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eficits in Positive Reinforcement Learning and
ncertainty-Driven Exploration Are Associated with
istinct Aspects of Negative Symptoms

n Schizophrenia
regory P. Strauss, Michael J. Frank, James A. Waltz, Zuzana Kasanova, Ellen S. Herbener, and

ames M. Gold

ackground: Negative symptoms are core features of schizophrenia (SZ); however, the cognitive and neural basis for individual negative
ymptom domains remains unclear. Converging evidence suggests a role for striatal and prefrontal dopamine in reward learning and the
xploration of actions that might produce outcomes that are better than the status quo. The current study examines whether deficits in
einforcement learning and uncertainty-driven exploration predict specific negative symptom domains.

ethods: We administered a temporal decision-making task, which required trial-by-trial adjustment of reaction time to maximize reward
eceipt, to 51 patients with SZ and 39 age-matched healthy control subjects. Task conditions were designed such that expected value
probability � magnitude) increased, decreased, or remained constant with increasing response times. Computational analyses were
pplied to estimate the degree to which trial-by-trial responses are influenced by reinforcement history.

esults: Individuals with SZ showed impaired Go learning but intact NoGo learning relative to control subjects. These effects were most
ronounced in patients with higher levels of negative symptoms. Uncertainty-based exploration was substantially reduced in individuals
ith SZ and selectively correlated with clinical ratings of anhedonia.

onclusions: Schizophrenia patients, particularly those with high negative symptoms, failed to speed reaction times to increase positive
utcomes and showed reduced tendency to explore when alternative actions could lead to better outcomes than the status quo. Results are

nterpreted in the context of current computational, genetic, and pharmacological data supporting the roles of striatal and prefrontal

opamine in these processes.
ey Words: Computational model, dopamine, negative symptoms,
einforcement learning, reward, schizophrenia

opaminergic (DA) signaling plays a key role in the detection,
evaluation, and prediction of rewards. Several structures
that receive DA input are differentially involved in specific

spects of reward learning. For example, the striatum and orbito-
rontal cortex have been found to be involved in reward prediction
nd reward-based decision-making, with the orbitofrontal cortex
eing particularly responsive to reward magnitudes (1– 6). In rein-

orcement learning models of corticostriatal circuitry (7,8), phasic
A signals are proposed to modify synaptic plasticity in the cortico-

triatal pathway (9,10) and subsequently reinforce “Go” (learning to
ursue actions that have high reward probability) and “NoGo”

earning (learning to avoid actions with low reward probabilities)
7,11). Specifically, increases in phasic striatal DA support Go learn-
ng from positive feedback via D1 receptor stimulation, whereas
ecreases in phasic striatal DA support avoidance learning from
egative feedback via D2 receptor disinhibition.
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This model has been applied to understand patterns of reward
learning in Parkinson’s disease patients (7), who have depleted
striatal DA levels because of the disease but increased striatal DA
levels after DA medication (12,13). Supporting the models, it has
been found that Parkinson’s disease patients taking medication
learn better from positive than negative decision outcomes, but
patients not taking medication showed the opposite bias (8,14 –
16). Imaging studies show that these biases are accompanied by
medication-induced increased sensitivity to positive prediction er-
rors and reduced sensitivity to negative prediction errors in the
ventral and dorsolateral striatum (17). Behaviorally, these medica-
tion-induced effects have been primarily observed in tasks where
participants learned stimulus-response relationships as a function
of reinforcement (e.g., probabilistic learning).

Recent studies have found that schizophrenia (SZ) patients ex-
hibit reinforcement learning abnormalities, specifically in learning
to integrate the history of probabilistic positive decisions across
trials (18 –20). These deficits have been attributed to deficient pha-
sic striatal DA signals and D1 receptor functionality, leading to poor
Go learning. A deficit in learning to repeat those actions most likely
to yield positive reinforcement might provide an intuitively appeal-
ing account that could explain negative symptoms. Several studies
show that negative symptoms are associated with impairments in
rapid, trial-to-trial behavioral adaptation in response to recent
changes in reinforcement values, particularly during early phases of
learning. We have argued that this deficit in rapid acquisition asso-
ciated with negative symptoms is likely to stem from prefrontal
cortical dysfunction (19,20). Similar patterns of early learning defi-
cits are seen in patients with orbitofrontal damage (21) and in
healthy participants with the val/val genotype of the catechol-O-

methyltransferase (COMT) gene (15), who have reduced prefrontal
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and particularly, orbitofrontal) DA levels (22). However, relation-
hips have also been reported between negative symptoms and
eficient reward-related blood oxygen level dependent activity in
asal ganglia (BG) structures. These changes in BG blood oxygen

evel dependent signal do not themselves necessarily indicate that
he BG are the source of the deficits. For example, reduced top-
own input from orbitofrontal cortex to BG during reward would

esult in reduced BG activations. Thus, the neural underpinnings of
einforcement learning deficits and negative symptoms are at
resent unclear.

In the current study, we examined reinforcement learning in SZ
ith a task that required subjects to modulate the response time of
single motor response, where both reinforcement probabilities

nd magnitudes varied as a function of reaction time (RT) (23).
ehavioral task conditions were designed to assess Go learning,
oGo learning, and relative sensitivity to reward frequency versus
agnitude.

Computational modeling was performed in an effort to obtain a
icher understanding of the behavioral findings. The modeling ap-
roach allows us to assess the degree to which participants adjust

esponse times as a function of positive and negative prediction
rrors across all four of the task conditions (not solely in the condi-
ions where it is most advantageous to do so), while distinguishing
hese measures from several other components to RT adjustment in
he task (captured by other model parameters).

We hypothesized, on the basis of theories suggesting that SZ is
ssociated with abnormal DA signaling (high tonic DA but low
hasic DA) and impaired D1 function in particular (25–26), that SZ
atients would fail to show relative speeding when rewards were
ost available for fast responses, and thus earlier responding re-

ults in better-than-expected outcomes (i.e., positive prediction
rrors). Conversely, we hypothesized, on the basis of our previous
ndings (19) and because patients were medicated with D2 antag-
nists, that SZ patients would show intact slowing as a function of
egative prediction errors when early responses produced out-
omes that were lower than expected on average. The latter inter-
retation is supported by computational simulations showing that
2 blockade enhances NoGo learning and RT slowing (see Wiecki et
l. [27]) and recent demonstration that D2 blockade enhances
oGo learning in Tourette’s syndrome patients (16).

Evidence for such a pattern of spared sensitivity to negative
utcomes, coupled with reduced ability to learn to approach re-
ponses leading to positive reinforcement could be considered a
erfect neurobehavioral recipe for avolition and anhedonia. In light
f previous studies indicating that reinforcement learning impair-
ents are most severe in high negative symptom patients (28,29),
e therefore also examined the role of negative symptoms in Go

nd NoGo learning, with the prediction that high negative symp-
om patients would show the greatest Go learning impairment and
omparatively intact NoGo performance. Alternatively, rather than
esulting from reinforcement learning deficits per se, some aspects
f negative symptoms might be characterized by a reduced ten-
ency to appropriately explore alternative actions in the hope that

hey might produce better outcomes. Notably, the computations of
utcome uncertainty used to guide exploration are thought to
epend on neuromodulation within the prefrontal cortex (30 –32).
ccordingly, a recent genetic study with the same task used here

howed that, consistent with striatal DA genetic effects on Go/
oGo learning, individual differences in uncertainty-driven explo-

ation were predicted by COMT val/met genotype (32). We thus
pplied the same computational analyses of trial-by-trial responses

n the current study to investigate the prediction that patients

ould show not only differences in speeding and slowing as a

ww.sobp.org/journal
function of prediction errors but also whether they would exhibit
uncertainty-driven exploration.

Methods and Materials

Participants
Participants included 51 patients meeting DSM-IV-TR criteria for

SZ and 39 healthy control subjects (CN). The patients were recruited
from the outpatient clinics at the Maryland Psychiatric Research
Center and were studied during a period of clinical stability. All
patients met DSM-IV diagnostic criteria for SZ or schizoaffective
disorder. Consensus diagnosis was established with a best-estimate
approach on the basis of medical records and confirmed with the
Structured Clinical Interview for DSM-IV (SCID) (33). All patients
were receiving antipsychotic medications.

Control subjects were recruited through random digit dialing
and word of mouth among individuals recruited through random
digit dialing. All CN underwent a screening interview and denied
lifetime and family history of psychosis and any active Axis I disor-
der on the SCID. All participants denied lifetime history of signifi-
cant neurological conditions and recent substance abuse as deter-
mined by the SCID (none within 6 months). Upon entry to our
subject pool, we routinely screen for substance use via urine toxi-
cology testing. In the current study, targeted urine toxicology test-
ing was performed in instances where there were suspicions of
substance use. Patient and control groups did not significantly
differ in age, parental education, gender, or ethnicity. Patients had
fewer years of total education and lower Wechsler Abbreviated
Scale of Intelligence estimated full-scale IQs than CN (Table 1).

Schizophrenia patients were also divided into high (HI-NEG) and
low negative (LOW-NEG) symptom groups on the basis of a median
split on the Scale for the Assessment of Negative Symptoms (SANS)
(34,35) total score. The 22-item version of the SANS developed in
the CONSIST clinical trial (Cognitive and Negative Symptoms in
Schizophrenia Trial) was used (35), which has fewer items than the
original 30- or 25-item version, with total scores ranging from 0 to
110. The three groups did not significantly differ on age, parental
education, gender, or ethnicity; however, they did differ on IQ, such
that CN had significantly higher IQ than both SZ groups. There were
no differences in IQ between the HI-NEG and LOW-NEG patients.
The HI-NEG and LOW-NEG patients significantly differed on the
Brief Psychiatric Rating Scale negative symptom factor score, but
not on positive symptoms, disorganization, or total scale score.
HI-NEG and LOW-NEG patients were also prescribed a similar regi-
men of antipsychotic medications at the time of testing and did not
differ on chlorpromazine (CPZ) equivalent dosage (36) (Table 1).

General Procedures
The current tests were administered as part of a larger battery of

reward-learning, symptom interview, and neuropsychological
measures. For each subject, demographic, diagnostic, and symp-
tom ratings were completed before administration of the neuro-
cognitive evaluations. Symptom interviews included the SANS and
Brief Psychiatric Rating Scale (37). Patients and control participants
recruited from the community received monetary compensation
for participation. Study personnel administering the neurocogni-
tive tasks included BA- and MA-level research assistants.

Temporal Utility Integration Task
Participants completed the “temporal utility integration task”

designed by Moustafa et al. (23). In this task, subjects were pre-
sented a clock face, which had a single arm that made a full turn
over the course of 5 sec. Participants were asked to press a button

on a response pad at some point before the arm made a full turn.
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fter each response, participants were informed whether they had
on points and, if so, how many. The trial ended once the subject

esponded with the game pad or if the 5-sec duration elapsed and
he subject did not respond. The intertrial-interval was set at 1 sec.
articipants completed four separate conditions, each consisting of
0 trials, in which reward probability and magnitude varied as a

unction of time elapsed on the clock until response. In the three
rimary conditions (DEV, CEV, and IEV), the number of points (re-
ard magnitude) increased, whereas the probability of receiving

he reward decreased over time within each trial. Feedback was
resented on the screen in the format of “You win XX points!”
unctions within each condition were designed such that the ex-
ected value (probability � magnitude) decreased (DEV), increased

IEV), or remained constant (CEV), across the 5-sec trial duration
Figure 1). Thus, in the IEV condition, early responses yielded a small
umber of points (lower than expected on average), and the asso-
iated negative prediction errors should lead to NoGo learning and
lowed responses. In contrast, early responses in the DEV condition
ielded a higher number of points than expected and should there-

Table 1. Demographic and Clinical Characteristics of Pa

SZ (n � 5

Age 42.77 (10.
Education 12.80 (2.2
Parental Education 13.56 (3.0
WASI Estimated Full-Scale IQ 96.86 (13.
% Male 72.5%
Ethnicity

Caucasian 56.9%
African-American 35.3%
Asian 2.0%
Other .0%

HI-NEG (n �
Agea 41.29 (10.
Educationa 13.04 (2.5
Parental Educationa 13.29 (10.
WASI Estimated Full-Scale IQa 96.92 (15.
% Malea 75%
Ethnicitya

Caucasian 60.0%
African-American 28.0%
Asian 4.0%
Other 08.0%

Antipsychotic Medications
% Conventional 4%
% Atypical 100%
Clozapine 54%
CPZ equivalent dosage 578 (394

BPRS Symptoms
Negative 2.28 (.84
Positive 2.50 (1.2
Disorganized 1.45 (.71
Total 38.37 (9.3

SZ, schizophrenia; WASI, Wechsler Abbreviated Scal
aAnalyses conducted on high (HI-NEG) and low neg

groups. The most frequently used medication was clozap
6), or in conjunction with aripiprazole (n � 1). Risperidon
(n � 2) was the second most frequently prescribed ant
fluphenazine (n � 1), ziprasidone (n � 2), or quetiapine (
with quetiapine. Mean Brief Psychiatric Rating Scale (B
level of symptom severity at the time of testing: Total (m
Negative (mean � 1.73, SD � .71); Disorganized (mean
ore lead to Go learning/speeding. Slower responses in the IEV
condition yielded more points on average, whereas in the DEV
condition faster responses yielded more points.

We included, in addition to these primary conditions, a condi-
tion where expected value remains constant (like CEV) but reward
probability increases and magnitude decreases as time elapses on
the clock (i.e., the opposite to CEV). Because both CEV and CEV
reversed (CEVR) have equal expected values across the entire clock
face, any difference in response time in these two conditions can be
attributed to potential bias of a participant to learn more about
reward probability than about magnitude or vice-versa. Specifi-
cally, if a subject waits longer to respond in CEVR than in CEV, it can
be inferred that the participant is risk averse, because they value
higher probabilities of reward more than higher magnitudes of
reward.

Order of condition (CEV, DEV, IEV, CEVR) was counterbalanced
across participants, and a rest break was given between each of the
conditions (i.e., after every 50 trials). At the beginning of each con-
dition, subjects were instructed to respond at different times to find
the interval on the clock that would allow them to win the most

s and CN

CN (n � 39) p

43.49 (10.68) p � .74
14.89 (2.06) p � .001
13.26 (2.26) p � .67

113.13 (12.01) p � .001
66.7% p � .35

p � .35
64.1%
35.9%

.0%
5.9%

LOW-NEG (n � 24)
45.47 (8.27) p � .36
12.62 (2.06) p � .001
13.68 (8.27) p � .82
96.08 (11.93) p � .001

64% p � .71
p � .08

54.2%
41.7%

.00%
4.2%

4%
96%
56%
462 (371) p � .24

1.38 (.48) p � .001
2.48 (.99) p � .77
1.29 (.47) p � .35
34.4 (6.70) p � .09

telligence; CPZ, chlorpromazine.
(LOW-NEG) symptom groups and healthy control (CN)
sed alone (n � 21), in conjunction with risperidone (n �
scribed alone (n � 6) or in conjunction with olanzapine
otic. Patients were also prescribed olanzapine (n � 8),

. One patient was prescribed haloperidol in conjunction
cores indicated that patients experienced a moderate
� 36.34, SD � 8.26); Positive (mean � 2.42, SD � 1.10);
1, SD � 0.51).
tient

1)

08)
7)
7)
71)

25)
76)
5)
76)
39)

)

)
2)
)
0)

e of In
ative
ine, u
e pre

ipsych
n � 3)
PRS) s
points; however, they were not told about the different rules for
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ach condition (e.g., IEV, DEV). Each condition also had a different
olor clock face to highlight the uniqueness of each context, and
he assignment of color was counterbalanced across conditions.
he task was presented with E-Prime software.

Computational modeling was used as a tool to more specifically
robe aspects of behavior in this task (32). The model allows us to
stimate the degree to which individuals adjust their response
imes as a function of accumulated reward prediction errors and
ncertainty-driven exploration, distinctly from other components

see Table 2 for description of model parameters and Supplement 1
nd Frank et al. [32] for mathematical details). The major parameters
f interest for the current study are �G, �N, and �. The �G and �N
arameters were used to test whether patients have deficits in

earning from gains versus losses more fully than what can be
urmised from the behavioral data, because the model estimates

able 2. Reinforcement Learning Domains Assessed by Computational Mo

odeling
arameter

Estimates baseline motor response tendency independent
A response recency parameter scaling the impact of the pre
Predicts trial-by-trial RT swings to occur when one is relativ

Thus, with sufficiently high values, RT swings are predicte
outcomes might be better than the status quo.

G The degree to which individuals speed RTs as a function of
N The degree to which individuals slow RTs as a function of n

Predicts the extent to which individuals adjust RTs in the di
the observed reward statistics.

A “going for gold” parameter, which predicts that participa
experienced thus far.

igure 1. Depiction of task conditions. Task conditions: decreasing ex-
ected value (DEV) (i.e., Go learning), constant expected value (CEV),

ncreasing expected value (IEV) (i.e., NoGo Learning), and CEV reversed
CEVR). The x axis in all plots corresponds to the time after onset of the
lock stimulus at which the response is made. The equations are de-
igned such that the expected value in the beginning in DEV is approxi-

ately equal to that at the end in IEV so that, if optimal, subjects should
btain the same average reward in both IEV and DEV. (A) Example clock-face
timulus; (B) probability of reward occurring as a function of response time;
C) reward magnitude (contingent on A); (D) expected value across trials for
ach time point. Note that CEV and CEVR have the same expected value (EV)
o the black line represents EV for both conditions.
RT, reaction time.

ww.sobp.org/journal
on average the degree to which subjects speed up or slow down
and use positive and negative prediction errors across all condi-
tions. The � parameter was used to test the possibility that individ-
uals with SZ have a reduced tendency to appropriately explore
alternative actions in the hope that they might produce better
outcomes.

Data Analysis
Behavioral analyses examined RT for each condition, either for

the entire block or the difference score between the second and
first half of trials in each condition as indicated in the text. Repeated
measures analyses of variance (ANOVAs), one-way ANOVAs, t tests,
and �2 analyses were calculated to determine group differences.
Spearman correlations were calculated to examine relationships
between test data and symptoms. The Greenhouse-Geisser correc-
tion was applied in instances when the assumptions of sphericity or
covariance were violated. Scheffe contrasts were additionally per-
formed as post hoc tests. Wilcoxon–Mann–Whitney tests were used
to examine group differences on modeling parameters. Initial anal-
yses examined between-group differences in patients and CN.
However, given that SANS scores are typically bimodally distrib-
uted, we examined the role of negative symptoms with between-
group analyses (i.e., comparing high negative symptom, low nega-
tive symptom, and control groups) but also reported correlations
for completeness. Data were analyzed with SPSS version 12 soft-
ware (SPSS, Chicago, Illinois).

Results

Go Versus NoGo Learning and Uncertainty-Driven Exploration
Analysis of behavioral data indicated that in both SZ patients

and CN, RTs in the IEV condition (NoGo learning) were significantly
slower than the DEV condition (Go learning) (CN: t � �4.48, p �
.001; SZ: t � �4.99, p � .001), suggesting that both groups learn to
adapt RTs in the expected direction (Table S1 in Supplement 1).
However, these overall means calculated across the entire block of
trials mask differences in learning from the beginning to the end of
the condition. As such, difference scores were computed separately
for each condition to estimate RT adaptation from the first half of
trials to the second half of trials (second half of trials � first half of
trials). Consistent with hypotheses, SZ patients fail to learn to speed
up by the end of the block in the DEV (Go learning) condition as
much as CN but perform similarly to CN in the IEV (NoGo) and CEV
(Control) conditions (Figure 2). This was confirmed statistically by
separate repeated measures ANOVAs, which indicated that groups
significantly differed on the DEV condition [F (1,88) � 9.49, p � .003]

g Parameters

escription

er factors.
response’s RT on the current choice, independent of any change in value.

ore uncertain about the reward probabilities for fast or slow responses.
ccur in the direction of greater uncertainty about the likelihood that

ve prediction errors.
e prediction errors.
n of greater probability of obtaining a positive outcome on the basis of

ll adjust RTs toward that which has produced the single largest reward
delin

D

of oth
vious

ely m
d to o

positi
egativ
rectio

nts wi
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�2 � .10) but not the IEV [F (1,88) � .01, p � .913] (�2 � .00) or CEV
onditions [F (1,88) � 1.86, p � .176] (�2 � .02). These behavioral
ndings are consistent with intact NoGo but impaired Go learning

n SZ.1

Computational modeling was used to obtain a richer under-
tanding of these behavioral findings on Go and NoGo learning.
verall, the computational model encompassing the specified

ombination of parameters (Results in Supplement 1) and the best
t to the data in our previous study also provided a reasonable fit to
he behavioral data here (Figure 3).

Significant parameter differences between SZ patients and
N were observed for �, the degree to which exploration occurs

n proportion to relative uncertainty about reward outcomes
F (1,88) � 9.1, p � .003]. These differences remain significant
fter Bonferroni correction (Figure 4). Additional analyses also
onfirmed that the exploration effect in SZ was specific to uncer-
ainty, because groups did not differ in measures of overall RT
ariability or RT swings (Figure S4 in Supplement 1). There was
lso a trend for �G to be smaller in patients (Wilcoxon–Mann–
hitney test, two-tailed p � .07), consistent with the behavioral

esults, whereby patients exhibited deficits in learning to speed
esponses in the DEV condition. A follow-up logistic regression
ith both parameters entered as predictors confirmed that both

he explore (p � .02) and �G parameters (p � .028) were inde-
endently predictive of SZ. There were no other significant dif-

erences between patients and CN in any of the other parame-
ers (Table 3).

A regression analysis shed further light onto this interpretation,
evealing that individual differences in the tendency to speed up to

aximize rewards in the DEV condition is predicted by �G (p �
018), such that higher parameters were associated with increased
peeding. No such difference was seen in terms of the model pa-
ameter estimating the degree to which participants slow down as
function of negative prediction errors.

To further examine the specificity of Go and NoGo learning performance in
SZ and CN, we conducted a three-condition (CEV, DEV, IEV) � two-Time
(Block 1, Block 2) � two-Group (SZ, CN) repeated measures analysis of
variance (ANOVA), and found a nonsignificant interaction (p � .16).
Nonetheless, the analyses were consistent in direction with the results of
the ANOVAs performed on the learning measures. We suspect that the
additional variance introduced into these more complex ANOVA models

igure 2. Mean reaction time (RT) difference score from first half of trials to
econd half of trials for CEV, DEV, and IEV conditions in schizophrenia (SZ)
atients and healthy control subjects (CN). SZ � white bars; CN � purple
ars. Values reflect the mean RT change from beginning to end of the block

or each condition (i.e., the relative learning within that condition). More
egative values reflect that subjects learn to speed responses (Go), and
ore positive values reflect learning to slow down to obtain rewards within

hat condition (NoGo). Other abbreviations as in Figure 1.
resulted in less observed power.
Negative Symptoms
We also conducted analyses examining behavioral and model-

ing parameters in patients with high negative symptoms (HI-NEG),
low negative symptoms (LOW-NEG), and CN. As can be seen in
Figure 5, the HI-NEG group showed significantly reduced speeding
from the first to second half of trials in the DEV condition, consistent
with a Go learning deficit in HI-NEG patients. One-way ANOVAs,
conducted with difference scores (second half of trials � first half of
trials) as the dependent variable, support this interpretation, indi-
cating that the three groups significantly differed on DEV [F (2,85) �
4.78, p � .01] (�2 � .11) but not IEV [F (2,85) � .23, p � .37] (�2 � .01)
or CEV [F (2,85) � .99, p � .73] (�2 � .02). Post hoc Scheffe contrasts
conducted for the DEV change condition were significant between
the HI-NEG and CN (p � .02) but not the LOW-NEG and CN (p � .14)

Figure 3. Response times as a function of trial in all 90 subjects (A) and
computational model fits (B). The figures depict response times as a func-
tion of trial number, smoothed (with weighted linear least squares fit) over a
10-trial window in (A) all 90 participants, (B) computational model fits.
Overall, relative to baseline CEV response times, participants speed up in
DEV and slow down in IEV. The CEVR response times are also slowed in both
data and model due to a high frequency of negative prediction errors for
early responses (see Moustafa et al. [23] and Frank et al. [32]). Abbreviations
as in Figures 1 and 2.

   (uncert)
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0.05
0.10
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Figure 4. Uncertainty-driven exploration in individuals with schizophrenia
(SZ) and healthy control subjects (CN). The explore parameter estimated

from the model is reduced in schizophrenia (**p � .01).
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r HI-NEG and LOW-NEG (p � .68) groups. The correlation between
he SANS total score and DEV and IEV conditions was nonsignifi-
ant. The discrepancy between the significant between-subjects
nalysis on the DEV condition and nonsignificant correlation be-
ween negative symptoms and DEV learning is likely because Go
earning deficits were most pronounced in HI-NEG patients but still
resent in LOW-NEG patients as well, thereby attenuating the
trength of the correlation.

In a separate analysis of behavioral data, HI-NEG patients also
ailed to show either a probability or magnitude bias, whereas CN
nd LOW-NEG both showed a bias to learn more about probability
han magnitude (Figure S1 in Supplement 1 for discussion).

One-way ANOVAs indicated that the three groups failed to sig-
ificantly differ on any parameter other than exploration [F (2,85) �
.02, p � .009] (HI-NEG: mean � 1187, SD � 1561; LOW-NEG:
ean � 1323, SD � 1678). Post hoc Scheffe contrasts indicated

ignificant differences between HI-NEG and CN (p � .03) subjects;
owever, LOW-NEG and CN (p � .06) and HI-NEG and LOW-NEG

p � .97) did not significantly differ. Interestingly, correlational anal-
ses indicated that the dramatic reduction in exploration was most
evere in patients with high avolition-anhedonia SANS summary
cores (r � �.28, p � .05). There were no significant correlations
etween � and the restricted affect (SANS alogia � blunted affect

tems) summary score (r � .05) or the SANS total, suggesting that
he relationship might be specific to the avolition-anhedonia do-

ain. Follow-up correlational analyses with the avolition and anhe-
onia global scores indicated that the relationship with exploration
as specific to anhedonia (anhedonia r � �.44, p � .01; avolition
� �.15, p 
 .3) (Figure 6). The test for significant differences

able 3. Best-Fitting Model Parameters for Patients and CN

� � �G

Z 1532 (67) .31 (.02) .17 (.03)a

N 1558 (80) .34 (.03) .26 (.04)a

Values reflect mean (SE).
CN, healthy control subjects; SZ, schizophrenia patients.
ap � .07.
bp � .01.

igure 5. Go Learning high (HI-NEG) and low (LOW-NEG) negative symptom
atient groups, and CN subjects. Mean RT change from beginning to end of
lock for the DEV condition (Go Learning). More negative values reflect
etter Go Learning (i.e., learning to speed up from then first half of trials to
he second half of trials). Other abbreviations as in Figure 2.

ww.sobp.org/journal
between these correlations approached significance (z � �1.54,
p � .06).

Given the unique association with anhedonia, we further inves-
tigated whether the association between anhedonia and explora-
tion was specific to uncertainty and determined that anhedonia
was only associated with uncertainty-driven exploration and not
overall RT variability or consecutive RT variance. Furthermore,
control model simulations revealed that other models of RT
swings, including parameters for lose-switch or regression to the
mean did not correlate with anhedonia (Results and Figure S2 in
Supplement 1).

Antipsychotic Medication
Correlational analyses indicated that CPZ dosage was not signif-

icantly correlated with behavioral performance in any of the condi-
tions (all p values 
 .16) or modeling parameters (all p values 
 .14).
Analyses examining between-group differences in patients catego-
rized as a function of low- and high-potency D2 blockade antipsy-
chotics indicated no differences between medication groups in
behavioral task conditions (Results in Supplement 1).

Discussion

Two main findings emerged from the current study. First, behav-
ioral data indicated that patients were less able to learn to speed up
to maximize rewards, which is consistent with a Go learning deficit.
The model simulations suggest that this deficit might at least in part
be due to lower �G parameter, because a regression analysis re-
vealed that individual differences in the tendency to speed up to
maximize rewards in the DEV condition is predicted by �G, such
that higher parameters were associated with increased speeding.
Given that SZ showed a deficit in both �G and the DEV but not �N or
IEV, we feel that the results of the computational model provide
further confidence that the deficits specific to Go learning in SZ are
reliable. Furthermore, symptom subgroup analyses revealed that,
in terms of DEV performance, Go learning deficits are most severe in
patients exhibiting greater severity of negative symptoms.

These findings are consistent with our previous probabilistic
selection study indicating that SZ is associated with impaired Go

�N 	 � �

.31 (.05) 583 (73) .12 (.02) 1306 (228)b

.29 (.06) 580 (72) .12 (.01) 2593 (351)b

Figure 6. Uncertainty-driven exploration as a function of anhedonia. Left:
scatter plot across all patients. Right: means for each level of anhedonia.

Error bars reflect SEM.
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earning and intact NoGo learning (19). When viewed in conjunc-
ion with neurocomputational models of corticostriatal circuitry in
einforcement learning (7,8), the current behavioral and modeling
ndings are suggestive of potential dysfunction in the direct D1-
riven BG pathway leading to abnormalities in using positive feed-
ack to guide behavior, with relatively intact function in the D2-
riven, indirect pathway leading to normal use of probabilistic
egative feedback in decision making. This BG-based account is
upported by other evidence indicating that BG DA acts to speed
esponding toward rewarding cues (38,39) as well as pharmacolog-
cal and animal studies showing that this process likely relies on

1-driven activation and Go learning (40 – 42). However, this inter-
retation is of course speculative and cannot be confirmed without
onducting a study on unmedicated first-episode patients to see
hether NoGo learning improves when patients are treated with
2-blocking antipsychotics.

A second major finding was that SZ patients exhibited a large
nd reliable reduction in the tendency to make exploratory behav-

oral adjustments toward responses that could potentially yield
arger expected values than those obtained by staying with the
tatus quo. Additionally, given that there was no association be-
ween anhedonia and overall RT variability or consecutive variance,
nhedonia seems to be selectively associated with the failure to

nitiate the proactive strategy of adjusting responses to gather
ore information to reduce uncertainty about potential benefits of

lternative behaviors. These findings demonstrate the usefulness
f computational modeling approaches to psychiatry (43– 47).

We posit that these effects are related to degradations in pre-
rontal cortical DA function, often attributed as a source of negative
ymptoms (24,26,48,49). This interpretation is supported by our
ecently reported gene-dose effect of the val/met polymorphism of
he COMT gene in healthy individuals performing this same task
32), which indicated that the val/val genotype was characterized
y the lowest degree of uncertainty-driven exploration and the
et/met genotype with the greatest degree of exploration. Varia-

ions in COMT affect prefrontal and particularly orbitofrontal DA
evels (22), and a recent study reported a COMT gene dose effect on
rbitofrontal activity during reward receipt (50). Thus, together,

hese studies support the assertion that the val/val genotype shares
eatures of cognitive dysfunction observed in SZ (51). Finally, ongo-
ng imaging work in healthy individuals (N. Long, B.S., unpublished
ata, September 1, 2010), together with other related studies

31,52), suggest that relative uncertainty computations associated
ith exploration are represented in prefrontal cortical activation
atterns. Finally, even if the computations of expected reward val-
es are relatively intact in SZ, it is possible that patients with anhe-
onia explicitly assign a negative expected value to uncertain out-
omes, due to their prior expectations (see Huys and Dayan [47] for
related model of depression). Regardless of the neural mecha-

ism, our findings suggest that anhedonia might result from an
nability to determine when to explore actions that might improve
ne’s ability to obtain rewards.

Of particular interest was that reduced uncertainty-driven ex-
loration correlated with the avolition-anhedonia domain on the
ANS but not the Restricted Affect factor. Additionally, the effect
as more highly related to anhedonia than avolition. This result is
otentially informative about differences in the pathology of these
ymptom domains. As rated by the SANS, anhedonia reflects a
ehavioral component of reward seeking (e.g., initiating social ac-

ivities, sexual interest/and or activity, pursuing recreational activi-
ies, number of close relationships) rather than the capacity to
xperience pleasure, which is often inferred from behavior. Avoli-

ion items on the SANS are less related to reward-seeking behavior
and more broadly related to the frequency with which patients
initiate and persist in many kinds of tasks, which is likely to be
influenced by a number of factors, such as disorganization, gener-
alized cognitive impairment, and sedation. The significant correla-
tion with anhedonia but not avolition might therefore reflect that
reduced reward-seeking behavior in SZ is critically related to the
extent to which patients make exploratory choices when they are
uncertain about the value of alternative actions and whether they
might produce better outcomes than the status quo.

Results should be viewed with certain limitations in mind. First,
analyses regarding the role of medication on task performance
should be viewed with caution, because CPZ equivalents for atypi-
cal medications might not be appropriate and D2 potency classifi-
cations provide only a gross estimate of the effects of different
antipsychotics. A more definitive test of antipsychotic effects
should be conducted in first episode patients tested on and off
medications. Second, we did not collect DNA in this study, and it is
unclear whether the COMT genetic effect observed in healthy indi-
viduals on exploration might partially contribute to the effects of
anhedonia and SZ reported here. Finally, although the SANS is still
the gold standard negative symptom assessment in the field, it has
recently been suggested that newer measures being developed in
response to the National Institute of Mental Health Measurement
and Treatment Research to Improve Cognition in Schizophrenia
(e.g., Kirkpatrick et al. [53]) initiative might provide a more compre-
hensive and current assessment of negative symptom dimensions.
As such, it is unclear whether the relationship reported between
SANS anhedonia and exploration might actually reflect some other
component of negative symptoms on these newer scales.

In summary, the current findings have important implications
for understanding the etiology of SZ. Results from the computa-
tional model and behavioral data indicate that patients have defi-
cits in Go learning, which seem to be due to reduced sensitivity to
positive prediction errors. Thus, patients show a reduced sensitivity
to the impact of rewarding outcomes on future behavioral choices.
Furthermore, patients display reduced uncertainty-driven explora-
tion, which was specifically associated with greater severity of an-
hedonia. Thus, patients are less likely to explore and therefore less
likely to discover that an alternative response might yield more
rewarding outcomes. Although these deficits are independent of
one another in the model, at a clinical level it is easy to imagine how
these impairments might amplify one another and result in a nar-
row behavioral repertoire and a lack of goal-directed, reward-seek-
ing behavior.
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