; top middle) and about the reward attained on that trial

(in the amount of the bag contents that landed in the bucket; top right). All participants completed the task under two different generative condi-

tions that were explicitly instructed. In the change-point condition (bottom left) the helicopter position occasionally underwent change-points,

leading to a persistent change in the location of bags (red circles) across trials (vertical axis). In the oddball condition (bottom right) the bag loca-

tion was occasionally unrelated to the actual helicopter location, giving rise to oddball events that were unrelated to bag positions preceding or

following them. (B and C) Bucket placements made by an example subject (yellow) and the normative model (green) for each trial (abscissa) of a

task block in which bag locations (red points) were generated using either a change-point (B) or oddball (C) structure. Note that model and ex-

ample subject behaviour includes rapid behavioural adjustment in response to large errors in predicted bag location for the change-point condi-

tion (B), but not in the oddball condition (C). (D and E) Behaviour of the normative model is described by an error-driven learning rule in which

the learning rate (purple) is adjusted in each trial according to uncertainty about the current helicopter position (pink) and surprise (blue), as

indexed by the posterior probability with which a particular outcome was generated as a consequence of an unlikely generative event such as a

change-point (D) or oddball (E). The model is fully aware of the generative environments and thus increases learning from surprising information

when in the change-point context (D) but decreases learning from surprising information in the oddball context (E).
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(‘change-point condition’); or (ii) change position slightly from
one trial to the next according to a normally distributed random
walk with mean zero and standard deviation (SD) 7.5 (‘oddball
condition’). In both conditions, bag positions were typically
drawn from a normal distribution surrounding the actual heli-
copter location (SD = 20). However, in the oddball condition,
bag positions were occasionally sampled from a uniform distri-
bution across the entire screen space (hazard rate = 0.125).
Thus, in the change-point condition, unexpected bag locations
were indicative of a new helicopter position, thereby incentiviz-
ing updating the bucket position (Fig. 1B). In contrast, in the
oddball condition, unexpected bag locations were typically indi-
cative of a one-off outlier (oddball), thereby incentivizing partic-
ipants to leave the bucket in its previous position (Fig. 1C).

Task incentives were provided in two ways that together con-
trolled total payment for the task. In one incentive condition,
participants could accumulate rewards by catching coins of a
specific colour (blue, green or red; counterbalanced across par-
ticipants). In the other incentive condition, participants were
endowed with a fixed number of rewards that would be lost in
proportion to the number of dropped items that were missed on
a given trial. In both conditions, the total rewards were dis-
played as a pile of coloured tokens inside of the bucket. Thus,
our task included two statistical conditions (change-point and
oddball) and two incentive conditions (appetitive versus aversive
framing) and each participant completed at least 100 trials of
each combination of these factors for a total of 400 trials. We
found no main effect or group difference in the effects of the in-
centive condition and thus for all analyses we combine data
from the appetitive and aversive conditions (Supplementary ma-
terial). The majority of participants (124 of 134) completed
exactly 100 trials of each condition, but the first 10 participants
(seven patients, three control subjects) completed 200 trials of
each condition. Here we pool data from all participants, but
results were similar when excluding the participants that com-
pleted 200 trials per condition rather than 100.

Normative model of learning rate
adjustment

To understand how participants should update beliefs in our
different conditions, we used a normative learning model that
has been described previously (Nassar et al., 2010, 2016, 2019).
The model is derived from the full Bayesian ideal observer
(Adams and MacKay, 2007; Wilson et al., 2010; Stephan et al.,
2016) by approximating the optimal predictive distribution with
a Gaussian distribution that has a matched mean and variance
(Nassar et al., 2010, 2019; Kaplan et al., 2016). One key ad-
vantage of this approximation to optimal belief updating is that
it leads to an error-driven learning rule in which the influence of
incoming prediction errors, which we refer to as the learning
rate and use throughout the text to quantify the degree of belief
updating, is adjusted from trial to trial. Normative learning rates
are adjusted according to two latent variables: surprise and un-
certainty. Surprise indexes the probability with which the model
believes a new observation to have come from an alternate pro-
cess (either change-point or oddball, depending on condition).
Surprise is estimated as a posterior probability that the event
was driven by an alternate process than that expected, and thus
depends on a likelihood term that grows with (i) prediction
error magnitude (Nassar et al., 2010); and (ii) the prior

probability or ‘hazard rate’ assigned to surprising events
(change-points/oddballs). Uncertainty indexes the degree to
which the model is uncertain about the current helicopter loca-
tion, and is analogous to the Kalman gain in a Kalman filter: in-
tuitively, when the current estimate is uncertain, any deviant
observation should have a larger influence on updating that esti-
mate. High levels of uncertainty drive the normative model to
learn more rapidly in both conditions (Fig. 1D and E).
However, surprise affects model behaviour differentially in the
two conditions. In the change-point condition, where surprising
errors are indicative of change-points and thereby predictive of
future outcomes, high levels of surprise drive the model to use
high learning rates (Fig. 1D). In contrast, in the oddball condi-
tion, where surprising errors are indicative of one-off outliers
that do not predict future outcomes, high levels of surprise lead
to reductions in prescribed learning rate (Fig. 1E).

Performance-based exclusion
measures

In general, participant data indicated compliance with the basic
task objectives. However, in a small number of participants
with extremely poor performance, it was not completely clear
whether the participants were genuinely attempting to perform
the task. To remove participants on this extreme, we set a criter-
ion on the mean absolute trial error (distance between centre of
bucket and true helicopter position) and excluded participants
who failed to meet this benchmark from our analysis (mean
distance of helicopter 532; Supplementary Fig. 2). This led to
exclusion of seven patients and one control participant.
Including these participants in our analysis did not substantially
change our key findings.

Predictions of increased hazard rate
in normative model

To test a recent computational instantiation of the aberrant sali-
ence hypothesis (Kaplan et al., 2016; Stephan et al., 2016), we
simulated behaviour in our task from a version of the normative
model that incorporated an overestimation of the frequency of
abnormal events. Specifically, we changed the hazard rate from
its ground truth value 0.125 to 0.4. We simulated data for all
task sessions from models containing ground truth and elevated
hazard rates.

We examined the average updating behaviour of simulated
models, along with human participants, using a sliding window
regression approach. Data for each simulated subject were
binned according to absolute prediction error and bucket
updates (e.g. the signed change in bucket location from one trial
to the next) from trials in the bin were regressed onto an ex-
planatory matrix that included trial prediction errors (e.g. the
signed difference between the bucket position and the observed
bag location). Bins were set according to a sliding window that
began at a minimum absolute prediction error (smallest 5% of
absolute prediction errors) and ended at the largest prediction
errors (largest 5% of absolute prediction errors). The central
bins included 25% of the total absolute prediction errors; how-
ever bins were narrower on the extremes in order to visualize
changes in updating at extremely small or extremely large pre-
diction errors. The slope of the relationship between prediction
errors and subsequent updates provides a measure of the
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average learning rate, and thus our sliding window procedure
allowed us to test how learning rate depends on absolute predic-
tion error.

Extracting trial-to-trial learning
rates

In addition to examining learning rate by averaging across trials
we assessed the influence of information presented on individual
trials as trial-wise learning rates (Nassar et al., 2010).
Specifically, we defined learning rates as the bucket update on
each trial divided by the prediction error observed prior to that
update. Learning rates 41 were rounded to 1 and learning rates
50 were rounded to 0. Learning rates were binned into 20
equally spaced bins between 0 and 1 for display—and for learn-
ing rate histograms displayed in figure three trials that did not
contain an appreciable prediction error (absolute prediction
error 5 20) were omitted—although results were similar when
these trials were included.

Trial-to-trial learning rates were used to identify three update
categories: (i) non-updates (learning rate 4 0.1); (ii) moderate
updates (learning rate 40.1 and 50.9); and (iii) total updates
(learning rate 5 0.9). Overall relative frequency of each update
category was computed for all participants and compared across
groups using two sample t-tests. Each single trial update cat-
egory (non, total, moderate) was regressed onto an explanatory
matrix that included factors likely to affect learning rate includ-
ing surprise, condition (change-point/oddball), surprise � condi-
tion interaction, uncertainty, and trial value.

The proportion of learning attributable to total updates for
each subject was calculated by dividing the frequency of total
updates, scaled by the average learning rate, by the average
learning rate across all trials for a given subject. Individual dif-
ferences in this proportion were regressed onto an explanatory
matrix that included a binary patient category variable as well
as a continuous variable constituting the average learning rate
for each participant. This same regression was applied to indi-
vidual differences in the frequency with which subjects used
learning rates in each of the 20 discrete learning rate bins to
examine which specific learning rates were over- and underused
by patients, after controlling for average learning rate.

Characterizing flexibility and
precision of participant beliefs

Previous work that examined how different belief updating
strategies affect the precision and flexibility of beliefs has pri-
marily focused on changes in average updating behaviour. Here
we develop a new method to examine the precision and flexibil-
ity of beliefs that makes use of the entire sequence of observed
trial-to-trial learning rates described above.

The method first involved re-representing each belief as a
weighted mixture of previous outcomes. Specifically, we stepped
through the sequence of single trial learning rates and for each
trial: (i) assigned weight to the newest outcome proportional to
the learning rate on that trial; and (ii) assumed that the remain-
ing weight (1 – learning rate) was divided in proportion to the
weight assignments from the previous trial. Through this pro-
cess, the subject belief on each trial is recast as a weighted aver-
age of previous outcomes through the following equivalency
(Sutton and Barto, 1998):

Bt ¼ 1� að ÞtB0

þ
Xt�1

i¼1
ai 1� aiþ1ð Þ 1� aiþ2ð Þ . . . 1� atð ÞXi (1)

where Xi is the position of the bag on the ith trial, ai is the
learning rate on the ith trial, and Bt is the bucket updated pos-
ition on trial t. In short, the belief on trial t is a weighted aver-
age of previous outcomes, where the weight of each previous
outcome is related to the learning rate describing the update im-
mediately after that outcome (aiÞ, and negatively related to
learning rate describing updates to subsequent outcomes
[ 1� aiþ1ð Þ�. This procedure can be thought of as projecting the
participant belief into the space of the previous outcomes that
contributed to it, whereby the dot product of the weight and the
corresponding outcome history perfectly reproduces the partici-
pant belief for each trial.

Note that a rational agent should flexibly alter the weight
assigned to previous outcomes depending on whether those out-
comes are perceived to have occurred before or after a change-
point. We therefore assessed participants’ flexibility of beliefs by
quantifying the fraction of the weights that correspond to trials
occurring during the relevant context. In the change-point con-
dition this corresponds to the fraction of weight assigned to out-
comes occurring since the most recent change-point. The
theoretical precision of beliefs (under the assumption that all
observations were drawn from the same mean with independent
variance) was also computed for each trial as follows:

s ¼ 1

r2
tot

¼ 1

w1rsampð Þ2 þ w2rsampð Þ2 . . .þ wt�1rsampð Þ2

(2)

where r2
tot is the variance on the weighted mean of samples,

r2
sample is the variance on each sample, and w reflects the weight

given to that sample during updating. If all weight falls on a sin-
gle outcome, then precision goes to one over the sample vari-
ance, or to the precision of a single observation. In contrast, if
N weights go to one over N (e.g. N outcomes equal weight),
then the precision goes to N over the sample variance, corrobo-
rating the intuition that averaging across a greater number of
trials should produce higher precision. Since the denominator of
this expression always includes the sample variance, we calcu-
late effective sample size by expressing precision as a function of
the precision of a single sample:

Effective samples ¼ s
r2

samp

(3)

While this measure can be computed for all trials, of particu-
lar interest is the degree to which this measure of belief precision
grows during stable periods of the task, when participants
could, in fact, be integrating information over a large number of
outcomes. Thus, for statistical testing we examine precision of
trials in which at least eight observations had been made since
the most recent outcome, and we refer to this value as asymp-
totic precision.

Model fitting

To understand the computational differences between the
patients and controls, we fit an extended version of the norma-
tive model to participant behaviour (Nassar et al., 2016, 2019).
In short, the model updated beliefs about the helicopter location
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as described above, and produced bucket positions from a nor-
mal distribution centred on the inferred helicopter location. The
model is described completely in the Supplementary material
and included the following free parameters, which have been
described previously: (i) hazard rate: frequency that the model
expected extreme events (change-points/oddballs) (Nassar et al.,
2010, 2019; d’Acremont and Bossaerts, 2016); (ii) likelihood
weight: the degree to which extremeness of an outcome factored
into identification of change-points/oddballs (Nassar et al.,
2010); (iii) uncertainty underestimation: degree to which uncer-
tainty is inappropriately reduced on each trial (Nassar et al.,
2016); (iv) drift scale: the rate at which the helicopter was
assumed to be drifting in the oddball condition (Nassar et al.,
2010); (v) update variance: the base width of the distribution
over possible bucket positions centred on the inferred helicopter
location (Nassar et al., 2016); and (vi) update variance slope:
the degree to which the width of the distribution over bucket
positions increases with larger normative updates (Nassar et al.,
2016; Findling et al., 2019).

The model also included two additional parameters that mod-
elled (i) the frequency with which prescribed updates in the odd-
ball condition were generated as if in the change-point
condition [proportion context error (oddball)]; and (ii) the fre-
quency with which prescribed updates in the change-point con-
dition were generated as if in the oddball condition [proportion
context error (change-point)].

The model included one additional change to capture the
prevalence of non-updates in participant data. Specifically, the
model included two terms to model a probability that a given
trial would include a perseverative response, i.e. updates were
set to zero for the trial. To capture the selectivity of persevera-
tive responses apparent in the participant data, perseveration
probability was determined by the probability density of the
prescribed update on a scaled normal distribution (mean = 0,
SD = perseveration width), where the scale term was set such
that the perseveration probability on a trial with a prescribed
update of zero would be equal to perseveration max, which was
fit as an additional free parameter in the model.

The extended model, along with several simpler models, were
fit to participant data through likelihood maximization using
fmincon in MATLAB. Model comparison was conducted
through Bayesian model selection (Stephan et al., 2009) using –
1/2 AIC as the model evidence. Parameter estimates for the best
fitting model were regularized by refitting the model using pos-
terior probability maximization and an informed prior over
parameters derived from the original maximum likelihood fits.
Predictive checking was performed by simulating task perform-
ance (one-step look ahead) for each participant using the max-
imum a posteriori model parameters fit to that participant.

Individual differences analysis

Model estimated parameters were included in a logistic regres-
sion to determine whether they can be used to predict (classify)
patient status (Wiecki et al., 2015; Huys et al., 2016). The logit-
transformed predictions from this model corresponded to con-
tinuous patient scores, with higher values corresponding to par-
ticipants who had parameter profiles more similar to patients,
and lower values corresponding to participants who had param-
eter profiles more similar to controls. We examined how these
continuous parameter scores related to disease symptomology

by correlating them with measures of positive symptoms (the
average rating on the four psychosis items from the BPRS: gran-
diosity, suspiciousness, unusual thought content, and hallucina-
tions), general negative symptoms (the average rating on all
items from the SANS), motivational deficits (the average rating
on items from the avolition/role-functioning and anhedonia/aso-
ciality subscales of the SANS), and a composite measure of cog-
nitive function (from the MATRICS battery).

Patient status classification

Binary patient status (schizophrenia, control) was predicted
using a leave-one-subject-out logistic regression using three sep-
arate sets of predictors: (i) non-update and moderate update fre-
quencies (two predictors); (ii) information theoretic predictors
including mean per cent relevant context and mean effective
samples for each condition (four predictors); and (iii) model
parameters from quantitative model fits (10 parameters). For
each participant, the classifier was trained on all participants
but one, and a prediction score for the left out participant was
computed as the dot product of the model coefficients and left
out participant prediction scores. Out of sample prediction
scores were sorted and used to construct a receiver operating
characteristic (ROC) curve. Area under the ROC curve (AUC)
was estimated using a trapezoidal approximation (trapz in
MATLAB).

Permutation testing was conducted by permuting the patient
labels 1000 times and repeating the same analysis described
above. P-values were assigned to AUC scores as 1 – the fre-
quency of encountering an AUC value as large as the observed
value in the permutation distribution.

Data availability

All code and behavioural data in this manuscript will be made
available on the corresponding author’s website (https://sites.
brown.edu/mattlab/resources/).

Results
To characterize alterations in belief updating we examined

the behaviour of patients and controls in a computerized

predictive inference task framed as an attempt to infer the

location of a helicopter (Fig. 1A). Participants moved a

bucket to the location at which they believed a helicopter to

be hovering overhead through a series of button presses.

After indicating satisfaction with their bucket placement, the

helicopter would drop a bag containing potentially valuable

contents and participants would collect the contents that

landed in their bucket. During training, participants could

see the helicopter and place the bucket accordingly.

However, in the testing phase, the helicopter was covered

with clouds and participants were required to infer the pos-

ition of the helicopter based on the bags that had previously

fallen from it. Participants completed both training and test-

ing in two separate statistical contexts. In the first condition,

the helicopter was typically stationary but occasionally relo-

cated to an alternate screen position (change-point condition;

Fig. 1B). In the second condition, the helicopter drifted
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slowly from one trial to the next, but occasionally a bag lo-

cation was chosen uniformly across the entire range of pos-

sible screen positions, rather than being sampled from a

location nearby to the helicopter (oddball condition;

Fig. 1C).

Behaviour of participants and a normative learning model

(McGuire et al., 2014; Nassar et al., 2019) were highly sensi-

tive to the statistical context manipulation. In the change-

point condition, the normative model rapidly adjusted beliefs

in response to outlying bag locations (Fig. 1B, green) and

captured the behaviour of an example participant that did

the same (Fig. 1B, yellow). In the oddball condition, the nor-

mative model was insensitive to outlying bag locations

(Fig. 1C, green) allowing it to capture the same tendency in

an example participant (Fig. 1C, yellow). The normative

model achieved this context sensitivity by adjusting its sensi-

tivity to new bag locations according to two latent factors,

uncertainty and surprise (Fig. 1D and E, pink and blue).

‘Uncertainty’ quantifies the model’s degree of uncertainty

about the current helicopter location, with higher levels of

uncertainty evoking greater sensitivity to new bag locations,

or (in the language of error-driven learning) a higher learning

rate (Fig. 1D and E, purple). ‘Surprise’ is defined contextual-

ly. In the change-point condition it indicates the likelihood of

a change-point, and therefore dictates faster learning to facili-

tate flexibility in the face of change (Fig. 1D, compare blue

and purple). In the oddball condition, surprise indicates the

probability that the event is an oddball and thus spikes at

times corresponding to the outlying bag observations (cf.

Fig. 1C and E). Normative learning requires ignoring odd-

balls, as by definition they do not predict future bag loca-

tions, and thus surprise dictates a normative reduction in

learning rate in the oddball condition (Fig. 1D, cf. blue and

purple). Thus, a predisposition towards interpreting deviant

events with aberrant salience, such as has previously been

suggested to occur in schizophrenia patients suffering from

delusions (Kaplan et al., 2016; Stephan et al., 2016) would

lead to higher rates of learning in the change-point condition

(where detected abnormal events drive learning) but lower

rates of learning in the oddball condition (where detected ab-

normal events prevent learning).

Patients do not display high hazard
rate updating behaviours

To quantify this prediction, we simulated belief updates

from the normative model equipped with either realistic or

unrealistically high expectations about the rate of abnormal

events (hazard rate; Fig. 2A). Simulations from both models

reveal the general tendency to increase learning rate with un-

expectedly large errors in the change-point condition

(Fig. 2A) and to decrease learning rate with unexpectedly

large errors in the oddball condition (Fig. 2A). The high haz-

ard rate model that expects more change-points and odd-

balls learns more rapidly in the change-point condition, but

more slowly in the oddball condition, when compared to a

model equipped with the appropriate hazard rate (Fig. 2A;

compare blue to yellow). However, belief updating of

schizophrenia patients does not match the qualitative predic-

tions of this high hazard rate model (Fig. 2B), suggesting

that patients do not ascribe heightened salience to all

observations.

Patients less frequently combine
information to form integrated
beliefs

While only minimal differences in belief updating were ap-

parent in trial-averaged data, a key advantage of our task is

that it allows us to measure the influence of individual out-

comes on beliefs, by computing single trial learning rates

(Nassar et al., 2010). Single trial learning rates reflect the de-

gree of belief update on a given trial as a fraction of the pre-

diction error observed on that trial. Thus, a learning rate of

1 indicates that the participant moved the bucket to the

exact location of the most recent bag (total updating),

whereas a learning rate of 0 indicates that the bucket was

maintained in its previous position (non-updating).

Moderate learning rates between these two extremes indicate

an updated belief that combines the prior belief with new

outcome information, and thereby facilitate the integration

of new and old information. Patients and controls used a

wide range of learning rates in the change-point (Fig. 3A

and C) and oddball conditions (Fig. 3B and D). However,

the patient group included fewer moderate learning rates

and more zero learning rates than did controls.

To quantify this difference, learning rates were categorized

into discrete bins corresponding to non-updates (learning

rate near 0), moderate updates (between dotted lines in

Fig. 3A–D), and total updates (learning rate near 1). On

average, patients used more non-updates [mean/standard

error of the mean (SEM) for patients: 0.49/0.02 and con-

trols: 0.37/0.03, t(124) = 3.3, P = 0.001; Fig. 3E and F] and

fewer moderate updates [mean/SEM for patients: 0.33/0.02

and controls: 0.45/0.02, t(124) = –4.1, P = 7 � 10–5;

Fig. 3G and H] than did controls, whereas the frequency of

total updates did not differ between the two groups [mean/

SEM for patients: 0.15/0.02 and controls: 0.16/0.02, t(124)

= –0.4, P = 0.66]. The frequency of moderate and non-

updates differed consistently across groups (Fig. 3K and L)

and could be used to classify patient status (AUC = 0.73,

permutation P = 0.001).

While total updates did not differ between the groups

(Fig. 3I and J), they seemed to account for a larger fraction

of the total learning in patients, relative to controls. The pro-

portion of learning attributable to total updates was higher

for subjects that used higher learning rates on average and

for a given average learning rate tended to be higher in

patients than controls (Fig. 4A). A regression model con-

structed to explain individual differences in the proportion

of learning that was attributable to total updates based on

(i) patient status; and (ii) average learning rate revealed
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significant positive coefficients for both patient status and

average learning rate (patient coefficient = 0.78, t statistic =

2.59, degrees of freedom = 123, P = 0.01). When the same

regression model was applied to explain individual differen-

ces in the frequency of learning rates ranging from 0 to 1, it

revealed that patients tend to overuse both very small and

very large learning rates when compared to controls of a

similar average learning rate (Fig. 4B). In contrast, patients

less frequently used moderate learning rates, particularly

small moderate learning rates, than did control subjects.

Moderate updates, needed to integrate information across

multiple samples, are most important during periods of un-

certainty when existing beliefs are based on a small number

of observations (Nassar et al., 2010). As might be expected

based on this idea, control participants selectively increased

their use of moderate updates during periods of uncertainty

[Fig. 4C; mean (95% confidence interval, CI) moderate up-

date slope = 0.032 (0.021,0.042), t(30) = 6.33,

P = 5.5 � 10–7 mean (95% CI) total update slope = –0.0006

(–0.008, 0.007), t(30) = –0.17, P = 0.87]. While patients did

increase moderate updates somewhat during periods of un-

certainty [Fig. 4D; blue line; mean (95% CI) slope = 0.024

(0.017–0.030), t(94) = 6.60, P = 2.4 � 10–9], they also

increased their use of total updates [Fig. 4D; red line; mean

(95% CI) slope = 0.013 (0.008–0.018), t(94) = 5.00,

P = 3.2 � 10–6]. Thus, while both groups adjusted learning

rate according to uncertainty, the patient group often did so

by completely replacing their prior belief, rather than com-

bining it with newly arriving information.

Patient beliefs are both less flexible
and less precise

Based on the observed differences in single trial learning

rates, and their modulation by uncertainty, we sought to

examine how the exact sequence of learning rates might af-

fect beliefs. Typically, learning rate is measured on average

across a large numbers of trials, and under such circumstan-

ces there is a well-established stability/flexibility trade-off:

faster learning leads to better performance after change-

points (high flexibility) but worse performance during peri-

ods of extended stability (low precision) (Behrens et al.,

2007; Nassar et al., 2010; Franklin and Frank, 2015).

Access to single trial learning rates allows us to examine this

trade-off by considering not just the mean learning rate, but

the exact sequence of learning rates employed in the task.

To do so, we developed a novel method for computing the

flexibility and precision that relies on the key insight that

beliefs can be recast as a weighted average of previously

observed outcomes (see ‘Materials and methods’ section). To

gain an intuition for this, consider a situation in which the

participant has observed only two outcomes, the bucket is

positioned at the location of the first of those outcomes, and

the participant needs to update the bucket in response to the

second outcome (Fig. 5A). If the participant does not update

the bucket position at all, his updated belief is equivalent to

a weighted average that gives all weight to the first of the

two outcomes (Fig. 5A, left). In contrast, if the participant

updates the bucket position completely to the most recent
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Figure 2 Schizophrenia patients do not display heightened sensitivity to unlikely events. (A) Synthetic updating behaviour generated

by a normative model (yellow) and the same model equipped with a heightened sensitivity to detect unlikely events, implemented in the norma-

tive framework as an abnormally high prior on such events (hazard rate; blue) was regressed onto prediction errors in sliding windows of abso-

lute prediction error magnitude (x-axis). The resulting slope, termed the learning rate (y-axis), increases with prediction error magnitude in the

change-point condition (lighter colours) but decreases with prediction error magnitude in the oddball condition (darker colours). Higher hazard

rate (blue) leads to a leftward shift in both curves, reflecting a higher sensitivity to small changes in prediction error, particularly for moderate

prediction error magnitudes. (B) Patient (blue) and control (yellow) participant learning (y-axis), assessed in the same manner, displays a qualita-

tively similar bifurcation of learning in the two conditions (dark = oddball, light = change-point) with increased prediction error magnitude

(x-axis); however, patient curves are not shifted leftward with respect to control curves, as would be predicted by an increased hazard rate.

There is not a leftward shift of the blue curves relative to the yellow (as would be expected under the high hazard rate hypothesis) nor is there a

consistent offset in the learning rate of patients relative to controls (compare blue and yellow on ordinate). However, across conditions there

was a modest reduction of learning rates in patients relative to controls [mean/SEM learning rate for patients: 0.34/0.02 and controls: 0.41/0.03,

t(124) = –2.0, P = 0.04]. CP = change-point.
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outcome, then his belief can be recast as a weighted history

where all weight lies on the most recent outcome (Fig. 5A,

right). If the participant updates moderately (e.g. learning

rate = 0.5) then weight will be attributed to each of the two

outcomes (Fig. 5A, middle). Under the assumption that all

weight is attributed to outcomes from the same generative
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process (e.g. helicopter location) the precision of beliefs can

be computed analytically from the weight profile, in this

case revealing that beliefs resulting from the moderate up-

date are twice as precise as those resulting from either the

non-update or total update (Fig. 5A, bottom).

When this method is applied to simulated behaviour from

fixed learning rate models, it yields weight profiles in which

higher weight is attributed to recent outcomes for a high

learning rate model (Fig. 5A, blue) and higher weight attrib-

uted to outcomes observed in the distant past for a low

learning rate model (Fig. 5A, yellow). Moreover, the exact

profile of weights attributed to outcomes in the past depends

on the sequence of learning rates; for example, the norma-

tive learning model gives nearly equal weight to all observa-

tions since the most recent change-point, but no weight to

outcomes occurring before that (Fig. 5A, green). In principle,

an equal weighting of all outcomes having occurred since

the most recent change-point would be optimal in that it

would yield the highest possible belief precision without in-

corporation of irrelevant outcomes having occurred prior to

the most recent change-point.

The profile of weights for a given trial provides insight

into the flexibility and precision of beliefs. The flexibility of

an updating strategy can be assessed by examining the pro-

portion of weights that are attributed to outcomes that were

observed in the current context (e.g. since the most recent

change-point). Thus, for the example trial depicted in

Fig. 5A, we would conclude that the normative and high

learning rate models are flexible, in that they do not incorp-

orate information from the previous context, whereas the

low learning rate model does assign some weight to the

most recent outcome from the previous context. The weight

profile can also be used to infer the effective number of sam-

ples incorporated in beliefs, thereby providing a measure be-

lief precision. For example, if all weight was attributed to a

single outcome, the effective sample size is one and the belief
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Figure 4 Patients rely more on total updates, particularly when uncertain. (A) For participants who used higher learning rates on

average (x-axis), a greater proportion of learning was attributable to discrete total updates (single trial learning rates 40.9; y-axis). For any given

average learning rate, patients (blue) tended to be more reliant on total updates than were controls (orange). Points reflect individual subject and
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- -
Figure 5 Learning rate sequences used by schizophrenia patients yield beliefs that are both less flexible and less precise than

those of control subjects. (A) Schematic depicting the effects of a non-update (left), moderate update (middle), and total update (right) on the

precision of an underlying belief distribution. In all cases bucket placement is initialized to a prior outcome (x; t – 2) and is updated in accordance

with the most recent one (blue dot; t – 1). The degree of updating used by the agent affects the weight of previous outcomes on the updated

bucket position, with the non-update leading to complete reliance on the t-2 bag position, the total update relying completely on the t – 1 bag

position, and the moderate update equally weighting these two sources of information (second row). Computing precision of the resulting belief

distribution yields a value twice as large for the moderate update than the other two updating strategies, which we quantify as containing two
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is relatively imprecise. In contrast, if weight were distributed

equally across two outcomes, the effective sample size would

be two, and the precision increased, although not dramatic-

ally. Here we used a generalization of this idea to infer the

effective precision of beliefs for any arbitrary weight profile

(see ‘Materials and methods’ section). When applied to sim-

ple model simulations, our method reveals lower precision

beliefs for the high learning rate model and higher precision

beliefs for the low learning rate model, consistent with the

standard stability/flexibility trade-off (Fig. 5B, blue and yel-

low). However, the normative learning model achieves even

higher levels of precision than the low learning rate model

during periods of stability—demonstrating that it is both

flexible and precise (Fig. 5B, green).

Applying the same method to participant data revealed

that schizophrenia patients are neither flexible nor precise.

Patients attributed less weight to the current context then

did the controls [Fig. 5C; mean/SEM weight in relevant con-

text for patients: 0.87/0.01 and controls: 0.92/0.01, t(124) =

–2.8, P = 0.006], but contrary to the idea of a flexibility sta-

bility trade-off, also formed beliefs that asymptotically con-

tained fewer effective samples than controls [Fig. 5D, mean/

SEM effective samples in stable beliefs: 2.1/0.05 and con-

trols: 2.3/0.12, t(124) = –2.1, P = 0.04]. While there were

large individual differences in both measures, our measures

of flexibility and precision were capable of classifying partic-

ipants out of sample with reasonable accuracy (Fig. 5E,

AUC = 0.74, permutation P = 0.001).

Quantitative model fitting with
selective non-updating

Given the differences in the single trial learning rates used

by patients and control subjects (Figs 3 and 4) and their

apparent effects on the precision and flexibility of beliefs

(Fig. 5), we sought to extend our normative model of be-

haviour to better capture these aspects of patient updat-

ing behaviour. To do so, we added two additional

parameters that defined the probability with which the

model would use a ‘non-update’—implemented as a

learning rate of exactly zero (see ‘Materials and methods’

section). Furthermore, to capture other aspects of behav-

iour we also added two additional terms in the model to

account for potential context errors in which participants

used the updating rules from the wrong context (e.g.

responding in the change-point condition as if it were the

oddball condition). The resulting model provided an

improved fit over our original normative model and sev-

eral other models that were tested (Supplementary Fig.

3), estimated parameters that were recoverable

(Supplementary Fig. 4) and simulated updates that quali-

tatively matched the empirical updating behaviour

(Fig. 6A and B).

Parameter estimates from the model also discriminated

patients from controls. A logistic multiple regression model

that attempted to predict patient category based on each

participants’ parameters extracted from our extended nor-

mative model provided a reasonably good prediction accur-

acy (AUC = 0.67, permutation P = 0.002). The two

parameters contributing most to the identification of patients

were related to non-updating (Fig. 6C), with both the peak

non-updating probability, and the width of the non-updating

function across prescribed updates, being higher in patients

(mean/SEM beta for peak and width = 0.15/0.05, 0.16/0.05,

t-values = 3.0, 3.3; P-values = 0.003, 0.002). Together,

these parameter differences lead to a selective propensity for

non-updating in patients for prescribed updates on the same

scale as the standard deviation of the noise distribution

(Fig. 6D). It is noteworthy that this difference does not per-

sist in trials where the largest updates are prescribed by the

normative equations, and thus that patients are able to over-

come the perseverative tendency in the situations in which it

would be penalized most. Thus, patients do not simply have

a greater proportion of lapse trials in which they ignore out-

comes altogether, but instead preferentially perseverate when

moderate updates would be dictated. This selective persever-

ation was not related to either positive or negative symptoms

across the patient group, but was related to cognitive meas-

ures (Supplementary Figs 5 and 6).

Figure 5 Continued

effective samples, as opposed to only a single effective sample in the case of a non-update or total update. (B) Single trial learning rates (LR) can

be used to calculate the relative weight (y-axis) attributed to previous outcomes at any lag (x-axis). Applying this method to synthetic learning be-

haviour yields a geometric distribution for fixed learning rate models (blue, yellow) that is unaffected by change-points in the generative structure

of the task (depicted by the dotted line at lag –5). In contrast, normative learning models (green) approximate a uniform weight distribution

across all lags occurring after the previous change-point but do not assign weight to trials occurring prior to the most recent change-point (dot-

ted line). Flexible belief updating requires that beliefs are based on only relevant information, that is, that all weight is given to trials occurring

since the last change-point. (C) The precision of a belief on a given trial can be computed according to weight attribution profile that gave rise to

it. The precision, which can be measured in units of effective samples, increases to an asymptotic value for fixed learning rate models (yellow and

blue) but changes dynamically in the normative model (green)—growing almost linearly during periods of stability but rapidly collapsing to one

after a recognized change-point. (D) Flexibility, as assessed by the proportion of belief weights attributed to outcomes in the relevant context (y-

axis), increased as a function of trials after a change-point (x-axis) for controls (yellow) and patients (blue)—but was consistently higher for con-

trols. (E) Precision, as assessed by the effective number of samples contributing to the reported belief (y-axis), also increased as a function of tri-

als after a change-point (x-axis), and did so more rapidly for controls (yellow) than for patients (blue). (F) Differences in flexibility (proportion

relevant weight) and precision (effective samples) were prominent in a large number of individual patients.
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Discussion
Schizophrenia is characterized by persisting abnormal

beliefs, or delusions. Previous work has theorized that such

delusions might emerge through aberrant salience assigned

to incoming information (Kapur, 2003), and previous behav-

ioural and neuroimaging work has supported this idea by

formalizing aberrant salience in terms of a heightened predis-

position towards believing that new observations come from

an alternative process (Kaplan et al., 2016; Stephan et al.,

2016). Here, we directly test key predictions of this formal-

ization, and decouple them from related cognitive processes,

including the learning rate itself. We found no evidence that

patients are more likely to categorize new information as a

signal rather than noise (e.g. high hazard rate), nor did we

see pronounced differences in the average learning rate in

patients relative to control subjects (Fig. 2). Instead, we

observed that patients update beliefs more often in a binary

fashion, infrequently relying on moderate learning rates that

allow integration of new and old information (Fig. 3). This

subtle difference in belief updating, which is masked when

learning is averaged across trials, has negative consequences

for both the flexibility and precision of stored beliefs

(Fig. 5). We can account for these differences by extending a

normative model to include a non-updating function that

probabilistically converts small updates into non-updates,

with the parameters of this function elevated to describe pa-

tient behaviour (Fig. 6). In addition to providing categorical

discrimination of patients from controls, these parameters re-

late to measures of overall cognitive function, but not to

clinical measures of positive and negative symptoms

(Supplementary Fig. 5). Taken together, our results argue

against a computational formalization of aberrant salience

theory, demonstrate the importance of how learning is pat-

terned in time, and reveal that the primary belief updating

deficit in schizophrenia is in the integration of new and old
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Figure 6 Direct model fitting suggests that patients use more non-updates than control participants. (A) Patients (blue) and con-

trols (yellow) both tended to increase learning rate (y-axis) in response to surprising information (higher relative errors; x-axis) in the change-

point (CP) condition (light colours), but decrease learning rate in response to surprising information in the oddball condition (dark colours). (B)

Synthetic data from an extension of the normative model that was fit to patients (blue) and controls (yellow) mimic the reduced learning rate

from small errors and the less extreme bifurcation observed in the empirical patient data. (C) Regression coefficients and 95% confidence inter-

vals (points and lines; sorted by value) stipulating the contribution of each parameter estimated by the normative model to a logistic regression

classifier of patient status. The two parameters governing the magnitude and shape of the perseverative response profile (Persev. Width, Persev.

Max) made significant positive contributions to the classifier. (D) Perseveration probability as a function of the model-prescribed update is plot-

ted separately for patients (blue) and controls (yellow). Note that perseveration did not differ uniformly across task conditions, but most promin-

ently when the model prescribed making a relatively small update.
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information through moderate learning. Interestingly, this

lack of integration could lead to either over-learning or

under-learning, depending on the specific task, and therefore

may resolve tension between observations that patients learn

more slowly in some tasks (Goldberg et al., 1987) but more

quickly in others (Kaplan et al., 2016).

Belief updating abnormalities in
schizophrenia

Expression of persisting abnormal beliefs is a common posi-

tive symptom in schizophrenia. Clinical pharmacology stud-

ies suggest that this and other positive symptoms might be

related to abnormal dopamine signalling. However, the cog-

nitive mechanisms through which abnormal beliefs arise re-

main elusive. A major roadblock has been in the

identification of behavioural tasks that are capable of elicit-

ing abnormal beliefs in patients and simultaneously distin-

guishing between candidate mechanisms.

One line of research has suggested that abnormal beliefs

might arise from so-called ‘jumping to conclusions’—form-

ing beliefs based on a small amount of evidence. This idea

was spurred by research studies using the ‘Beads Task’

(Phillips and Edwards, 1966) where participants are able to

draw any number of beads from an urn before reporting a

belief as to the predominant bead colour in the urn. These

studies suggest that patients, as well as healthy control sub-

jects who are susceptible to delusions, tend to draw very few

beads before making a judgement on the predominant col-

our (Evans et al., 2015). However, a recent study that

improved on the standard beads paradigm, to control for

potential confounds, arrived at a very different conclusion:

patients with more severe delusions tended to seek more in-

formation (Baker et al., 2019). Interestingly, computational

analysis of these severely delusional patients revealed that

they were over-using information presented at the beginning

of each task trial, as if they were relying too heavily on prior

information and underutilizing contradictory evidence

(Baker et al., 2019). This finding, along with a related obser-

vation in a conditioned hallucination paradigm (Powers

et al., 2017), has suggested that overly strong priors might

be the cognitive abnormality that gives rise to delusions

(Corlett et al., 2019).

Our data, in broad strokes, are consistent with this idea.

An extremely strong prior about the helicopter location in

our task would lead to non-updating for small prediction

errors that are assumed to be dropped from the ‘well-

known’ helicopter location, and complete updating for trials

in which a change-point in helicopter location had occurred.

In short, an extremely narrow prior distribution in our

change-point task condition should lead to the sort of binary

updating behaviour that we observe in patients. However, a

closer look reveals some discrepancies between our results

and this idea. First, we do not see between-group differences

in the ‘uncertainty underestimation’ model parameter

designed to capture individual differences in uncertainty, but

rather on the perseveration parameters (Fig. 6). Admittedly,

these parameters capture related aspects of the behaviour, al-

though it is noteworthy that our patients did adjust learning

according to trial-to-trial differences in uncertainty, although

they did so differently than the controls, with a greater ten-

dency to update beliefs completely according to new infor-

mation during periods of uncertainty (Fig. 4). This would

not be expected of an overly narrow prior in our task

(Nassar et al., 2016). A second discrepancy between our

results and the strong prior account of delusions is that we

did not see any relationships between our model parameters

and positive symptoms of schizophrenia. Instead, we see

relationships with a broad array of cognitive measures, sug-

gesting that our indices are tapping into processes different

from those assessed in the studies mentioned above.

However, one important consideration is that our patients

were stably medicated, leading to lower positive symptom

profiles and potentially limiting our ability to detect relation-

ships between our task measures and positive symptoms.

One potential issue related to interpreting our findings is

that the level of explicit understanding of our task may have

differed between patients and controls. While we can rule

out the simplest version of this idea from the observation

that patients tended to place buckets appropriately when the

helicopter was visible, there are more nuanced versions of

this concern that might be more difficult to discount. In par-

ticular, we cannot guarantee that participants always

remembered which condition they were in. Indeed, the con-

text error parameters in our model suggest that both groups

occasionally updated bucket locations in a manner more ap-

propriate for the alternate context. There was a trend for the

context error parameters to take larger values when fit to

patients (Fig. 6C), and while these terms did not differ sig-

nificantly across groups, it does seem that our best fitting

model did not completely capture the discrepancy between

patients and controls in asymptotic updating for large errors

in the two conditions (cf. Fig. 6A and B), and it is possible

that a more complex model may be better able to tease this

difference out. Nonetheless, it is hard to imagine any such

context confusion effects accounting for our primary obser-

vation, which included a reduced frequency of moderate

learning rates in the patient group in both change-point and

oddball conditions.

Patterns of learning and the
stability flexibility trade-off

Previous studies examining belief-updating behaviour in

schizophrenia have relied on computational modelling to infer

participant beliefs based on choices. Here we measured beliefs

directly, which allowed us to characterize the weighted history

of influences on each belief. This allowed us to examine the de-

gree to which the patterns of learning in patients differed from

controls, revealing that patients tend to rely on fewer effective

samples than controls, and that the samples they do rely on

are more frequently irrelevant to the active statistical context.
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This set of results deviates from a common interpretation of

learning rate, or even the hazard rate, as mediating a trade-off

between stability and flexibility (Behrens et al., 2007; Glaze

et al., 2018). Instead, our results highlight the importance of

specific learning rates (in particular, moderate learning rates

that mediate integration of new and old information) and the

manner in which learning is distributed across trials (Gallistel

et al., 2014). While healthy young adults and normative learn-

ing models demonstrate a trade-off in belief stability and flexi-

bility (Nassar et al., 2010), we show that patients and controls

do not differ in this sort of continuum; instead patients ineffi-

ciently distribute learning across time so as to form beliefs that

are both less flexible and less precise than those held by control

subjects. This feature would have been missed by averaging

learning across trials, as it was largely attributable to the over-

all change in the distribution of learning rates in patients, with

learning taking more of an all-or-none nature, thereby limiting

the degree to which information can be integrated across mul-

tiple observations. Our extended normative model was cap-

able of capturing both binary and continuous aspects of belief

updating, potentially bridging an important gap between exist-

ing models of learning (Nassar et al., 2010; Gallistel et al.,
2014). To the best of our knowledge, our study is the first to

examine the implications of how learning rates are sequenced

in time, thus avoiding the pitfalls of previous studies that esti-

mated learning rates for entire sessions and, as a consequence,

might have masked such learning differences across individu-

als, age groups, and clinical populations.

Indeed, learning has been assessed in schizophrenia

patients in a large number of studies using a large number

of paradigms. In some of these studies, patients were charac-

terized as switching more frequently than control subjects,

suggesting an over-responsiveness to feedback (Yogev et al.,

2004; Li et al., 2014; Kaplan et al., 2016). However, in

other cases patients have learned more slowly than control

subjects and been characterized by perseverative responding

(Goldberg et al., 1987; Laws, 1999; Leeson et al., 2009;

Reddy et al., 2016; Baker et al., 2019). Previous work and

theories have posited that the dominant behavioural feature

(over-learning or under-learning) may depend on symptom

profiles. However, here we show that both behavioural fea-

tures can co-occur within individuals.

One important question motivated by this work is what

are the biological and cognitive mechanisms through which

the extreme updating strategies observed in patients occur?

Recent work has suggested that unstructured variability in

learning, much like that which we observe in patients, is

related to blood oxygen level-dependent activity in regions

of frontal cortex including dorsal anterior cingulate cortex

(dACC) and ventromedial prefrontal cortex (vmPFC)

(Findling et al., 2019). However, it is not entirely clear what

those signals might be conveying. One possibility is that the

variability arises through the use of multiple systems for

learning, with a working memory system sometimes over-

riding associative learning to contribute a total update

(Collins and Frank, 2012; Collins et al., 2017). Existing

models of working memory-based systems assume that only

a single memory is selected to generate a response (Collins,

2018). However, in principle, a belief report in our task

might be constructed by reading out multiple outcomes

stored in working memory. In such a system, moderate

updates would require having a large memory that could be

used to store previous outcomes such that replacing a stored

outcome with a new observation only changes one of mul-

tiple stored outcomes. However, by the same token, having

an extremely limited capacity (e.g. only capable of storing a

single outcome) might force learning into a binary regime (if

stored memory is updated, then update is total, otherwise it

will be perseverative). Previous work implicating working

memory deficits in patients, and suggesting that patient

learning deficits are attributable to change in working mem-

ory (Collins et al., 2017), provide at least indirect support

for this mechanism, and should motivate future work.

Taken together, our results suggest that patients with

schizophrenia are more extreme in their belief updates, limit-

ing the degree to which information is integrated across

time, and giving rise to beliefs that are both inflexible and

imprecise (incorporating fewer data). Our results shed light

on why previous reports have noted both over- and under-

sensitivity to feedback as core features of schizophrenia and

provide a common lens through which these aspects of be-

haviour can be viewed. Furthermore, our results motivate fu-

ture work to better understand the cognitive operations

underlying moderate belief updates, and how these opera-

tions are impaired in schizophrenia.
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