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Adaptive control of synaptic plasticity integrates micro- and
macroscopic network function
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Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and
development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine
models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer
theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In
this review, we examine connections between these areas, asking how network computations change as a function of diverse
features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and
neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude
that metaplasticity—defined broadly as the adaptive control of plasticity—forges connections across scales by governing what
groups of synapses can and can’t learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian
mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go
awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson’s
disease.

Neuropsychopharmacology (2023) 48:121–144; https://doi.org/10.1038/s41386-022-01374-6

INTRODUCTION
Synaptic plasticity leads a double life. A great deal of research has
addressed the biological substrates of plasticity, under the
working hypothesis that changes in inter-neuronal communica-
tion subtend behavioral adaptation. While this connection has
often been directly demonstrated, the mechanisms linking
microscopic (e.g., synaptic) to macroscopic (behavioral and
network) change have generally remained obscure. How are the
diverse pairwise interactions between neurons related to network
function? Which changes in these interactions bear on network
computation and which don’t? How are different network, cellular,
and sub-cellular needs and goals balanced via adaptation?
Answering these questions is complicated by the different

approaches biological and computational researchers take to
investigating plasticity. Biologically, diverse neuronal changes
can directly impact how strongly the activity of one cell
influences another. These include both pre- and postsynaptic
modification, as well as intracellular alterations that interact with
extracellular signals (e.g., neuromodulation via G-protein
coupled receptors). More specifically, for example, cell respon-
siveness can be influenced by axonal changes [1, 2], spatial and
electrotonic dendritic arbor remodelling [3–6], spine modifica-
tion [5, 7–14], active-zone expansion and shrinkage [15], AMPA
tetramer modification [16–20], calcium channel modifications
[21–23], and many more mechanisms. From a computational
perspective, in contrast, synapses are often reduced to single
"weights", which are idealized as edges in graphs representing

pairwise influence between neurons, and plasticity is cast as
change of influence [24–28]. The forms of plasticity used in
artificial neural networks are also largely selected to optimize
the performance of certain functions, such as image recognition
[28, 29], memory formation [30–35], or reinforcement learning
[36]. Thus, while plasticity is increasingly well understood in both
biological and computational terms, these literatures are often
relatively siloed.
In this review, we examine relationships between the two,

applying the general principle that integrating across scales and
levels of analysis can facilitate progress in neuroscience [37]. We
decompose the underlying problem into two sub-problems,
examining (i) how cellular models of plasticity determine network
changes, and (ii) how these changes interact with the functional,
computational properties of those networks. The first is probably
most well understood from the perspective of unsupervised
mathematical models of plasticity. The latter is more well
understood in terms of mathematical gradients of error land-
scapes. Considering these along with the biology of plasticity
suggests a significant role for metaplasticity, or "the plasticity of
plasticity" in multi-scale adaptation. Specifically, the expression of,
criteria for, and circumstances inducing plasticity can be
adaptively controlled [38–40], and this flexibility theoretically
allows metaplasticity to align adaptation across scales in the
service of functional outcomes. This further suggests that the
specific mechanisms of metaplasticity in different neural circuits
and contexts will reflect network function.
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Concretely, the logic of our review proceeds as follows: (1)
Calcium and related signalling cascades are key regulators of
Hebbian post-synaptic plasticity, and diverse processes impact
both. This makes those processes, in part, plasticity controllers,
and we review some of their key elements; (2) Hebbian learning
algorithms have long been addressed by computational theories,
which characterize their impacts on networks. Analyses of such
learning rules and the neuromodulation thereof have increasingly
indicated how controlling Hebbian change can produce functional
network outcomes, so we review these points; Lastly, (3) different
brain areas are specialized and this should be reflected in terms of
the metaplasticity they express. Scale also introduces forms of
metaplasticity such as activity routing, which conditions neural
population activity. These observations should be integrated with
the former two points, so we review some potential connections
between them. We conclude by discussing applications of these
ideas to pathology, specifically Parkinson’s disease, autism, and
schizophrenia.

DIVERSE SIGNALS CONVERGE ON CA2+ AS A PLASTICITY
CONTROLLER
Experimentally, synaptic plasticity can be induced by many means,
not all of which are naturalistic. Protocols that are plausibly similar
to in-vivo conditions include burst induction in presynaptic
afferents, which can mimic endogenous hippocampal activity,
spike-pair protocols, which can mimic correlative spiking, and
spike-burst protocols, which can mimic diffuse drive generating
strong responses, for example [41–50] (Fig. 1a, b). Plasticity can
also be induced and manipulated chemically, and with sub-
threshold membrane currents. In-vivo and naturalistic manipula-
tions are increasingly the norm however, and technical progress
has improved control of key quantities, such as trans-membrane
currents, over time (see e.g. [51]). Synapse potentiating protocols
generally require considerable depolarization of post-synaptic
cells, whereas depressing protocols require lesser depolarization.
There are many biological mechanisms by which neural activity

(such as that generated by induction protocols) can potentiate or
depress synapses. These can be roughly classified by their
occurrence either pre- or post-synaptically, by the time-scales at
which they occur, and by the signals that activate them. They
include changes in vesicle count and content, spine properties,
active zone surface areas, receptor densities, or dendritic function
and morphology, for example [52]. Lasting, input dependent
forms of plasticity generate "long term potentiation" (LTP) or
depression (LTD) of synapses, which are measured as changes in

post-synaptic trans-membrane current elicited by pre-synaptic
activity [15]. The induction protocols discussed above generally
explore these types of plasticity.
The most studied varieties of LTD and LTP occur post-

synaptically in glutamatergic synapses [15]. When a presynaptic
neuron fires an action potential, glutamate traverses the synapse
and binds to postsynaptic AMPA and NMDA receptors, opening
ion channels permeable to sodium and calcium. Whereas sodium
influx primarily depolarizes the post-synaptic cell, calcium ions
initiate intra-cellular processes that produce lasting changes.
These include modifying NMDA and AMPA receptor densities and
subunit compositions, directly impacting future glutamatergic
transmission [15, 19]. Both the direction (LTP or LTD) and the
amount of plasticity depend on the amount of calcium that enters
the cell (Fig. 1d) [15, 53–56]. While it is increasingly recognized
that the location of calcium entry can be critical for different
processes, and that synapses vary in their exact properties, this is a
widely accepted first approximation [56].
There are many other molecules and phenomena that interact

with both post-synaptic calcium concentration and the machinery
it engages, however. Related findings can be loosely organized
according to whether they mainly addresses trans-membrane
elements (AMPARs, NMDARs, VGCCs, GPCRs), primary signalling
molecules other than glutamate (DA, ACh, NE, 5-HT, BDNF, TNF,
eCBs), intracellular molecular players (Ca2+, cAMP, CaMKII, PKA,
PKC, PKMζ, IP3), or modulation by other features of neurons, such
dendrites (bAPs, spine clustering, endogenous spiking, electro-
tonic remodelling). This list is certainly not comprehensive, but it is
diverse, and as we discuss below, many of the noted items
modulate or are required for plasticity in particular circuits. The
following several subsections discuss these roles, but also present
a basic synthetic challenge to neuroscientists: What logic governs
the mechanisms operating at any given synapse? Why are there so
many "cooks in the kitchen" when it comes to calcium?
Fortunately, the approximate common currency of post-synaptic
calcium is compatible with ideas about synaptic plasticity arising
from computational theories. The work we review therefore
provides a cellular and molecular basis for comparison with
abstract plasticity models (discussed in later sections), with the
latter being theoretically linked to network functional and
computational properties.

Ca2+, AMPARs, and NMDARs mediate canonical glutamatergic
plasticity
As noted above, post-synaptic depolarization, the starting point
for activity-dependent plasticity, is usually generated by inward
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Fig. 1 Common elements of synaptic plasticity. a A pyramidal neuron with an afferent axon impinging on a dendrite, with two probes
shown for stimulation and/or recording. b Three example stimulation protocols. Top: Burst inducing stimulation of an afferent connection
(teal). Middle: STDP protocol, afferent stimulation (teal) paired with subsequent soma stimulation (purple). Bottom: A spike-burst protocol.
Many other protocols exist, e.g. using different current injections, repetition timings and numbers, etc. c Phosphorylation of AMPARs changes
their membrane densities and relative compositions of GluA1 to GluA2 subunits (shown in red and blue), mediating EPSC amplitudes. Similar
changes in NR2A vs NR2B (as opposed to NR1) subunits of NMDARs modify their relative calcium permeability. Colors are visual guides.
d Plasticity vs. Ca2+ concentration in canonical metaplasticity. A small amount of Ca2+ entering the postsynaptic cell induces LTD; larger
amounts induce LTP. Changes in Ca2+ permeability change the amount of calcium delivered for a given depolarization, acting like a
changeable ("floating") threshold, enforcing homeostasis, and inducing competitive learning. More realistic models are more sophisticated
(see e.g., [56]) but this is a well established and reasonable first approximation.
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Na+ and Ca2+ currents. In canonical LTP, Ca2+ currents contribute
little to membrane depolarization but control plasticity, and they
arise when NMDA receptors are (1) sufficiently depolarized, and (2)
activated by co-agonists such as glycine (e.g., [15, 57–60]). Calcium
entry leads to a number of signalling cascades, three of which we
refer to here as the CaM–CaMKII pathway, AC–cAMP–PKA path-
way, and the PLC–DAG–PKC pathways [15, 19, 61, 62]. Each
molecule in these cascades is involved in multiple processes, but
the kinases CaMKII, PKA, and PKC contribute to plasticity in
significant part by phosphorylating AMPARs and initiating
structural changes to preserve the consequences of AMPAR
trafficking (see e.g., [15, 19, 63–66]). AMPARs are tetramers
comprised of GluA1, GluA2, GluA3, or GluA4 subunits, with
variable properties and molecular interactions based on composi-
tion [67]. CaMKII, PKA, and PKC differentially phosphorylate these
subunits, leading to receptor exo- and endocytosis, as well
broader trafficking changes, and these signalling cascades
ultimately modify membrane AMPAR density and composition
(Fig. 1c) [15, 19, 66, 68].
Long-timescale changes in synaptic activity can also modify the

amount of glutamatergic transmission needed to initiate plasticity,
thereby instantiating a type of "metaplasticity", or plasticity-of-
plasticity [53–56]. Specifically, NMDARs are also tetramers, and are
generally composed of two GluN1 subunits and two GluN2 family
(GluN2A, GluN2B, GluN2C, or GluN2D) subunits [69]. As with
AMPARs, different subunit compositions confer different proper-
ties on the resulting receptors. A key property that differs by
composition is Ca2+ permeability, with the result that different
post-synaptic receptor distributions will require greater or lesser
activation in order to achieve a given integrated calcium flux.
Importantly, NMDAR composition itself, and in particular the ratio
of GluN2A to GluN2B subunits (also known as NR2A and NR2B
units) can be modified by use-dependent post-synaptic signalling
cascades. This determines how use impacts Ca2+ concentrations,
and thereby AMPAR plasticity (Fig. 1c) [70–79]. Functionally, it
produces a type of "floating threshold" for plasticity induction,
which was notably predicted by computational theories of
plasticity [53–55]. This threshold, along with the basic phenom-
enon of lesser and greater calcium influx producing LTD and LTP,
is illustrated in Fig. 1d. One resulting function is homeostatic, in
that depression becomes easier to induce in stronger synapses,
whereas potentiation is favored by weaker synapses. As we
discuss below, more general forms of metaplasticity have many
additional computational implications.

Many processes converge on Ca2+ signalling
Beyond solely providing a floating threshold over long timescales,
Ca2+, PKA, PKC, and CaMKII related pathways have been
increasingly recognized as flexibly altering plasticity on the basis
of non-NMDAR mediated signals, which likely serve important
computational ends as well. Specifically, various other trans-
membrane players directly impact calcium, perhaps most notably
voltage gated calcium channels (VGCCs) and calcium-permeable
AMPA receptors (CP-AMPARs). In addition, G-protein coupled
receptors (GPCRs) also modulate elements of the CaM–CaMKII,
AC–cAMP–PKA, and PLC–DAG–PKC pathways, and this family
includes receptors that respond to all the major neuromodulators.
Muscarinic acetylcholine receptors (mAChRs), α - and β-adrenergic
receptors (β–ARs), dopamine receptors (DARs), and serotonin
receptors (5HTRs), are all GPCRs impacting these pathways, as are
metabotropic glutamate receptors (mGluRs) and metabotropic
GABA receptors (GABABRs) [80, 81]. As a result, neuromodulators
have diverse impacts on plasticity. An important question is
therefore: Given broader theories of neuromodulators and the
regulation of calcium-permeable channels, how are these impacts
orchestrated in the service of computational goals? The most well
understood case is probably dopaminergic modulation of
plasticity for reinforcement learning, for example, but more

generally, answers for particular circuits will require synthesizing
functional observations across scales. To this end, we review some
of the molecular aspects here.
From a computational perspective, coordinated, fine-grained

spatial control of post-synaptic calcium is important because it can
theoretically direct plasticity to specific stimuli or sets of post-
synaptic inputs. VGCCs are strong candidates for mediating this
capacity, (along with other dendritic parameters) because of their
roles in dendritic processing and regulation of Ca2+. Voltage-
gated calcium channels form several subfamilies based on their
pore-forming proteins (α subunits) [22]. The Cav1 family (Cav1.1,
Cav1.2, Cav1.3, and Cav1.4) conduct L-type calcium channels, and
Cav1.2 and Cav1.3 are generally located postsynaptically in
dendrites and cell bodies [82–84]. Cav2.1, Cav2.2, and Cav2.3
conduct P/Q-, N- and R-type currents and are primarily located
presynaptically. Cav2.1 and Cav2.2 are involved in vesicle
exocytosis and Cav2.1 participates in short-term synaptic facilita-
tion and depression. Cav2.3 channels also appear to be located
postsynaptically in some areas [85, 86]. The Cav3 family (Cav3.1,
Cav3.2, and Cav3.3) conduct T-type calcium currents, which are
involved in rhythmic and burst firing, particularly in the thalamus
[22]. Of these, one therefore expects relatively direct effects of
Cav1.2 and Cav1.3 channels on post-synaptic glutamatergic LTP
induction, via calcium currents, and potentially less direct effects
of Cav3 family channels via bursting related back-propagating
action potentials (bAPs).
In line with these predictions, L-type calcium currents con-

tribute to plasticity in a number of ways, several of which go
beyond floating threshold effects. Cav1.2 contributes to LTP in
(hippocampal) Schaffer collaterals, for example [87–90]. Blocking
these currents in several circumstances either reduces or abolishes
LTP that would have occurred otherwise. Cav1.2 channels also
form highly localized signalling complexes with β2–adrenergic
receptors and several members of the CaM–CaMKII and AC–cAMP-
PKA cascades, such that adrenergic signalling up-regulates
channel conductance and increases protein-based second mes-
senger activity [90, 91]. This promotes LTP under joint, weak,
theta-burst and adrenergic stimulation, which occur naturally in
the hippocampus during exploratory behavior [92]. Moreover,
NMDARs and VGCCs appear to regulate one another, with chronic
increases in Cav1.2 L-currents lowering NMDAR Ca2+ flux for
example [83, 86, 93]. Finally, L-type calcium currents also appear to
contribute to (slow) spike after-hyperpolarization and to
frequency-based adaptation, processes that regulate cell excit-
ability and thereby plasticity [94–97]. Collectively, these observa-
tions suggest that VGCCs might be integrated into a holistic
understanding of plasticity as having primary effects on induction
thresholds, post-synaptic excitation and dendritic processing
(discussed below), along with various secondary impacts. A key
research goal will therefore be determining the relative impor-
tance of each for plasticity at any given synapse.
Post-synaptic calcium is also directly manipulated by calcium-

permeable AMPA receptors (CP-AMPARs) [20, 23]. Typically,
AMPARs contain at least one (post transcriptionally "edited")
GluA2 subunit, making them impermeable to calcium. CP-
AMPARs, on the other hand, are typically GluA1 homomeric. They
are often inserted into the post-synaptic density during plasticity
induction as a result of trafficking from endosomes, only to be
subsequently removed [98–100]. Some neurons also appear to
express long lasting CP-AMPARs however, including cortical and
hippocampal interneurons [101–104]. It is not well understood
what effects either the transient or long-lasting changes in
calcium transmission have, but the broader calcium theory
suggests they should lower the thresholds for inducing both
synaptic depression (given weak additional input) and further
potentiation (given strong additional input). Complicating the
matter, intracellular polyamides close CP-AMPARs at significant
depolarizations, making them voltage gated [105, 106]. This
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voltage gating appears to allow CP-AMPARs expressed by
hippocampal interneurons to mediate "anti-Hebbian" plasticity
[101, 103, 104], and may be important in principal-interneuron
plasticity generally [102, 103, 107, 108]. (In this case, excitatory
synapses onto inhibitory neurons are potentiated when pre-
synaptic firing occurs without post-synaptic firing.) A number of
regions have also been shown to express CP-AMPARs under
pathological conditions, but here too, little is known about their
precise effects on plasticity [21, 23]. As with VGCCs, it may
therefore be reasonable to consider CP-AMPARs according to a
first-order effect on calcium-based threshold change and diverse
second-order effects. Whether these "second order" effects are
really secondary remains to be seen, but the idea that transiently
expressed CP-AMPARs should facilitate plasticity induction (both
LTP and LTD) in the short term appears plausible.
Finally, as noted above, a number of metabotropic, neuromo-

dulatory receptors interact with the CaMKII, PKA, and PKC calcium
signalling cascades, providing further levers for controlling
plasticity [19, 62, 80, 81]. These G-protein coupled receptors
(GPCRs) form a very large class of trans-membrane proteins. Much
of the diversity of this class occurs in the extracellular
components, whereas intracellularly, GPCRs are characterized by
their bound hetero-trimeric α, β, and γ subunits [80, 81]. Each
subunit has a variety of subtypes as well. Extracellular ligand
binding dissociates the αβγ trimers from the transmembrane
elements, and generally further subdivides them into free α and a
free βγ dimer (often denoted Gα and Gβγ or similar). The Gα
proteins can be clustered into families identified with Gαi (alpha
types i, o, z, t), Gαs (types s, olf), Gαq (types q, 11, 14, 15) and Gα12
(types 12, 13). Of these, Gi inhibits adenylyl cyclase (AC), which
lowers production of cAMP, and thereby reduces the activity of
PKA [19, 62]. Gs does the opposite, upregulating AC, and hence
cAMP, and PKA [19, 62]. And finally, Gq produces DAG and IP3,
which activate PKC and Ca2+ release from endoplasmic reticula via
IP3Rs [19, 62]. Metabotropic receptors for all of the major
neurotransmitters bind these G-proteins (i.e. Gi, Gs, and Gq

families), which mediate complex intracellular activity. As one
would predict by their actions on PKA, Gs coupled receptors
appear to generally promote LTP, whereas Gi coupled receptors
often promote LTD [62]. Gq coupled receptors show mixed effects
on plasticity, with mGluRs being generally associated with LTD,
whereas M1 AChRs are demonstrably involved in both LTD and
LTP (discussed below). For any given receptor and context, the
exact relationship to plasticity likely varies according to the
balance of different G-protein mediated effects and the conditions
they’re exerted in. Nonetheless, because of their strong relation-
ships with macroscopic theories of brain function, we now discuss
several instances of DAR, mAChR, and β–AR modulated plasticity
in further detail.

DA, ACh, and NE modulate both activity and plasticity
DA, ACh, and Ne receptors all modulate intracellular signals
involved in plasticity, and they change cellular and network
properties governing activity as well. These changes occur
simultaneously in several systems, suggesting that they may
generally act in concert, but how this occurs, and what it
accomplishes, are not well understood. (Indeed this article
examines potential syntheses.) We consider network integration
primarily in a later section, and for now continue with some of the
cellular and molecular relationships.
Empirically, DA dependence is well established at cortico-striatal

synapses, for example [10, 62, 109–111]. The striatum is the input
region of the basal ganglia and is broadly recognized as having
roles in action planning and execution, working memory and
attention, and reward-based learning. Dopamine is believed to
signal reward-prediction errors (RPEs) and motivational variables,
so DA dependence of plasticity is broadly in line with these
theories [10, 62, 109–113]. This modulation acts differentially on

the two primary types of neurons in the striatum, which express
different dopamine receptors. The "direct pathway" medium spiny
neurons (dMSNs) primarily express D1Rs, and these D1-MSNs are
metabotropically rendered more excitable by DA. The "indirect
pathway" projections (iMSNs) primarily express D2Rs, and these
D2-MSNs are metabotropically inhibited by it. Furthermore, the
plasticity of cortico-striatal synapses onto each type of neuron is
unidirectional or bidirectional depending on local DA concentra-
tion [114], with positive RPEs and negative RPEs preferentially
driving reinforcement of the D1 and D2 pathways. These effects
occur in part because D1Rs and D2Rs impinge on the calcium-
cAMP-PKA signalling pathway via the Gs and Gi family α subunits
respectively [115]. DA-based plasticity in MSNs is further gated by
ACh, which is signaled by tonically active neurons [116–118], and
requires co-agonism by endocannabinoids and adenosine [114].
Because DA appears to multiplex various signals, these additional
requirements may serve to specify exactly when and how
plasticity should occur in response to only relevant dopaminergi-
cally communicated information. More broadly, computational
accounts of these pathways, which we discuss below, draw on
theories of modulated Hebbian plasticity to suggest normative
roles for the opponency and modulation noted here.
DA-dependent plasticity has also been established in the PFC of

mice, but is less well understood theoretically or empirically.
Empirically, D1Rs are expressed in a bilaminar pattern across
frontal cortex, with elevated density in layers I-III and V-VI, and low
density in layer IV (in primates, with some results in rodents)
[119–123]. These receptors appear to be predominantly located
on dendrites of pyramidal neurons, but are also located pre-
synaptically on principal cells targeting distal dendrites of other
glutamatergic neurons, and on parvalbumin positive GABAergic
interneurons [121, 124, 125]. Maximal frontal D1R concentrations
appear in dlPFC, which hosts strong recurrent connectivity that is
mediated, unusually, by NMDAR rather than AMPAR activity
[126, 127]. Posterior regions are relatively devoid of both D1Rs and
dopamine, with the significant exception of the lateral intrapar-
ietal area, which is also noted for its recurrent activity and its role
in working memory [123, 126]. Occipital cortex, by contrast, hosts
both an extremely low density of D1Rs and little to no
dopaminergic innervation [123, 126]. D2Rs appear to be expressed
relatively uniformly, in much smaller quantities, across layer V
pyramidal neurons throughout cortex [119, 120]. In frontal regions,
they have also been found on GABAergic parvalbumin positive
interneurons [128–131]. The D2Rs in layer V pyramidal neurons
were recently reported to be Gs coupled rather than Gi coupled,
and hence to enhance, rather than reduce, cell excitability given
dopamine application [132].
In terms of direct (rather than network) impacts, plasticity

induction at excitatory L2/3 synapses onto L5 pyramidal neurons
shows dopamine dependence in mice [130, 133]. DA application
at several time-points after these authors’ spike-pairing protocol
produced D1R dependent Hebbian LTP. The longer-delay
application (30 ms after pairing) was found to depend on both
D1R activity post-synaptically and D2R mediated reductions in
GABAergic interneuron firing rates. The shorter-delay application
(10 ms) required only the latter, demonstrating a clear case of
activity dependence, disentangled from post-synaptic GPCR
signalling. These findings were subsequently extended by
showing that changing the spike pairing to a post-before-pre
protocol, which classically would induce LTD, and concurrently
applying dopamine, produced LTP instead [133]. This was
dependent on post-synaptic D1R activity, but not pre-synaptic
D2R activity.
In contrast with dopamine, acetylcholine and norepinephrine

have been shown to modulate cortical plasticity in several sensory
areas. NE and ACh dependence occur at V1 L4 to L2/3 cortical
synapses, for example, and appear to be required for plasticity
induction there in adult rodents [134–136]. The mAChRs present
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are Gq coupled (M1 family), and interact with the PLC-DAG-PKC
signalling cascade to bias plasticity towards LTD [136–138]. Co-
located β-adrenergic receptors are Gs coupled and interact with
the AC-cAMP-PKA cascade to promote LTP [135, 136, 139, 140].
When both are activated, these aspects combine to specifically
gate causal spike-time dependent plasticity, meaning LTP occurs
when pre-synaptic input precedes post-synaptic depolarization,
and LTD occurs when this order is reversed [136]. Notably, α1-
adrenergic receptors are also present post-synaptically, which
have higher affinity for norepinephrine than β-adrenergic
receptors, are Gq coupled, and have often been reported to
facilitate LTD as well as M1-AChRs [135–137, 139, 141, 142]. In line
with these points, one study found that low NE concentrations in
isolation produced LTD, whereas high NE concentrations activated
both receptors and re-instantiated Hebbian STDP [135].
Finally, all three neuromodulators (DA, ACh, NE) modify

hippocampal plasticity as well. DA dependence has been noted
on Schaffer collateral synapses, which connect CA3 to CA1, and in
the perforant pathway, which connects entorhinal cortex to the
dentate gyrus [143–148], whereas NE and ACh modulation have
been reported at Schaffer collaterals [149–152]. β-adrenergic
modulation was also noted to extend the temporal window for
time-dependent LTP, by making CA1 pyramidals more excitable
[149]. More generally, NE has often been reported to facilitate
hippocampal LTP via the preferential Gs coupling of β-adrenergic
receptors, as with visual cortex [92, 134, 149, 153–155]. Reported
ACh effects have been more varied, with some studies indicating
facilitation of LTP [154, 156–167] and others showing LTD
induction [168–173]. The latter have generally seen LTD under
weak or non-existent post-synaptic stimulation however, whereas
the former have tended to look at enhancement of LTP or
conversion from LTD, a potentially critical difference.
Several recent studies have also investigated how spike timing

effects these processes. In one, ACh converted bidirectional STDP
at Schaffer synapses into unidirectional LTD, whereas retroactive
application of dopamine transformed this into LTP [150], in line
with earlier reports of hippocampal DA-ergic modulation
[143, 146, 147]. This was at odds with another group’s report
that inhibition of mAChRs converted causal LTP to LTD, and
prevented anti-causal LTD [151, 152], but the induction protocol
used in the latter appears to have been significantly stronger. This
strength discrepancy might mirror the general difference in LTP vs
LTD biasing actions noted above, or may be mediated by the
complexity of Gq signalling, specifically by different contextual
implications of IP3-Ca2+ and PLC-DAG-PKC cascades. For example,
M1 activity can both enhance SK channel (calcium-dependent,
voltage-independent, small conductance potassium channel)
activity via IP3-based internal Ca2+ release [174], and inhibit it
via PKC [166, 175]. LTP induced by theta-burst stimulation of
Schaffer collaterals can be facilitated by ACh via the latter
mechanism, because closing the SK channels diminishes shunting
current and enhances NMDAR Ca2+ flux [166, 175]. In fact, M1-
AChRs can have a number of other impacts on K+, VGCC, and
nonspecific cation channels [176], which makes the diversity of
ACh mediated plasticity results perhaps less surprising, and
generally indicates we have much to learn about the matter.

Summary of cellular and molecular data
To summarize, a number of different fundamental processes
modulate intracellular calcium signalling cascades, and thereby
plasticity. Up-regulating calcium, CaMKII, and PKA pathways tends
to facilitate LTP, whereas down-regulating calcium or PKA, or up-
regulating PKC related pathways tends to facilitate LTD. This is
compatible with a model of plasticity in which small, but non-
negligible amounts of calcium facilitate LTD and large amounts
facilitate LTP. Although we did not address it above, it is important
to note that one open question in this regard is exactly which
properties of calcium fluxes, such as their amplitude, duration, or

location, govern this behavior [56]. Nonetheless, a number of
results are clear. Voltage gated calcium channels contribute to
these effects, at minimum, by modulating calcium directly,
through their interactions with NMDARs, by changing cell
excitability, and through complexes with β-adrenergic receptors.
Calcium-permeable AMPA receptors also directly mediate calcium
currents and are mostly expressed transiently, but may be long
lasting in some synapses. The implications of their short-term
facilitation of calcium currents is not well understood, but
presumably interacts with the same signalling cascades just
described. These interactions are likely complicated by the fact
that CP-AMPARs are themselves targets of said cascades, because
they are AMPARs, and by polyamide-based gating. Lastly, the
major neuromodulatory systems all engage GPCR signalling. Gα
subunits, which are categorized by family (Gi, Gs, Gq, and G12)
engage the PKA, IP3, and PKC pathways (in addition to diverse
effects we have not discussed). As a result, they are expected to
directly modify plasticity induction, and indeed multiple areas
including striatum, pre-frontal cortex, visual cortex, and hippo-
campus display neuromodulated plasticity. Often this occurs as
"gating" of LTD or LTP, or by converting one to the other. Because
these are Hebbian forms of plasticity, models of their function
should build on research examining un-modulated Hebbian rules
and knowledge of what modulating these can accomplish.

CONTROLLING PLASTICITY DICTATES KEY NETWORK
PROPERTIES
How can we understand the impacts of the diverse biological
phenomena reviewed above? One answer is to interpret them in
light of mathematical models of network function and learning.
Many of the modulations of LTP or LTD discussed so far control
specifically Hebbian synaptic change. By this we mean change at
an existing synapse determined by a presynaptic factor and a
postsynaptic factor. As such, formal theories of Hebbian plasticity
are highly relevant, and we proceed to review them here. Then we
consider how metaplasticity can be exerted by augmenting
Hebbian change with so-called "third" factors. These can represent
reward or attention, and can mathematically model the calcium
based or PKA, PKC, and CaMKII impacts discussed above
[62, 111, 177–180]. Mathematical analyses indicate that such
modulation vastly expands the universe of resulting network
functions. Collectively, these considerations indicate how impor-
tant network properties can be related to metaplasticity, providing
an interpretive framework for the calcium signalling observations
discussed above and knitting local synapse changes into
functional network ones.

Unconditional Hebbian rate theories
The primary mathematical formulations of Hebbian plasticity are
rate-based and spike-based, whereby synapses change according
to time-averaged activities or according to timing relations among
peri-synaptic depolarizations. A diversity of rate-based theories
exist, but the Bienenstock-Cooper-Munroe theory (BCM) is
probably the most well known and well validated in neuroscience
[53, 55]. The canonical spike-based theory is termed "Spike-time
dependent plasticity" (STDP) [44, 45, 48, 49, 111, 180, 181]. Both
theories are based on the idea that pre-synaptic activity producing
post-synaptic activity should increase synaptic efficacy, i.e., on
Hebb’s postulate.
Dependence on pre- and post-synaptic activity suggests

Hebbian change should respond to covariances, an intuition
which is appropriate across a range of models. In the most basic
rate formulations, one set of neurons (principal cells in V1, say)
receives feed-forward input from another (principals in thalamus).
The simplest synaptic changes are products Δw= yx, where w
denotes synaptic efficacy ("weight"), Δw denotes a change in
efficacy, y denotes post-synaptic activity, and x denotes pre-
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synaptic activity. When one set of neurons drives a second set like
this, covariance between pre- and post-synaptic activity primarily
reflects covariation within the driving set. Since the main
dimension in which a collection of data varies is termed its
principal component (PC), this suggests that Hebbian synaptic
plasticity transforms the weights (and hence receptive fields) to
reflect principal components of the data, as illustrated in Fig. 2b
[182–185]. When homeostatic elements such as floating plasticity
thresholds are modelled, neurons develop more complex
receptive fields like Gabor filters [53, 55]. Including inhibitory
competition forces neurons’ receptive fields to specialize
[186, 187], and heterosynaptic competition tends to modify the
properties of those fields somewhat [188]. Top-down feed-back
and recurrent inputs generalize these models further, and since
Δw= yx has interchangeable x and y, one might expect recurrent
weights to become reciprocal, which is indeed common in cortical
networks [189]. Symmetric connectivity stabilizes persistent
activity within recurrent sub-networks [30, 187], or recruits
similarly tuned neurons to excite one another (see Fig. 2d-f).
Models of visual processing based on these ideas predicted
aspects of cortical stimulus selectivity and map-formation, such as
visual tuning properties and stronger connections between
similarly tuned neurons [190–197]. Hippocampal encoding of
memories in recurrent activity also essentially relies on this logic,
for example [35, 198].

Theoretical work on unconditional, rate-based Hebbian plasti-
city mainly proceeded from these foundations by examining
Hebbian interactions with other important features of biology,
especially homeostasis. Naive Hebbian dynamics are unstable,
with weak synapses disappearing and strong synapses often
increasing indefinitely. As noted above, the BCM rule posited a
floating plasticity threshold partly to resolve this issue [53, 55], but
other early approaches included modelling weights as bounded or
conserved in aggregate, and plasticity as a diminishing function of
strength [191, 199, 200]. Rough conservation in aggregate has
largely been born out in the form of "synaptic scaling" [201, 202],
and remarkably there is also evidence that local excitatory-
inhibitory balance and synaptic strength are conserved on
dendritic sub-domains as well [5, 11]. Plasticity of neural
excitability, inhibitory plasticity, and autonomous spine fluctuation
dynamics have also been identified as contributors to home-
ostasis, and likely also serve computational roles
[14, 107, 108, 203–207]. Synaptic scaling appears to be crucial
for maintaining correlative relations between neurons, whereas
network firing rate homeostasis is more strongly impacted by
excitability changes, for example [206]. Inhibitory plasticity, on the
other hand, may be fundamental for controlling detailed forms of
excitatory-inhibitory balance, which in turn impact a number of
important network properties such as the desynchronized
states associated with attention and alertness [107, 108]. Finally,
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unconditional Hebbian plasticity in networks can also regularize
learning (i.e., make it less flexible but more targeted) or otherwise
bias networks towards certain representations [196, 208–212]. One
example of this is aiding the development of systematic
representations that facilitate generalization [208]. Though it is
beyond our scope to address these in detail, we suspect that
biological multiplexing of different types of plasticity has
signatures in calcium pathway dynamics, and that investigating
these will be a key area for cross-talk between theoretical and
empirical research. Ideally results from these areas would be
rationalized along with other mechanisms by reverse engineering
accounts, as has been done somewhat with stability and
representation learning, for example (e.g., [210, 213, 214]).

Unconditional Hebbian spike theories
Spike-timing models inherit basic properties from rate-based
models [200, 215]. The canonical formulation of STDP computes
the time difference between every pair of spikes occurring in a
connected pair of neurons, translates each into an increment or
decrement of the synaptic efficacy, adds these all together, and
updates the synapse. Post-synaptically, neurons can accomplish
this online by maintaining an "eligibility trace" of the times at
which they received input, comparing this with their own activity,
and modifying their synapses accordingly [180]. Physiologically,
the eligibility trace is interpreted as calcium or other intra-cellular
products which are elevated by synaptic input and decay over
time. Backpropagating action potentials or other retrograde
signals are interpreted as communicating post-synaptic activity
to the synapse. The eligibility-trace formulation immediately
suggests that there may be cases in which plasticity is retro-
actively expressed, by converting a latent change into an
expressed one, and this has been widely observed
[13, 62, 147, 150, 216–219]. This retroactive expression is also
important for computational models of metaplasticity and may
relate considerably to empirical "consolidation" and "synaptic tag
and capture" ideas, although they have been little integrated thus
far (see [15, 36, 180, 220–225], for example.)
A more general mathematical description involves the use of

Volterra expansions [200]. The net plasticity induced by a
sequence of spikes in a pair of neurons can be described as
application of a "functional" to the pre- and post-synaptic neurons’
spike trains. The STDP functional takes two spike-trains and
returns a synaptic weight change. The weight change depends on
a relation quantifying the temporal order and proximity of pairs of
spikes, called a kernel. STDP is determined by convolving the
kernel with one of the spike trains, then taking the inner product
of the result with the other spike train. This procedure is illustrated
in Fig. 3A, as are a number of different potential pairwise kernels
for Volterra expansions. These descriptions are motivated by the
fact that Volterra expansions express the simplest pairwise
interactions, and can be naturally expanded to include higher or
lower order interactions as well. For example, they can model
spike-triplet effects [226–229] or the impacts of unpaired output
spiking [200], and can also be expanded to account for other
temporal variables, such as membrane voltage deviations
[230, 231].
The kernel description also provides flexibility in modeling

timing and order dependence. In the standard case, kernels are
constructed with spike-spike interactions that decay exponentially
as a function of absolute time differences. These are also causal, so
that pre-before-post spiking generates LTP, and post-before-pre
spiking generates LTD, as noted above. This results in plasticity
that recapitulates much (but far from all) empirical synaptic data
[48, 49, 232]. The kernel approach suggests that these aspects
might be mixed and matched however, for example to model
forms of plasticity under which post-before-pre spiking does not
generate change, or for which both temporal orders of spiking
produce LTP. Indeed, beyond the canonical form of STDP, many

such alternative forms have now been described [62]. The most
well understood of these is probably anti-Hebbian STDP at
climbing-fiber homologous synapses onto Purkinje cells in the
cerebellum like structures of weakly electric fish. These are
thought to play a role in signal cancellation [233–235], but
debates about climbing-fiber plasticity more broadly appears
unresolved [236]. Anti-Hebbian STDP has also been found in
neuro- and inhibition-modulated preparations [62, 237], however,
and in excitatory-inhibitory plasticity [101, 103, 104]. This may be
related to network stability or competitive specialization, as
theoretical work has suggested for anti-Hebbian plasticity broadly
[213, 214], but a general theory is lacking. The impacts of different
kernels or their associations with, for example, different network
connections between cell classes, is in need of greater exploration
(but see [238, 239]). Especially so, since neuromodulation can
change these kernels, as discussed below.
At the network level, canonical STDP predicts structured timing

relations among groups of neurons. In networks with significant
feed-forward pathways and similar transmission delays, canonical
STDP predicts the existence of "synfire chains", groups of neurons
that propagate activity as volleys of synchronous action potentials
[240–242, 242–251]. More general structured asynchronous
activity generalizes this. Specifically, when transmission delays,
refractory activity, and other elements of biology are incorporated
into spiking neural network models, STDP tends to produce
overlapping ensembles of co-active neurons with conserved
timing. Izhikevich referred to this as "polychronization", and
showed that these ensembles are essentially intermingled synfire
chains with timing offsets [245]. An interesting consequence of
these models is that random membrane fluctuations, which drive
resting state activity, interact with STDP to randomly shrink and
enlarge the pools of neurons participating in different chains
[245].
Synfire and polychronization ideas have suggested a number of

hypotheses about in-vivo network function. Reproducible, non-
stationary activity has often been considered as a potential
substrate for compositional representation and routing, for
example [246, 249, 251–254]. Recurrently, these properties can
also be used as a form of active maintenance, providing spike-
based, asymmetric counterparts to the Hopfield dynamics initially
proposed to model memory [241, 242, 247, 250, 255]. More
generally, modelling suggests that networks subject to STDP
would need to co-opt polychronizing dynamics to fulfill their
functions, because they would otherwise be subject to constant
plasticity-induced degradation. This is a spike-timing-based
example of regularization, which we noted above for uncondi-
tional Hebbian theories, and is perhaps most well understood for
cases of reward-modulated STDP [179, 256–259]. When, where,
and how unconditional STDP interacts with more complex forms
of learning remains a major open question however, as was the
case with rate models. One straightforward question, for example,
is when and where symmetric vs asymmetric network restructur-
ing occur (see Fig. 2b, d–f) [230, 260].
More empirically, groups of neurons with conserved timing

relations (as are generally predicted with STDP rules) have been
identified in various circuits. For example, auditory cortex has long
been recognized to encode stimuli with precise spike timing
[261, 262], and several of the ideas discussed above seem to apply
there. Primary auditory L5 neurons (excitatory and inhibitory, in
rats) exhibit fluctuating spontaneous activity that is highly
reminiscent of polychronization [263–265]. These transient
sequences were most highly conserved at transitions from cortical
down states to cortical up states, and became less conserved the
longer the transient activity persisted (as predicted by a
polychronization model). Furthermore, a subset of up-states
propagated as travelling waves, and local groups of neurons with
conserved timing relations were activated in stereotyped order,
regardless of the direction of wave travel or whether their
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responses were initiated by the waves at all [263]. Follow up work
found that these stereotyped synfire-like responses provided a
"vocabulary" of neural activity that stimuli could elicit, with the
same pattern of decaying spike-time precision over stimulus
presentation time [264, 265]. The computational analysis of
spiking involved in these types of investigations are statistically
non-trivial however, hampering progress [266–268]. Complicating
the matter further, more complex situations, such as spike-phase
coupling to oscillatory local field potentials, are plausibly the more
common contexts for conserved timing that actions of plasticity
should be investigated in (see e.g. [269–272]). Nonetheless, the
asymmetric activity generated by STDP is of significant interest in
computational neuroscience for generating transients of popula-
tion activity, such as sequences [273–275], and could reasonably
be expected to either generate or adapt "hidden Markov model
like" neural dynamics.

Metaplasticity makes Hebbian updates conditional
Metaplasticity co-opts the plasticity discussed above, generalizing
Hebbian change by making it conditional. In the simplest case this
means gating plasticity, such that it only happens under certain

circumstances but is unchanged in form. A more complicated
situation involves both gating plasticity and modulating its sign,
i.e. converting LTP to LTD or vice versa. Finally, these can be
combined with alterations in the magnitude of induced changes.
This perspective is useful over and above thinking about different
synapses as merely having different time-, history-, or
neuromodulator-dependent forms of plasticity, because it leaves
the Hebbian aspect intact and allows asking what controlling it in
constrained ways can accomplish.
Mathematical analyses indicate that such control vastly expands

the potential uses of plasticity [27, 28]. In computational theories
of neural networks, there are several classes of algorithmic
learning procedures, which are categorized by the informative-
ness of the feedback provided to the learning algorithm [27, 28].
Supervised learning entails providing maximally informative
feedback, which instructs networks with the output that should
have been produced, such as when a teacher corrects the way a
student reads a word. Reinforcement learning requires ordinal
feedback, indicating when network outputs are better or worse,
making it a form of trial and error learning. Unsupervised learning
occurs without feedback, and network connections come to
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both of which serve to increase the weight from unit 1 to unit 2 under the equation for dW, the change in synapse strength.

D.N. Scott and M.J. Frank

128

Neuropsychopharmacology (2023) 48:121 – 144



reflect statistics of the training environment. Classical Hebbian
learning, such as unmodulated spike-time dependent or BCM
plasticity, are forms of unsupervised learning. Metaplasticity that
flexibly controls Hebbian updates essentially converts this into
reinforcement learning based on "goals" which are implicitly
defined by the modulation.
In reinforcement learning, a neural network needs to determine

the gradient of some function with respect to network parameters
(e.g., weights) in order to change those parameters in a way that
increases or decreases the value of the function
[36, 177, 276–278]. This function is called the "error" or the "loss",
and encodes the "goal" of the network. The gradient indicates
what the best possible local change of weights is for improving
performance. This situation is distinguished from supervised
learning by the fact that the gradient must be estimated based
on scalar evaluative feedback (e.g., reward outcomes rather than
specific information about what should have been produced). The
behavior being optimized is referred to as a policy, and in a neural
network this policy is a function of synaptic strengths [36].
Mathematically, for a set of presynaptic neurons connected to a
set of post-synaptic neurons the gradient is the average of a
Hebbian three-factor update involving the pre-synaptic input, the
post-synaptic output, and a reward-prediction error [177, 180]. The
classical algorithm demonstrating this is known as the REINFORCE
algorithm (Fig. 3C) [177], and it forms the basis for a number of
works that have examined reinforcement learning via synaptic
plasticity since (e.g. [110, 116, 212, 276–289]).
When a network’s policy gradient is the expected value of a

three-factor rule, and in particular has a scalar modulatory term, it
is natural to interpret as a prescription for metaplasticity.
Modulation acts to turn Hebbian plasticity up or down, on or
off, or to invert it depending on feedback from the environment.
From the perspective of a local network, "the environment" can
include neuromodulatory signals indicating arousal, attention,
surprise, or reward, for example. This is a key connection, because
the modulatory term in the RL formulation manipulates the "error"
that the network is trying to minimize, or "reward" being
maximized. (Mathematically speaking, we are informally consider-
ing the Helmholtz-Hodge decomposition of the flow generated by
a plasticity rule, with modulation defining a transformation of the
terms.) By implication, converging manipulation of intracellular
calcium signalling pathways, which themselves control LTP and
LTD, can be intuitively thought of as defining network level
reinforcement learning problems. The "error" or "reward" in these
problems are not necessarily error or reward from the standpoint
of the organism, but are arbitrary function evaluations related to
the implicitly defined "purpose" of the local network (although
one expects consistency conditions to complicate this intuition).
The minimization steps used to solve these problems are selective
applications of the same Hebbian updates that would otherwise
lead to feature detectors, associative memory, sequential
dynamics, etc. As a result, such algorithms operate in much the
same way, with the caveats that unrewarding situations are
ignored, the "feature detector" or "associative memory" seeking
updates occur conditional on positive reward, and negative
reward moves networks away from such associations. This
informal account has technical caveats, but describes basic
REINFORCE algorithms and more recent work on surprise-
modulated plasticity accurately [177, 290, 291]. (Important details
and more information on this topic can also be found in
[177, 259, 276, 278, 279, 292–296].) Before illustrating these
functional ideas in a broader biological context, we pause to
discuss one of the critical connections with calcium dynamics.
Considering metaplasticity as reinforcement learning hinges on

the capacity for neurons to distinguish between inputs requiring
different responses [36, 177, 297]. While many mechanisms might
allow this, dendritic signal integration is well positioned to do so
[297, 298]. Both active and passive properties of dendrites control

plasticity, and dendrites support diverse electrical signals includ-
ing the generation of Ca2+ spikes, Na+ spikes, and "plateau
potentials" [299–301]. Furthermore, calcium signals can be
segregated between dendrites and spines [302–304], GABAergic
interneurons can selectively shape dendritic branch currents
[305, 306], and back-propagating action potentials can be
differentially attenuated on the basis of morphology or GABA-
ergic input [4, 307]. These mechanisms collectively allow complex
control of local calcium via VGCCs and NMDARs. In one highly
relevant study, specifically addressing stimulus disambiguation,
branch-specific Ca2+ spikes related to two different tasks were
shown to be gated by somatostatin positive interneurons (SOMs)
on the apical tufts of L5 pyramidals in mouse motor cortex [308].
Behavioral learning and synaptic plasticity were both found to be
causally related to this segregated activity, with interference
between tasks arising when SOM-based separation of signals was
disrupted [308]. Moreover, reactivation during sleep specifically
reinforced such branch-specific localization of plasticity, in support
of learning [309]. Elsewhere, spatially controlled dendritic plasticity
has been shown to support functional linking of memories, for
example [310], supporting the hypothesis that similar mechanisms
may be at play broadly. While we cannot expand these points in
further detail here, they form a key connection between biology
and theory.

Summary of metaplasticity and network computation
To recap, basic theories of unconditional Hebbian plasticity
qualitatively account for various phenomena. They predict that
feed-forward neural pathways, such as thalamo-cortical connec-
tions, should develop feature detectors. Local recurrence, as seen
between L4 or L2/3 principal neurons, should enhance bidirec-
tional connectivity among similarly tuned neurons, insofar as
plasticity reflects symmetric Hebbian rules. To the extent
asymmetric rules like classical STDP govern recurrent change,
synapses are expected to become more asymmetric. In the former
case, recurrent connectivity should produce stable dynamics,
whereas in the latter, recurrence should produce sequence-like
activity. These types of dynamics have been used to model
memory, central pattern generation, and directional association.
The implications of non-classical STDP rules, such as those using
non-traditional Volterra kernels, are less well understood. When
any of these processes are subject to metaplasticity, they are
expected to retain some of their fundamental features, as well as
gaining new ones.
Theoretical work on modulated plasticity indicates that it can

accomplish several things. Making the unconditional forms of
plasticity just discussed conditional in an all or none way should
produce essentially unsupervised results (feature extractors,
Hopfield dynamics, synfire chains), but based only on that subset
of the data for which plasticity is applied. More complex
modulation by third factors can convert Hebbian forms of
plasticity into reinforcement learning algorithms, rather than
unsupervised ones, which navigate down gradients of error
functions that are implicitly defined by the modulatory inputs and
the details of the plasticity rule in question. Lastly, fine grained
dendritic calcium dynamics appear critical for generating targeted
plasticity that can make use of these theoretical possibilities.

ARCHITECTURAL SPECIALIZATION AND METAPLASTICITY
To this point, we have reviewed mechanisms for controlling
plasticity and the local network properties they should be related
to. But the function of plasticity likely depends on the networks
and brain regions in which it occurs. A straightforward hypothesis
is then that network specialization and divisions of labor across
brain regions determine the implicit functional objectives
discussed above, and that plasticity is controlled (via Ca2+ etc)
to attain these. For example, predictive coding theories
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hypothesize that the purpose of sensory systems is largely to
transmit unexpected sensory information for further processing
[311–313]. In this case "minimizing sensory prediction error" might
define the relevant optimization problem that plasticity is used to
solve. Acetylcholine and norepinephrine, which are related to
attention, arousal, and orienting to external stimuli, widely
modulate sensory plasticity and may tailor it to solving this
problem. In regions more closely dedicated to controlling
interactions with the world, behaving in reward-maximizing ways
may be the main goal [314]. The cortico-basal-ganglia-thalamic
system, which plays a prominent role in action selection and
reinforcement learning, appears to support this, and cortico-
striatal synaptic plasticity in particular is strongly modulated by
dopaminergic reward prediction errors. As we discuss below,
motor-associated cortex may operate similarly. Rather than merely
being passive (if specialized) substrates for learning, however,
large scale networks also route information. This changes the
activity observed by plasticity mechanisms, implicitly conditioning
them further. Moreover, routing is also an effect of learning,
especially at "high leverage" connections, as between cortical and
subcortical areas. We review examples of these ideas along with
neuromodulation-as-optimization here.

Arousal, surprise, and attention modulate sensory plasticity
A well supported hypothesis regarding ACh and NE holds that
they cooperatively tune sensory cortex to adaptively improve
sensory processing [315–317]. Behaviorally, both acetylcholine
and norepinephrine are associated with arousal, and norepinephr-
ine is also closely associated with orienting behavior [318–320].
Acetylcholine, furthermore, is associated with directed attention
[176, 321–324]. Cortically, the need for tuning may reflect
configuration trade offs, such as between ideal cortical states for
performing detection versus discrimination [325–327]. Of these,
the ideal state for sensory detection appears to be characterized
by a number of coordinated changes, including modest network
depolarization, diminished endogenous LFP fluctuations, decorre-
lated activity across neurons, and middling cortical response
amplitudes to sensory stimuli [328–332]. Behavioral correlates of
this state include alertness, attentiveness, wakefulness, and dilated
pupils, which generally co-occur with increased task accuracy,
decreased response biases, lower response times and reduced
response variability [328–332]. Correlative and causal evidence
both suggest that rapid fluctuations in acetylcholine and
norepinephrine drive the tuning process producing all of these
outcomes, with some evidence suggesting that NE may relatively
reliably precede ACh activity as well [328–332].
Both NE and ACh exert local network effects through direct

neuromodulation as well as indirectly through modified network
inputs, as noted above. Acetylcholine projections appear to be fairly
targeted, in the sense that different basal forebrain nuclei
preferentially innervate different areas, whereas norepinephrine
projections appear more uniform [333, 334]. Locally, the direct
effects of Ach can be further subdivided into ionotropic and
metabotropic components, since nicotinic acetylcholine receptors
(nAChRs) are excitatory ligand gated ion channels. These local AChR
impacts are often coupled with attentional recruitment of feedback
projections between cortical areas [335–337]. As for norepinephrine,
ionotropic receptors have not been reported, but NE can exert
ionotropic-like effects through β2-adrenergic coupling to Cav1.2
channels and modifications of K+, H-type, and A-type currents, for
example [142]. Indirect effects also arise from the coupling of locus
coeruleus activity (the NE projection nucleus) to basolateral
amygdala neurons with widespread projections, particularly to
frontal cortex and hippocampus [15, 338, 339].
Of the "optimal cortical state" effects noted above, acetylcholine

is most closely linked to desynchronizing network activity. In
sensory circuits, it acts locally to depolarize vasoactive intestinal
peptide positive interneurons (VIPs) in L2/3 and L5a via nAChRs

[340–344]. These inhibit somatostatin positive interneurons
(SOMs) and a subset of parvalbumin positive interneurons (PVs),
resulting in disinhibition of principal cells [340–344]. Simulta-
neously, mAChRs and nAChRs upregulate excitability and activity
in subsets of L2/3 and L5a SOMs that are not inhibited by VIPs, as
well as the majority of SOMs in L5 [345, 346]. These SOMs target
PVs and PYs, and appear to have primarily disinhibitory effects on
PYs [345, 346]. In concert with these actions, mAChRs appear to
upregulate the excitability of local pyramidal cells and reduce their
spike-frequency adaptation [347, 348]. Which pieces of this are
necessary and which are sufficient for decorrelating local networks
is not entirely clear; both VIP and SOM targeting studies have
independently reported sufficiency, but joint engagement cer-
tainly appears adequate.
The functional roles of norepinephrine in modulating percep-

tual processing are less clear. A diverse array of excitatory,
inhibitory, and modulatory effects have long been reported,
reflecting a difficult to determine internal logic [320, 349, 350]. In
local networks, the primary differential effects of LC activity
appear to be modifying signal-to-noise ratios, neural gain, neural
tuning profiles, and thalamocortical information transmission
[350–353]. A major source of these changes, at least in rodent
somatosensory cortex, appears to be modified interactions
between the ventral posteromedial nucleus of the thalamus
(VPm) and the local thalamo-reticular nucleus (TRN) [351].
Specifically, increases in LC activity were found to drive TRN-
VPm interactions via α-adrenergic receptor and T-type calcium
currents, biasing thalamic relay of trigeminal ganglion information
towards tonic firing rather than bursting. This caused a significant
increase in decodable stimulus information conserved by thalamic
responses to trigeminal ones [351]. These findings are consistent
with previous work showing similar shifts of thalamo-cortical
activity away from bursting and towards spiking with noradre-
nergic activation [354, 355]. More broadly, they appear consistent
with the idea of systematically modifying neural gains to improve
sensory responsiveness [350]. As such, whereas direct NE impacts
on cortical state (via local adrenergic receptors) continue to be
somewhat murky, NE may significantly increase perceptual
information transmission.
Why should sensory plasticity be modulated by ACh and NE,

given these observations? One possibility is that the various
changes discussed above maximize the fidelity of sensory
responses at precisely the time when feature processing should
be most plastic. Salient, arousing stimuli that animals attend to are
also those they learn about most quickly [356], and this learning
should probably be based on the most highly resolved percepts
possible. This information-maximizing approach to plasticity,
whereby an organism is trying to extract as much information
as possible from important sensory inputs, can be implemented
by neuromodulated Hebbian rules based on surprise, in fact
[290, 291]. Such rules take the implicit function to be minimized by
REINFORCE-like RL algorithms, as discussed above, to be
(Bayesian) sensory surprise, which has also been considered in
the context of cholinergic modulation by others [357]. These
surprise-modulated plasticity rules push neurons to extract
independent components of their inputs (per ICA), which have
had a long history of consideration in theoretical work on sensory
processing [358]. Isomura and Toyoizumi were the first to show
how synapse-local information could be used to generate this
plasticity however, and the results are of course directly
interpretable as feature extractors, per our earlier discussion. Such
an account would be compatible with the observation that both
high concentrations of NE and moderate concentrations of NE,
coupled with ACh, gated the sensory plasticity we discussed
above, for example [135]. This could be interpreted as promoting
general responsiveness (of plasticity) to highly arousing conditions
on the one hand, and targeted responsiveness to alert directed
attention on the other.
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Dopamine based reinforcement learning adapts behavior
Reward prediction error based modulation plays an especially
plausible role in instantiating reinforcement learning algorithms at
synapses onto neurons controlling behavioral output [36, 177]. RL
algorithms maximize reward attainment by using RPEs to improve
action selection. Given the RPE theory of dopamine, this would
suggest that plasticity in the striatum, the motor cortex, and the
cerebellum, along with pyramidal tract neurons across cortex,
should be especially likely to exhibit dopaminergic modulation,
because each impacts motor behavior fairly directly. Striatum and
frontal cortex, including motor cortex, express high densities of
DARs, as noted above, and both cortico-striatal synapses and L5
pyramidal neurons in mPFC have been shown to exhibit
dopamine dependent plasticity [13, 114, 130, 133]. DAR expression
in the cerebellum is established in some areas, as is expression in
L5 throughout cortex broadly, but these facts have received less
attention.
The cortico-striatal dopamine modulation discussed above has

been integrated into neural network models of reinforcement
learning [110, 280]. A major feature of cortico-striatal learning that
distinguishes it from the type of simple policy gradient algorithms
discussed so far (such as REINFORCE) is that the D1-MSN pathway
and the D2-MSN pathway both operate as reinforcement-learners.
Furthermore, the extent of learning and the extent to which each
pathway has an impact on behavior is also modulated by
dopamine (Fig. 4c–e). The Opponent Actor Learning (OpAL)
model [287], which summarizes the computations of such
networks, is an "actor-critic" model, meaning it represents
behavioral policies and assessments of how valuable states of

the world are separately [36]. The ventral striatum (and associated
cortical and subcortical areas) are hypothesized to track informa-
tion about how rewarding states of the world are, and these are
compared with the results of behavior to generate reward
prediction errors (Fig. 4d). Cortico-striatal connections in the D1-
MSN and D2-MSN pathways determine action selection. Notably,
while these pathways are classically thought to have opposite
effects on behavior, the incorporation of neuromodulated,
activity-dependent plasticity rules renders them non-redundant.
Indeed, plasticity rules that mimic those described above in vitro
[114] give rise to specialized representations, whereby the D1
MSNs discriminate between rewarding outcomes, while the D2
MSNs specialize in developing a high resolution policy for
avoiding poor ones [287]. Many studies confirm the necessity
and sufficiency of these opponent pathways (and synaptic
transmission therein) for learning from positive and negative
reward outcomes respectively (e.g., [115, 359, 360]). Intracellularly,
they implicate PKA, cAMP and DARPP-32 in reinforcement
learning [361], and genetic variation in such signaling predicts
behavioral learning (including in humans, reviewed in [362]).
Interestingly, DA-based plasticity in MSNs is further gated by

ACh, which is transmitted by tonically active striatal interneurons
(TANs) [117, 118]. In theoretical models, this TAN gating of RPEs
allows striatal learning rates to be adapted online according to
uncertainty and reward volatility, a form of metaplasticity that
resembles Bayesian learning [116]. Moreover, the plasticity
induced by RPEs onto a striatal medium spiny neuron is further
tuned by the time delays between glutamatergic and dopami-
nergic activity at a given spine [13]. As such, spatiotemporal
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dynamics of dopamine signaling across the striatum in the form of
traveling waves can support a form of credit assignment (meaning
appropriately targeted plasticity) to the underlying striatal region
most relevant for the current behavioral context [113]. Finally,
aside from the evidence that opponent D1/D2 pathways mediate
learning, recent theoretical work suggests that this metaplasticity
scheme is adaptive and provides a lever by which online ("tonic")
dopamine levels can rapidly re-weight the contributions of D1 or
D2 MSNs to action selection, depending on which population is
more well suited to the task environment [363].
Finally, outside of striatal circuits, the reward prediction error

theory of dopamine may also accord with the hypothesis that
frontal cortex is an evolutionary expansion (and generalization) of
motor cortex [364, 365]. From this perspective, DARs could be
expected to be widespread frontally (as they are) because learning
to take rewarding actions is the typical goal of reward-based
reinforcement learning. Cortical L5 generally contains both
intratelencephalic (IT) and pyramidal tract (PT) neurons, with the
former projecting to cortex and striatum, and the latter projecting to
thalamic and lower motor regions [366]. Both classes of neuron are
poorly understood in general, but the L5 pyramidal tract of motor
cortex disynaptically controls voluntary muscle contraction [366]. A
simple hypothesis is therefore that DA-ergic gating of L2/3 to
L5 synapses potentiates cortical motor pathways involved in
generating subsequent unpredicted reward. This may be in line
with observations that dopaminergic innervation of forelimb asso-
ciated cortex is substantially stronger than that related to hindlimbs
in rodents, for example [367], and potentially with dopamine as a
requirement for motor learning generally in M1 [368, 369]. The fact
that DAR mRNA has been found in corticocortical, corticothalamic,
and corticostriatal neurons, but not corticospinal or corticopontine
ones complicates this idea however [370].

Metaplasticity via activity routing within and across networks
One of the major forms of specialization in brains is selective
routing of information, which we take as our last example of an
architectural context for metaplasticity. Routing can also be
considered a form of metaplasticity itself, in fact, because it
determines which neuronal populations are active and the
information they receive, which conditions plasticity and deter-
mines what populations can learn about, when, and how. The
hippocampus and amygdala route activity locally to this effect,
through inhibitory competition and changes in intrinsic excit-
ability over time. This appears to link memories in each, and in the
hippocampus it arbitrates a trade-off between pattern separation
and pattern completion. Corticostriatal circuits, by contrast,
control inter-area routing. Using task context to gate activity to
and from prefrontal populations, these circuits can support
attention and can condition learning in motor areas. We address
each of these points, in turn.

Amygdala and memory allocation. In the amygdala, intrinsic
cellular excitability determines which neurons participate in
memory encoding [371–379]. When fear related activity is initiated
in the lateral amygdala, more excitable cells out-compete their
neighbors via lateral inhibition, which gates plasticity encoding
the relevant memory [373, 378, 380, 381]. Both microscopic and
macroscopic processes determine which cells display increased
excitability. Intracellularly, cAMP responsive element binding
protein (CREB), a downstream target of calcium entry and
phosphorlyation by PKA [382, 383], determines intrinsic excit-
ability, which drifts over time [378], depends on recent
activity [15, 374, 382, 384], and appears to be mediated by
changes in voltage gated sodium and potassium channels
[372, 373, 383, 385]. Evidence from several circuits suggests that
increased CREB activity increases depolarizing sodium currents at
rest, while also decreasing hyperpolarizing potassium currents
[372] and reducing spiking adaptation and after-hyperpolarization

[373, 385]. These changes collectively enhance neural responsive-
ness to ongoing inputs. Systemically, whether or not a given fear
memory is activated and learned about also depends on input
from medial prefrontal cortex, for example, which can support
context-dependent "safety signals" mediating extinction via new
learning [386, 387].

Hippocampus, pattern separation and pattern completion. In the
hippocampus, a long history of research has assessed the question
of how activity should be allocated to produce useful plasticity
[35, 198]. Memories (or indices for them) are generally believed to
be stored in recurrent connections that can be used to complete
input patterns or recall associations on the basis of partial
information, according to Hopfield like dynamics [15]. Intuitively, a
trade-off occurs between storing representations with significant
overlap, thereby encoding semantic content in the joint activity of
many neurons, and having representations with little overlap and
hence little interference. The former case, which can be achieved
with relatively dense network interconnectivity, has been con-
sidered good for learning generally useful, abstracted forms of
information, whereas the latter, which can be achieved with
relatively sparse, strong connectivity, has been considered a good
substrate for flashbulb or episodic memory [198]. This "comple-
mentary learning systems" perspective historically suggested a
cortical substrate for the former and a hippocampal substrate for
the latter, but more recent work has suggested an internal division
of labor between the EC-CA1 "monosynaptic" pathway and the
EC-DG-CA3-CA1 "trisynaptic" pathway could accomplish a similar
goal [35]. Specifically, several studies found that the trisynaptic
pathway is required for fast, single-exposure learning whereas the
monosynaptic pathway was required for incremental learning
[388–391]. Pattern separation was strongly dependent on EC-DG-
CA3 interactions [388–390], and required NMDAR activation in DG
in particular [389]. These mechanisms presumably interact with
excitability based changes (e.g. [385, 392–395]) which, mirroring
the amygdala work just discussed, have been found to mediate
temporal linking of memories via ensemble overlap in CA1 as well
[395, 396].

Corticostriatal circuits and task-rule gating. As a final example, we
return again to cortico-basal-ganglia loops. Disinhibitory pathways
from the striatum to the substantia nigra and thalamus are
thought to support gating of information into and out of distinct
sub-populations within frontal cortex [397–399]. These pathways
are situated in PFC-BG loops and are organized hierarchically;
anterior loops appear to gate abstract task information that
contextualizes activity and attention in posterior regions, and to
modulate response selection in motor loops [286]. This architec-
ture allows for flexible action selection, inference about "latent
states", and transfer of learning across tasks [400]. In particular,
frontal and posterior regions can maintain information recurrently
in distinct neural sub-populations, which can be "output gated" as
needed [286, 397, 401, 402]. Such a scheme theoretically allows
the PFC-BG-thalamus system to route information for specific uses,
to learn and switch between tasks, to reuse old learning in new
contexts, and to flexibly combine information across tasks
[397, 403, 404]. By gating attractor dynamics within prefrontal
cortex, PFC-BG loops also facilitate behavioral plasticity on faster
time scales than synaptic plasticity may generally afford, as
presumably does all ongoing activity.
From the standpoint of metaplasticity, each of these gating

operations is a conditioning dependency. The hierarchical
selection of which activity to propagate and when conditions
reward-modulated reinforcement learning at cortico-striatal
synapses. Higher level task and goal-relevant information gated
into PFC can then influence the representations that are learned
downstream, reducing interference that would otherwise arise
between tasks [400]. Such gating processes can also control the
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degree to which prefrontal regions contribute to learning
compositional or hierarchical rules, or to focusing on conjunctive
coding of multiple features instead [286]. Humans can flexibly
switch between these strategies according to task demands, and
doing so recruits corticostriatal circuits [405–407]. Finally, to the
extent that unsupervised plasticity is ongoing in any regions
involved, routing will condition the activity statistics locally. These
points suggest that the balance of these forms of metaplasticity -
i.e. conditional unsupervised and conditional reinforcement
learning - is likely to play an important, finely calibrated role in
the proper function of such systems.

Summary of architectural relations to metaplasticity
In this section we’ve discussed several examples of circuit
specialization and network architecture that we expect to interact
with metaplasticity. As one set of examples, we considered how
the general functional roles of neuromodulators, such as
dopamine, acetylcholine, and norepinephrine, may align with
their impacts on plasticity. Acetylcholine and norepinephrine, in
their capacities to tune sensory cortex towards robust processing
of the external world, suggest that they may be gating plasticity in
sensory areas so that it occurs "when it most counts" and "when
the circuit has maximal fidelity." Such a function would also align
with information maximizing plasticity, facilitated by surprise-
based neuromodulation. As a second example, we discussed
dopaminergic RPE signalling and neuromodulated plasticity at
cortico-striatal synapses, noting that DAergic modulation may play
a similar role at L5 pyramidal tract neurons. In closing we
discussed how activity routing, one of the most important
architectural specializations in brains, can be considered a form
of metaplasticity, which it also contextualizes. We illustrated this in
three circuits. First, we noted that neurons recruited in lateral
amygdala to encode memories are selected on the basis of
intrinsic excitability and inhibitory competition, thereby making a
seemingly unsupervised, associative form of learning conditional.
Next, we noted that the monosynaptic and trisynaptic pathways in
the hippocampus route information locally to control functional
properties like pattern separation and pattern completion, and to
control fast vs incremental aspects of learning. Finally, we
discussed the capacity of cortico-striatal gating mechanisms,
tuned by DAergic reinforcement learning, to mediate downstream
forms of learning across fronto-posterior networks. This is
accomplished by directing working memory and attention, and
facilitates proper attribution of improved behavioral outcomes to
specific internal processes.

PATHOLOGY FROM A SCALE-INTEGRATIVE METAPLASTICITY
PERSPECTIVE
We conclude our review by considering how the ideas discussed
above may be related to several pathologies. Many pathologies
perturb normal function across multiple scales, so scale-spanning
aspects of metaplasticity may help reconcile their diverse results.
This is inherently speculative, presently, because most psychiatric
illnesses are poorly understood at any network scale, much less
across them. Some diseases will be more amenable to
metaplasticity-based analyses than others however. In this regard,
autism spectrum disorders, with their noted impacts on learning,
synaptic plasticity, and large-scale brain network integration may
be relatively approachable. Likewise, because Parkinson’s disease
involves well established changes in metaplasticity, which are
recapitulated as side-effects of anti-psychotic treatments for
Schizophrenia, this too should be a reasonable application area.

Negative symptoms in schizophrenia may relate to
Parkinsonian metaplasticity
The proximal cause of Parkinsonian symptoms is loss of midbrain
dopaminergic projection neurons in the substantia nigra

[408, 409]. This chronically lowers DA concentrations in the
striatum, impacting excitability and biasing the opponent learning
processes instantiated across the D1 and D2 MSN populations as
described above. Recall that functionally, the D1 pathway is
preferentially recruited to facilitate responses producing reward-
ing outcomes, whereas the D2 pathway is recruited to inhibit
responses resulting in aversive ones. When DA concentrations are
lowered via drug effects or Parkinson’s, learning from negative
RPEs is exaggerated, and even skills that have been learned under
normal dopaminergic conditions become subject to degradation
through practice [409, 410]. This is a result of enhanced, aberrant
plasticity in the D2 pathway [410], which has direct relevance for
understanding the emergence of motor symptoms induced by
antipsychotics (D2 blockers) in schizophrenia [411]. Moreover, this
aberrant plasticity can be disentangled from the proximal effects
of DA depletion (or D2 blockade), on motor performance. Indeed,
when Beeler et al administered an adenosine antagonist known to
block plasticity in the D2 pathway [114], aberrant motor learning
was prevented in dopamine depleted mice, despite the preserva-
tion of acutely impaired performance induced by D2 blockade. An
analogue of motor symptom progression via the enhanced
impacts of negative RPEs may also be responsible for progressing
motivational avolition in schizophrenia [411]. For example,
negative symptoms of schizophrenia are associated with reduced
motivation to exert physical effort, an effect that is most
prominent in those who have taken antipsychotics with high D2
affinity [412]. These effects accord with preclinical work showing
causal effects of striatal D2 blockade on motivation to pursue
effortful behaviors [413]. Thus, therapeutically, this account might
also provide an avenue for preventing the progression of motor
and motivational symptoms in both PD and as a result of
antipsychotics in schizophrenia.

Autism and pathological LTD in Fragile X
Cognitively, it has been hypothesized that autism spectrum
disorders (ASDs) may be characterized by an inability to extract
and generalize information [414]. Various alterations in the control
of plasticity we’ve reviewed above might produce these develop-
mental learning impairments. For example, alterations in meta-
plasticity at the synaptic level via changes in calcium signalling
would impact, among other functions, the dynamic ability to
regulate floating thresholds in learning models. This would
manifest in changes in the ability to extract statistical structure
in independent, compositional ways (as with PCA, ICA, or BCM).
Systemically, dysregulated excitatory-inhibitory balance might
impact which populations learne about which inputs, and thus
contextual use of memory [415]. Similarly, disrupted corticostriatal
learning, which is occurs in ASD [416], could impair the ability to
conditionally gate hierarchical behavioral rules, which, as reviewed
earlier, could lead to failures in generalization, inference and
compositionality that are also well documented in ASD [414, 417].
Empirical and computational work also suggests that healthy
people can learn to flexibly represent both conjunctive and
compositional rule structures and generalize based on either
depending on the statistical structure of the environment
[406, 418]. Such "meta generalization" would require not only
adequate learning and metaplasticity within individual brain
systems, but learning to adaptively switch between them. Because
these points are fairly abstract, we now review some of the more
concrete evidence for altered plasticity at the cellular level, then
consider further systemic effects.
Mechanistically, ASDs appear to be diverse and multi-factorial

[419, 420] (but see [421]). A number of autism risk genes are
involved in regulating synaptic plasticity [422], but several, at
minimum, cause well defined monogenic syndromes, with high
phenotypic penetrance of autism. Of these, fragile X syndrome
(FX) is the largest single such cause, and is one of the most well
understood [423]. Individuals with FX frequently suffer from
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seizures, sensory hypersensitivity, and intellectual disability, all of
which are also common among patients with autism more
generally [424].
Fragile X results from a loss-of-function mutation in the FMR1

(Fragile X Mental Retardation 1) gene, which has a copy-number-
variable sequence that blocks transcription when 200 or more
repeats are present [425]. The transcript of FMR1, FMRP, itself
regulates mRNA transcription in dendrites and spines, and is
involved in the "consolidation" phase of synaptic plasticity. This
occurs approximately 30 minutes after plasticity induction, and is
regulated by protein synthesis from local mRNA [15]. FMRP
transcription is, among other things, a direct consequence of
postsynaptic mGluR5 activation (metabotropic glutamate recep-
tor, a GPCR) [426], which mediates an NMDAR-dissociable form of
LTD [427, 428]. This form of LTD requires calcium influx from
T-type VGCCs and PKC activity [427]. When FMRP is absent,
mGluR5 induced LTD is enhanced [429], which suggests an
"mGluR theory of fragile X syndrome" [430]. In animal models,
many of the physiological and behavioral effects of fragile X can,
in fact, be reversed with treatments inhibiting mGluR5 activity
[431] (also see [432, 433]), but translation to human patients has
produced mixed effects. Perhaps unsurprisingly, ongoing work has
shown that FMRP is involved in an enormous number of
processes, many of which involve other plasticity related proteins
[423, 434]. Fragile X, therefore, is itself diverse in its impacts, and
significant heterogeneity likely occurs between individuals in the
penetrance of any particular FMRP-related perturbation.
Nonetheless, a number of cellular and network changes have

been observed which overlap with other autism phenotypes as
well. These include altered excitatory-inhibitory balance (more
excitable principal cells) [435] and widespread spine aberrations
[436–438]. Regarding the latter, FX results in increased numbers of
immature spines, decreased numbers of mature ones, and
increased localization of spines to the distal dendrites of principal
cells [439–444]. Various changes in regulation of spine morphol-
ogy related proteins, such as PSD-95 (a critical regulator of post-
synaptic AMPAR densities) have also been described [445, 446], as
have delayed developmental reversal of GABAA post-synaptic
potentials [447] and reduced GABAA receptor densities through-
out the brain [448]. Many of these changes may in fact be
homeostatic attempts to compensate for pathologically enhanced
synaptic LTD [449], and treatment of FMR1 knockout mice with
mGluR antagonists rescues many of the spine abnormalities just
discussed [449, 450]. Treatments and their rescued processes are
reviewed in [432].
If the FX phenotype was primarily a result of runaway LTD, what

might our understanding of metaplasticity imply as a result?
Presumably this would depend strongly on the balance between
developmental structuring of connectivity and use-based refine-
ment in any particular system, and on the degree to which the
former of these is spared by FMRP loss. Nonetheless, excessive
excitability might combine with surviving capacities for potentia-
tion to degrade structured connectivity, especially in areas with
persistently expressed unsupervised plasticity. This could lead to
structurally exacerbated noisy network activity, and especially
disordered processing in systems requiring finely calibrated spike
timing, such as auditory cortex and potentially fine-motor
coordination. Sensory systems may fail to self-organize (i.e.,
develop differentiated, cooperative feature extractors) in robust
ways, further exaggerating network SNR problems.
Hyper-excitability and the need for LTP induction to overcome a

persistent LTD bias might both suggest that plasticity across areas
would shift towards processing highly arousing and aversive
experiences, and towards generalizing them. Specifically,
increased excitation mediated participation in amygdalar engrams
and preferential hippocampal encoding of memories associated
with high norepinephrine concentrations might result in prefer-
ential memory for negative experience. This could produce a

feedback loop, shifting reinforcement learning systems on the
basis of tonically reduced dopamine towards increased avoidance
behavior, in concert with persistent negative reward prediction
errors arising from a combination of poor predictive capacity and
over-generalization of fear. Such an account could explain the
increased aversiveness of sensory stimuli, given the apparently
normal total evoked responses observed in FX, for example.
Widespread noise increases could lead to reduced functional
connectivity and inter-area signal fidelity, which could reduce the
capacity of routing systems such as the cortico-basal-ganglia loops
to coordinate changes across areas. This could thereby degrade
the types of compositional, hierarchical, and generalizable
learning these systems otherwise facilitate. While these hypoth-
eses are highly speculative, they indicate how the ideas about
metaplasticity we have reviewed above might be applied to ASDs
generally.

DISCUSSION
We conclude by briefly noting the connections discussed, in the
service of a holistic perspective on metaplasticity. This review has
examined research on plasticity at several scales, with an
emphasis on the connections between them. It covered estab-
lished cellular and molecular processes involved in regulating
plasticity, network properties related to Hebbian change, theore-
tical features of modulated plasticity, and how these elements
might be coordinated in specialized functional circuits. These
indicated how metaplasticity can orchestrate scale-spanning
functional adaptation. Specifically, combinations of calcium-
pathway manipulations and activity routing (in which we include
excitability changes) serve to specify which synapses, in which
places, learn about which types of inputs. They do so by
controlling when and where plasticity takes place, and to what
extent. The statistics of these manipulations can implicitly define
"error functions", which modulated forms of Hebbian plasticity can
minimize. Such error functions should be empirically determined,
but phenomena that define them can suggest rough hypotheses.
Observations across scales can then be checked for consistency
under the logic of any such synthesis.
The specific sections at each scale highlighted both connections

that could be made presently and phenomena that appear
relevant in expanding these connections. At the cellular-molecular
scale, we discussed Ca2+ currents, closely related CaMKII, PKA, and
PKC pathways, and some of the impacts that VGCCs, CP-AMPARs,
and GPCRs, such as neuromodulatory receptors, have on these
pathways. This demonstrated ways that diverse biological
processes converge intracellularly to regulate Hebbian LTP and
LTD induction. At the network level, we reviewed the basic
functions of Hebbian plasticity to produce feature detectors and
cell ensembles with different manifestations of recurrent activity.
Then we reviewed work on how metaplasticity can co-opt these
synaptic dynamics to fulfill functional roles. We discussed several
ways that neuromodulated plasticity, in particular, can be framed
as performing this co-optation to facilitate specialized circuit
properties, like maximizing information transmission and support-
ing behavioral reinforcement learning. We noted that these types
of plasticity critically require some amount of stimulus selectivity,
enhancing or suppressing responsiveness to different inputs, and
that complex dendritic processes appear more than sufficient for
this. Macroscopically, we reviewed cellular and neuromodulatory
aspects of basal-ganglia loops, sensory circuits, and memory
encoding, with an emphasis on how reinforcement learning,
surprise-minimization, and local activity routing might guide
plasticity. This indicated again how coordination of cellular,
network, and systemic changes can converge to turn Hebbian
changes into functional ones. Finally, we addressed how
metaplasticity considerations might prove fruitful for under-
standing pathology, by considering aberrant Parkinsonian
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metaplasticity in medicated schizophrenia, and disruptions of
statistical information processing in autism. Together, these points
have also indicated a number of important directions for future
research integrating plasticity across scales. Understanding when
and where different forms of plasticity operate in concert or
antagonism, and how tuning them online changes their ultimate
effects, are two important such goals.
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