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Imagine going to a doctor because of chest pain that has 
been bothering you for a couple of weeks. The doctor 
would sit down with you, listen carefully to your descrip-
tion of symptoms, and prescribe medication to lower 
blood pressure in case you have a heart condition. After 
a couple of weeks, your pain has not subsided. The doc-
tor now prescribes medication against reflux, which 
finally seems to help. In this scenario, not a single medi-
cal analysis (e.g., electrocardiogram, blood work, or a 
gastroscopy) was performed, and medication with poten-
tially severe side effects was prescribed on a trial-and-
error basis. Although highly unlikely to occur if you 
walked into a primary care unit with these symptoms 
today, this scenario resembles much of contemporary 
psychiatry diagnosis and treatment.

There are several reasons for this discrepancy in 
sophistication between psychiatry and other fields of 
medicine. First and foremost, mental illness affects the 
brain—the most complex biological system yet encoun-
tered. Compared with the level of scientific understand-
ing achieved on other organs of the human body, such as 

the heart, our understanding of the normally functioning 
brain is still, arguably, in its infancy.

Despite this complexity, concerted efforts in the brain 
sciences have led to an explosion of knowledge and 
understanding about the healthy and diseased brain in 
the past decades. The discovery of highly effective psy-
choactive drugs in the 1950s and 1960s raised expecta-
tions that psychiatry would progress in a similar fashion. 
It is unfortunate that, in retrospect, it appears that these 
discoveries were serendipitous in nature, given that little 
progress has been made since (e.g., Hyman, 2012; Insel 
et al., 2010). This lack of progress also has caused many 
major pharmaceuticals companies, such as AstraZeneca 
and GlaxoSmithKline, to withdraw from psychiatric drug 
development and to close large research centers (Cressey, 
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Psychiatric research is in crisis. We highlight efforts to overcome current challenges by focusing on the emerging field 
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and subgroups of individuals. As a proof of principle, we apply these methods to two different data sets. Finally, we 
highlight challenges for future research.
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2011; Nutt & Goodwin, 2011). In addition, research on 
mental illness, based on conventional psychiatric diag-
nostic categories and practices (as reflected in the various 
editions of the Diagnostic and Statistical Manual of 
Mental Disorders, DSM; e.g., American Psychiatric 
Association, 2013), has been widely viewed as disap-
pointing, and the DSM system of classification itself has 
been viewed as an impediment to more productive 
research. As a consequence, psychiatry is a field in crisis 
(Hyman, 2012; Insel et al., 2010; Poland, Von Eckardt, & 
Spaulding, 1994; Sahakian, Malloch, & Kennard, 2010). 
As outlined in more detail later, a central issue is a lack 
of sufficiently powerful theoretical and methodological 
resources for managing the features of mental illness 
(e.g., a lack of measurable quantitative descriptors). This 
lacuna prevents effective management of the multidi-
mensional hierarchical complexity, dynamic interactivity, 
causal ambiguity, and heterogeneity of mental illness. 
And it leads to an explanatory gap of how basic neuro-
biological processes and other causes result in complex 
disorders of the mind (Hyman, 2012; Montague, Dolan, 
Friston, & Dayan, 2011).

In the present study, we review current challenges in 
psychiatry and recent efforts to overcome them. Several 
examples from the domain of decision making show the 
promise of moving away from symptom-based descrip-
tion of mental illness and instead formulating objective, 
quantifiable computational biomarkers as a basis for fur-
ther psychiatric research. We then introduce a computa-
tional cognitive toolbox that is suited to construct these 
computational biomarkers. We focus on sequential sam-
pling models (SSMs) of decision making, which serve as 
a case study for how computational models, when fit to 
behavior, have successfully been used to identify and 
quantify latent neurocognitive processes in healthy 
humans. Bayesian methods provide a resourceful frame-
work to fit these models to behavior and establish indi-
vidualized descriptors of neurocognitive function. After 
establishing the validity of these models to provide neu-
rocognitive descriptors of individuals, we review how 
clustering techniques can be used to construct a map of 
individual differences based on these neurocognitive 
descriptors.

To demonstrate the viability and potential of these 
methods, we reanalyze two data sets, thereby providing 
a proof of principle before discussing future challenges 
in application to psychiatric populations. The first data 
set consists of a group of young and old subjects who 
performed three different decision-making tasks (Ratcliff, 
Thapar, & McKoon, 2010). After fitting subjects’ choices 
and response-time (RT) distributions with the drift- 
diffusion model (DDM) using hierarchical Bayesian 
parameter estimation, we provide each subject’s param-
eter estimates as inputs to an unsupervised clustering 
algorithm. We show that the clustering is sensitive to age 

after nuisance variables are regressed out and that this 
clustering shows consistently better recovery of the age-
groups than if behavioral summary statistics (e.g., mean 
RT and accuracy) are used alone. Moreover, factor analy-
sis on the computational parameters extracts meaningful 
latent variables that describe cognitive ability. For this 
data set, no identified brain-based mechanism was ana-
lyzed. In contrast, for the second data set, we relied on a 
hypothesis-driven approach that suggested a mechanism 
for how a specific decision parameter—the decision 
threshold—varies as a function of activity communicated 
between frontal cortex and the subthalamic nucleus 
(STN). A previous study showed that STN deep-brain 
stimulation disrupted decision-threshold regulation 
across a group of patients with Parkinson’s disease (PD; 
Cavanagh et al., 2011). In the following, we show that we 
can classify individual patients’ brain-stimulation status 
(off or on) with relatively high accuracy, given model 
parameters, and better than that achieved on the basis of 
brain-behavior correlations alone.

Current Challenges in Psychiatry

The current crisis in psychiatry has complex causes that 
are deeply rooted in existing classification systems (e.g., 
DSM, International Classification of Diseases). In this sec-
tion, we identify some of the problems these systems 
introduce and provide indications of the sorts of resources 
required for more productive research programs. In the 
subsequent section, we review recent attempts to meet 
these challenges and the sorts of resources that have 
been introduced for this purpose. As other researchers 
before us have done, we proceed to suggest an approach 
to research of mental disorders that aims to link cognitive 
and pure neuroscience to mental illness without the 
restrictions of prior classification schemes (Robbins, 
Gillan, Smith, de Wit, & Ersche, 2012).

DSM and research

For decades, the DSM has been the basis of clinical diag-
nosis, treatment, and research of mental illness. At its 
core, the DSM defines distinct disorder categories, such 
as schizophrenia (SZ) and depression, in a way that is 
atheoretical (i.e., with no reference to specific causal 
hypotheses) and focused on clinical phenomenology. 
Thus, these categories are mainly derived from translat-
ing subjective experience to objective symptomatology 
while assuming unspecified biological, psychological, or 
behavioral dysfunctions (Poland et al., 1994).

Although primarily intended to be of value to clini-
cians, the DSM has also played a substantial role as a 
classification system for scientific research with the goals 
of validating the diagnostic categories and translating 
research results directly into clinical practice. Although 
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these research goals are commendable, decisions regard-
ing systematic classification are more often based on per-
ceptions of clinical utility rather than scientific merit. As a 
consequence, DSM-based research programs have failed 
to deliver consistent, replicable, and specific results, and 
it has been widely observed that the validation of DSM 
categories has been limited, that DSM categories do not 
provide well-defined phenotypes, and that they have lim-
ited research utility.

Heterogeneity and comorbidity

One major problem of contemporary psychiatric classifi-
cation is the heterogeneity of individuals receiving identi-
cal diagnoses. With respect to symptomatology, one 
striking example of this is SZ, with regard to which one 
must exhibit at least two out of five symptoms to receive 
a diagnosis. It is thus possible to have patients with com-
pletely different symptomatology being diagnosed as 
schizophrenic. It is important, however, that problems of 
heterogeneity concern more than just symptoms; there is 
probably heterogeneity at all levels of analysis, including 
heterogeneity of causal processes (Poland et al., 1994). 
And, as we discuss later, such heterogeneity is not just a 
feature of clinical populations but also may be a feature 
of the general population. As a consequence, heteroge-
neity poses a serious challenge for research (e.g., it intro-
duces uncontrolled sources of variance, it limits the 
generalizability of results) and points to the necessity of 
developing techniques for its management.

Comorbidity is widely believed to constitute a second 
major problem for psychiatric classification. Defined as 
the co-occurrence of multiple disorders in one individ-
ual, it has been widely documented that “comorbidity 
between mental disorders is the rule rather than the 
exception, invading nearly all canonical diagnostic 
boundaries” (Buckholtz & Meyer-Lindenberg, 2012, 
p. 996). It is important to differentiate between two rele-
vant types of comorbidity: True comorbidity is a result of 
independent disorders co-occurring; artificial comorbid-
ity is a result of separately classifying disorders that have 
overlapping symptom criteria, have a common cause, or 
share a pathogenic cascade. This distinction points to a 
more general problem concerning the management of 
causal ambiguity that is found at the level of symptoms 
but also at other levels of analysis. Specifically, the prob-
lem is one of identifying which causal structures and pro-
cesses produce a given clinical presentation or a given 
pattern of functioning at some other level; because clini-
cal presentations and patterns of functioning can be pro-
duced by different causal structures and processes, the 
challenge for researchers is to develop techniques for 
identifying and managing such causal ambiguity.

In addition to challenges of heterogeneity and comorbid-
ity, several other features of the domain of mental illness 

pose challenges to research and require sophisticated tools 
and techniques for their effective management. These 
include hierarchical organization of the brain and various 
sorts of interlevel relationship and coordination (e.g., the 
explanatory gap), dynamic interactivity, multidimensional 
complexity, context sensitivity, identification of norms of 
functioning, and identification of meaningful groupings of 
individuals. As we discuss herein, each of these features cre-
ates problems that contribute to an understanding of why 
the current crisis in research exists and of the sorts of 
resources and strategies required for more productive 
research programs.

Potential Solutions

As summarized in the preceding discussion, the short-
comings of the current DSM classification system and the 
problems they pose for research are well documented. In 
the following, we outline some current efforts to address 
these challenges.

Research Domain Criteria Project 
and a Roadmap for Mental Health 
Research in Europe

The Research Domain Criteria Project (RDoC) is an initia-
tive by the National Institute of Mental Health (Insel et 
al., 2010). RDoC improves on previous research efforts 
based on the DSM in the following ways. First, as the 
name implies, it is conceptualized as a research frame-
work only and, thus, is clearly separated from clinical 
practice. Second, RDoC is completely agnostic about 
DSM categories. Instead of a top-down approach that 
aims to identify neural correlates of psychiatric disorders, 
RDoC suggests a bottom-up approach that builds on the 
current understanding of neurobiological underpinnings 
of different cognitive processes and links those to clinical 
phenomena. Third, the RDoC research program inte-
grates data from different levels of analysis, such as imag-
ing, behavior, and self-reports.

At its core, RDoC is structured into a matrix with col-
umns representing different “units of analysis” and rows 
for research domains. The units of analysis include genes, 
molecules, cells, circuits, physiology, behavior, and self-
reports. Research domains are clustered into negative- 
and positive-valence systems, cognitive systems, systems 
for social processes, and arousal/regulatory systems. 
Each of these domains is further subdivided into distinct 
processes; for example, cognitive systems include atten-
tion, perception, working memory, declarative memory, 
language behavior, and executive control.

Despite clear improvements over previous DSM-based 
research programs, the RDoC initiative currently lacks 
explicit consideration of computational descriptors. As out-
lined later, computational methods show great promise to 
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help link different levels of analysis, elucidate clinical symp-
toms, and identify subgroups of healthy control (HC) and 
patient populations.

More recent, the European Commission started the 
Roadmap for Mental Health Research in Europe 
(ROAMER) initiative with the goal of better integrating 
biomedicine, psychology, and public-health insights to 
further research into mental illnesses.

Neurocognitive phenotyping

In a recent review article, Robbins et al. (2012) suggested 
the use of neurocognitive endophenotypes to study men-
tal illness: “Neurocognitive endophenotypes would fur-
nish more quantitative measures of deficits by avoiding 
the exclusive use of clinical rating scales, and thereby 
provide more accurate descriptions of phenotypes for 
psychiatric genetics or for assessing the efficacy of novel 
treatments” (p. 82).

Of particular interest are three studies that use such 
neurocognitive endophenotypes by constructing multidi-
mensional profiles (MPs) from behavioral summary sta-
tistics across a battery of various neuropsychological 
tasks used to identify subtypes of attention-deficit/hyper-
activity disorder (ADHD; Durston et al., 2008; Fair, 
Bathula, Nikolas, & Nigg, 2012; Sonuga-Barke, 2005).

Durston et al. (2008) argued that there are distinct 
pathogenic cascades within at least three different brain 
circuits that can lead to symptomatology involved in 
ADHD. Specifically, abnormalities in dorsal frontostriatal, 
orbito-frontostriatal, or fronto-cerebellar circuits can lead 
to impairments of cognitive control, reward processing, 
and timing, respectively. Core deficits in one or multiple 
of these brain networks can thus result in a clinical diag-
nosis of ADHD and provide a compelling explanation for 
the heterogeneity of the ADHD patient population. 
Preliminary evidence for this hypothesis is provided by 
Sonuga-Barke (2005), who used principal component 
analysis on MPs (based on a neuropsychological task bat-
tery) of ADHD patients and identified three distinct sub-
types that covaried on timing, cognitive control, and 
reward.

A similar approach to identifying clusters in the ADHD 
population using MPs was taken by Fair et al. (2012). The 
authors applied graph theory to identify individual behav-
ioral functional clusters within not only the ADHD patient 
population but also HC subjects. It is interesting that the 
authors found that HC and ADHD is not the predominant 
dimension along which clusters form. Instead, Fair et al. 
uncovered different functional profiles (e.g., one cluster 
might show differences in response inhibition, whereas 
another shows differences in RT variability), each of which 
contained both HC and patient subgroups. Nevertheless, 
and critically, a classifier trained to predict diagnostic 

category achieved better performance when classifying 
within each functional profile than did a classifier trained 
on the aggregated data. In other words, this implies that 
the overall population clusters into different cognitive pro-
files, and ADHD affects individuals differently on the basis 
of which cognitive profile they exhibit. The results of this 
study suggested that the source of heterogeneity not only 
may be distinct pathogenic cascades being labeled as the 
same disorder but also may be a result of the inherent 
heterogeneity present in the overall population—healthy 
and disordered.

The studies discussed all exemplify the danger of 
lumping subjects at the level of symptoms and treating 
them as one homogeneous category with a single, iden-
tifiable pathological cascade. Instead, these studies used 
MPs to find an alternative characterization of subjects 
independent of their DSM classification that is (a) quanti-
tatively measurable, (b) a closer approximation to the 
underlying neurocircuitry (Robbins et al., 2012), and (c) 
cognizant of heterogeneity in the general population.

Nevertheless, this approach still has problems. First, 
although there was less reliance on DSM categories, these 
studies still used the diagnostic label for recruiting sub-
jects, selecting tasks, framing and testing hypotheses, and 
drawing inferences. It could be imagined, for example, 
that patients with compulsive disorders, such as obses-
sive-compulsive disorder (OCD) or Tourette’s syndrome, 
have abnormalities in similar brain circuits and, conse-
quently, pathologies, deficits, and impairments may 
crosscut these (and other) diagnostic categories. Thus, if 
only ADHD patients are recruited, a critical part of the 
picture might be missed. Second, the cognitive-task bat-
tery covers only certain aspects of cognitive function. 
Other tasks that, for example, measure working memory 
or reinforcement learning (RL), both of which involve 
frontostriatal function, would be a useful addition to help 
resolve causal ambiguity. More specifically, performance 
on each individual task is assessed by an aggregate per-
formance score. Recent behavioral and neuropsychologi-
cal findings, however, have suggested that executive 
control (as an example) in a single task may instead be 
more accurately characterized as a collection of related 
but separable abilities, a pattern referred to as the unity 
and diversity of executive functions. Furthermore, most 
cognitive tasks rely on a concerted and often intricate 
interaction of various neural networks and cognitive pro-
cesses (see, e.g., Collins & Frank, 2012). This task-impu-
rity problem complicates identification of separate 
functional impairments and brain circuits solely on the 
basis of MPs.

In sum, although cognitive phenotypes provide a use-
ful framework for measuring brain function, there is still 
ambiguity if behavioral scores that provide an aggregate 
measure of various brain networks are used. The idea 
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that a neural circuit can contribute to different cognitive 
functions helps explain why diverse mental illnesses can 
exhibit similar symptoms (comorbidity; Buckholtz & 
Meyer-Lindenberg, 2012). Disentangling these transdiag-
nostic patterns of psychiatric symptoms thus requires 
identification and measurement of underlying brain cir-
cuits and functions. Whereas Buckholtz and Meyer-
Lindenberg (2012) proposed the use of functional 
imaging studies and genetic analysis, we discuss how 
computational modeling can contribute to disambiguate 
the multiple pathways leading to behavioral features.

Computational psychiatry

Computational models at different levels of abstraction 
have had tremendous impact on the field of cognitive 
neuroscience. The aim is to construct models based on 
integrated evidence from neuroscience and psychology 
to explain neural activity as well as cognitive processes 
and behavior. Although more detailed biologically 
inspired models, such as biophysical and neural-network 
models, are generally more constrained by neurobiology, 
they often have many parameters that make them less 
suitable to fit them directly to human behavior. Conversely, 
more abstract, algorithmic models often have fewer 
parameters that allow them to be fit directly to data at the 
cost of being less detailed about the neurobiology. 
Normal linking of one level of analysis to another is use-
ful to identify plausible neural mechanisms that can be 
tested with quantitative tools. Critically, all of these mod-
els allow for increased specificity in the identification of 
different neuronal and psychological processes that are 
often lumped together in analyses of task behavior based 
on summary statistics.

The nascent field of computational psychiatry uses 
computational models to infer dysfunctional latent pro-
cesses in the brain. Montague et al. (2011) defined the 
goal for computational psychiatry as

extract[ing] normative computational accounts of 
healthy and pathological cognition useful for 
building predictive models of individuals. . . . 
Achieving this goal will require new types of 
phenotyping approaches, in which computational 
parameters are estimated (neurally and behaviorally) 
from human subjects and used to inform the 
models. (p. 75)

More generally, the tools and techniques of computa-
tional cognitive neuroscience (e.g., modeling at multiple 
levels of analysis, parameter estimation, classification 
algorithms) are especially well suited for representing 
and managing the various features of mental illness iden-
tified earlier (e.g., hierarchical and multidimensional 

organization, nonlinear dynamic interactivity, context 
sensitivity, heterogeneity, and individual variation). Thus, 
computational psychiatry holds out considerable promise 
as a research program directed at mental illness.

On the basis of this approach, Maia and Frank (2011) 
identified computational models as a

valuable tool in taming [the complex pathological 
cascades of mental illness] as they foster a 
mechanistic understanding that can span multiple 
levels of analysis and can explain how changes to 
one component of the system (for example, 
increases in striatal D2 receptor density) can 
produce systems-level changes that translate to 
changes in behavior. (p. 154)

Moreover, three concrete strategies for how computa-
tional models can be used to study brain dysfunction 
were defined:

•• Deductive approach: Established neuronal or neu-
ral-circuit models can be tested for how pathophysi-
ologically plausible alterations in neuronal state, for 
instance, connectivity or neurotransmitter levels 
(e.g., dopamine is known to be reduced in PD), 
affect system-level activations and behavior. This is 
essentially a bottom-up approach, given that it 
involves the study of how known or hypothesized 
neuronal changes affect higher-level functioning.

•• Abductive approach: Computational models can 
be used to infer neurobiological causes from 
known behavioral differences. In essence, this is a 
top-down approach that tries to link behavioral 
consequences back to underlying latent causes.

•• Quantitative abductive approach: Parameters of a 
computational model are fit to a subject’s behavior 
on a suitable task or task battery. Different param-
eter values point to differences in underlying neu-
rocircuitry of the associated subject or subject 
group. These parameters can be used either com-
paratively to study group differences (e.g., healthy 
and diseased) or as a regressor with, for example, 
symptom severity. This approach is more common 
with abstract models than with neural-network 
models, given that the former typically have fewer 
parameters and, thus, can be more easily fit to 
data.

Case studies in the domain of decision 
making

One key area in which computational models have had 
tremendous success is in the elucidation of how the dif-
ferent cognitive and neurobiological gears work together 
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in the domain of decision making. Many mental illnesses 
can be characterized by aberrant decision making of one 
sort or another (Maia & Frank, 2011; Montague et al., 
2011). In the following section, we review recent cases in 
which computational models of decision making have 
been used to better understand brain disorders.

Computational models of RL: PD and SZ. Our first 
case study concerns PD. Its most visible symptoms affect 
the motor system as manifest in hypokinesia, bradykine-
sia, akinesia, rigidity, tremor, and progressive motor 
degeneration. However, cognitive symptoms recently 
have received increased attention. PD is an intriguing 
neuropsychiatric disorder because its core pathology is 
well identified to be the cell death of midbrain dopami-
nergic neurons in the substantia nigra pars compacta. 
Neural-network models of the basal ganglia interpret this 
brain network as an adaptive action-selection device that 
conditionally gates internal or external actions on the 
basis of their previous reward history, which is learned 
via dopaminergic signals (Montague, Dayan, & Sejnowski, 
1996; Schultz, Dayan, & Montague, 1997). Behavioral RL 
tasks show that the chronic low levels of dopamine in PD 
patients result in a bias toward learning from negative 
reward-prediction errors (RPEs) at the cost of learning 
from positive RPEs. In extension, we have argued that PD 
is not a motor disorder per se but rather an action-selec-
tion disorder in which the progressive decline of motor 
and cognitive function can be interpreted in terms of 
aberrant learning and not to select actions.

In this case study, an existing biological model of healthy 
brain function was paired with a known and well-localized 
neuronal dysfunction to extend our understanding of the 
symptomatology of a brain disorder and to reconceive the 
nature of the dysfunctions involved. Note, however, that the 
model was not fit to data quantitatively, nor were MPs pro-
vided to resolve residual causal ambiguity associated with 
the task-impurity problem. In the terminology established 
by Maia and Frank (2011), this is an example of the deduc-
tive approach, in which the model provides a mechanistic 
bridge that explains how abnormal behavior can result from 
neurocircuit dysfunctions.

Despite SZ being the focus of intense research during 
the past decades, no single theory of its underlying neu-
ral causes has been able to explain the diverse set of 
symptoms that lead to an SZ diagnosis. Current psychiat-
ric practices view the symptomatology of SZ as struc-
tured in terms of positive symptoms, such as psychosis; 
negative symptoms, such as anhedonia, which refers to 
the inability to experience pleasure from activities usu-
ally found enjoyable, such as social interaction; and cog-
nitive deficits (Elvevåg & Goldberg, 2000).

Recent progress has been made by the application of 
RL models to understand individual symptoms or a single 

symptom category (e.g., negative symptoms) rather than 
SZ as a whole ( J. M. Gold et al., 2012; J. M. Gold, Waltz, 
Prentice, Morris, & Heerey, 2008; Strauss et al., 2011; 
Waltz, Frank, Wiecki, & Gold, 2011).

Using an RL task, Waltz, Frank, Robinson, and Gold 
(2007) found that SZ patients showed reduced perfor-
mance in selecting previously rewarded stimuli com-
pared with HC subjects and that this performance deficit 
was most pronounced in patients with severe negative 
symptoms. It is notable that patients with SZ and HC 
subjects did not differ in their ability to avoid actions 
leading to negative outcomes. However, as a result of the 
task-impurity problem, this behavioral analysis did not 
allow researchers to differentiate whether SZ patients 
were impaired at learning from positive outcomes or 
from a failure in representation of the prospective reward 
values during decision making. The following is a strat-
egy for resolving this problem.

This dichotomy in learning versus representation is 
also present in two types of RL models—actor-critic and 
Q-learning models (Sutton & Barto, 1998). An actor-critic 
model consists of two modules: an actor and a critic. The 
critic learns the expected rewards of states and trains the 
actor to perform actions that lead to better-than-expected 
outcomes. The actor itself learns only “action propensi-
ties,” in essence, stimulus-response links. Q-learning 
models, conversely, learn to associate actions with their 
reward values in each state. Thus, whereas a Q-learning 
model has an explicit representation of which action is 
most valued in each state, the actor-critic model will 
choose actions on the basis of those that have previously 
yielded positive prediction errors—regardless of whether 
those arose from an unexpected reward or the absence 
of an expected loss. Thus, the differences between these 
two models can be exploited to attempt to resolve the 
causal ambiguity exhibited by the results discussed.

In a follow-up study, J. M. Gold et al. (2012) adminis-
tered a new task that paired a neutral stimulus in one 
context with a positive stimulus and in another context 
with a negative stimulus. Although the neutral stimulus has 
the same value of zero in both contexts, it is known that 
dopamine signals RPEs that drive learning in the basal 
ganglia and code outcomes relative to the expected reward 
(Montague et al., 1996; Schultz et al., 1997). Thus, in the 
negative context, receiving nothing is better than expected 
and will result in a positive RPE, thereby driving learning 
in the basal ganglia to select this action in the future (Maia, 
2010). In a test period in which no rewards were pre-
sented, subjects had to choose between an action that had 
been rewarding and one that had avoided a loss. Both 
actions should have been associated with better-than-
expected outcomes. An actor-critic model should thus 
show a tendency to select the neutral stimulus, whereas a 
Q-learning model with representation of the reward 
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contingencies should mainly select the one with a higher 
reward. It is intriguing that when both of these models 
were fit to subject data, the actor-critic model produced a 
better fit for SZ patients with a high degree of negative 
symptoms, whereas HC subjects and SZ patients with low 
negative symptoms were better fit by a Q-learning model. 
In other words, patients with negative symptoms largely 
based decisions on learned stimulus-response associations 
instead of expected reward values. It is notable that HC 
subjects and the low-negative-symptom SZ group did not 
differ significantly in their RL behavior. This study by J. M. 
Gold et al. demonstrated how computational analyses can 
differentiate between alternative mechanisms that can 
explain deficiencies in reward-based choice. Many RL 
tasks can be solved by learning either stimulus-response 
contingencies or expected reward values (or both), but the 
model and appropriate task manipulation allows one to 
extract to which degree these processes are operative and, 
thus, helps to resolve the task-impurity problem.

In a related line of work, Strauss et al. (2011) tested 
HC subjects and SZ patients on an RL task that allowed 
subjects to either adopt a safe strategy and exploit the 
rewards of actions with previously experienced rewards 
or explore new actions with perhaps even higher payoffs. 
Frank, Doll, Oas-Terpstra, and Moreno (2009) developed 
a computational model that can recover how individual 
subjects balance this exploration-exploitation trade-off. It 
is intriguing that in applying this model to SZ patients, 
Strauss et al. found that patients with high anhedonia rat-
ings were less willing to explore their environment and 
uncover potentially better actions. This result suggests a 
reinterpretation of the computational cognitive process 
underlying lack of social engagement associated with 
anhedonia. For example, one might assume that the lack 
of engagement of social activities of anhedonistic patients 
results from an inability to experience pleasure and, as a 
consequence, a failure to learn the positive value of 
social interaction. Instead, this study suggested that lack 
of social engagement associated with anhedonia is a 
result of an inability to consider the prospective benefit 
of doing something that might lead to better outcomes. 
These results also lead to the prediction that patients with 
SZ would not, for example, seek out new social interac-
tions (because of the low value placed on exploration) 
but could still enjoy social interactions once established. 
Again, computational strategies allow for a reconceptual-
ization and disambiguation of clinical phenomena.

In sum, J. M. Gold et al. (2012) and Strauss et al. (2011) 
used a quantitative abductive approach to infer aberrant 
computational cognitive processes in RL in a subgroup of 
SZ patients. By grouping subjects according to symptom 
type and severity instead of diagnosis, the authors identi-
fied more refined research targets and addressed the 
problem of heterogeneity. By combining models and 

strategically designing task demands, J. M. Gold et al. 
pursued an innovative strategy for resolving problems of 
interpretation resulting from task impurity.

Another relevant line of work includes that of 
Brodersen et al. (2013), who used dynamic causal model-
ing (Friston, Harrison, & Penny, 2003)—a Bayesian frame-
work for inferring network connectivity between brain 
areas from functional MRI (fMRI) data—on HC subjects 
and SZ patients performing a numerical n-back working 
memory task. Supervised learning methods demonstrated 
a clear benefit (71% accuracy) of using dynamic causal 
modeling compared with more traditional methods, such 
as functional connectivity (62%). Moreover, clustering 
methods were sensitive to various SZ subtypes, which 
showed the potential of this approach to identify clini-
cally meaningful groups in an unsupervised manner. 
Finally, we refer to Huys et al. (2012) for an example of 
how a computational-psychiatry analysis can be used to 
relate depressive-symptom severity to a specific cognitive 
process involved in planning multiple future actions.

Computational models of response inhibition.  
Besides RL, response inhibition is another widely studied 
phenomenon in cognitive neuroscience relevant to men-
tal illness. Response inhibition is required when actions 
in the planning or execution stage are no longer appro-
priate and must be suppressed. The antisaccade task is 
one such task that is often used in a psychiatric setting 
(e.g., Aichert et al., 2012; Fukumoto-Motoshita et al., 
2009). It requires subjects to inhibit a prepotent response 
to a salient stimulus and instead saccade to the opposite 
side (Hallett, 1978). A wealth of literature has demon-
strated reduced performance of psychiatric patients with 
disorders, including ADHD (Nigg, 2001; Oosterlaan, 
Logan, & Sergeant, 1998; Schachar & Logan, 1990), OCD 
(Chamberlain, Fineberg, Blackwell, Robbins, & Sahakian, 
2006; Menzies et al., 2007; Morein-Zamir, Fineberg, Rob-
bins, & Sahakian, 2010; Penadés et al., 2007), SZ (Bad-
cock, Michie, Johnson, & Combrinck, 2002; Bellgrove et 
al., 2006; Huddy et al., 2009), PD (van Koningsbruggen, 
Pender, Machado, & Rafal, 2009), and substance-abuse 
disorders (Monterosso, Aron, Cordova, Xu, & London, 
2005; Nigg et al., 2006). However, as demonstrated by 
Wiecki and Frank (2013), even a supposedly simple 
behavioral task, such as the antisaccade task, requires a 
finely orchestrated interplay between various brain 
regions, including frontal cortex and basal ganglia. It thus 
cannot be said that decreased accuracy in this task is 
evidence of response inhibition deficits per se, given that 
the source of this performance impairment can be mani-
fold (i.e., the antisaccade task exhibits the task-impurity 
problem).

In sum, the use of computational models that allow 
mapping of behavior to psychological processes could 
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thus be categorized as the computational abductive 
approach. However, in addition to managing the task-
impurity problem just mentioned, ambiguity of how psy-
chological processes relate to the underlying neurocircuitry 
still has to be resolved. By combining different levels of 
modeling, researchers can better identify and study these 
ambiguities. Ultimately, this might allow development of 
tasks that use specific conditions (e.g., speed-accuracy 
trade-off, reward modulations, and conflict) to disambigu-
ate the mapping of psychological processes to their neuro-
circuitry. The use of biological-process models to test 
different hypotheses about the behavioral and cognitive 
effects of neurocircuit modulations would correspond to 
the deductive approach. In other words, by combining the 
research approaches outlined by Maia and Frank (2011), 
we can use our understanding of the different levels of 
processing to inform and validate how these levels interact 
in the healthy and dysfunctional brain.

Thus, there are a few example studies in which 
researchers have applied established computational mod-
els to identify model parameters (which aim to describe 
specific cognitive functions) and related them to the 
severity of a specific clinical symptom or used them to 
identify measureable cognitive impairments. Such targets 
(viz., specific symptoms, measureable impairments) rep-
resent more refined research targets than do DSM diag-
nostic categories. In addition, through the use of 
strategically designed task batteries and MPs, problems 
of heterogeneity and task impurity can be managed. And 
the combination of various research approaches (e.g., 
multiple modeling strategies, task batteries and MPs, task 
manipulations, novel approaches to sampling) can pro-
vide a strategic framework for studying relations between 
neural and computational levels of analysis in mental 
illness.

Levels of Computational Psychiatry

Thus far, we have identified a variety of challenges to 
research concerning mental illness and various strategies 
that have been employed to meet those challenges. 
Special attention has been given to computational psy-
chiatry as an especially promising research program. In 
all cases, promise for effectively meeting the research 
challenges depends on the availability of conceptual and 
representational resources and associated strategies and 
techniques that are sufficiently powerful, given the fea-
tures of the domain of mental illness and the problems it 
poses for research.

In this section, we provide an overview of a four-level 
approach to the computational analysis of cognitive func-
tion and dysfunction by focusing on decision making and 
using SSMs as a concrete example (see Table 1 for a delin-
eation of terminology applicable to our discussion). Such 
models provide a versatile tool to model cognitive function, 

but fitting such models to data presents significant technical 
challenges as well. In the following, we identify four levels 
of the analysis: Level 1, strategic identification of cognitive 
tasks to be employed for the collection of performance 
data; Level 2, the fitting of computational models to the 
performance data; Level 3, parameter estimation; and Level 
4, identification of clusters and relations to clinical symptom 
severity (see Fig. 1 for an overview). We show how hierar-
chical Bayesian modeling and Bayesian mixture models can 
be deployed to engage a variety of challenges at the various 
levels of the analysis. Subsequently, we demonstrate the use 
of these methods on two data sets as a “proof of concept.” 
The methods identified in this section have direct applica-
bility to the analysis of cognitive functions in mental 
illness.

Level 1: Cognitive tasks

Cognition spans many mental processes that include atten-
tion, social cognition, memory, emotion, decision making, 
and reasoning, to name a few. Various subfields devoted to 
each of these have developed a range of cognitive tasks that 
purport to reveal the underlying mechanisms. Research in 
computational psychiatry can draw on these tasks to create 
task batteries for the collection of performance data usable 
for the analysis of cognitive function; both the sensitivity 
and the specificity of tasks to cognitive functions are impor-
tant characteristics, although the task-impurity problem 
complicates the analysis of data and their use in isolating 
and specifying cognitive functions. Rather than provide a 
list of tasks used (see the case studies discussed earlier for 
some examples), we discuss desirable properties that cogni-
tive tasks should exhibit. A single cognitive task used in 
computational psychiatry ideally should be tuned to assess 
a specific cognitive function, separable from others; this is 
enabled by the following:

•• a task analysis that identifies what functions are 
engaged and how they are engaged;

•• parsimony in relying on as few cognitive processes 
as possible;

•• stress on cognitive processing in some way to 
reveal break-off points and allow a sensitive mea-
sure of the target function;

•• an established theory regarding the neural corre-
lates of the target functions; and

•• an established computational model that links 
behavior to psychological-process parameters.

Given the task-impurity problem and other forms of causal 
ambiguity, task batteries ideally should be strategically 
constructed to measure a range of relevant cognitive func-
tions and other variables to aid in the interpretation of task 
performance and the isolation of specific functions and 
dysfunctions. This can be achieved by including covarying 
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factors (i.e., conditions) in individual tasks that affect only 
one mental function, which can then be identified. For 
example, Collins and Frank (2012) were able to separately 
estimate the contributions of working memory and RL in a 
single task by testing multiple conditions that increased 
load on working memory alone. Because working mem-
ory contributions can contaminate the estimation of the RL 
component, this manipulation enabled a model to not 
only capture the WM component but also better estimate 
the RL component.

Level 2: Computational models

Computational models in cognitive neuroscience exist on 
various levels of abstraction that range from biophysical 
neuronal models to abstract psychological-process 

models. Although each of these is informative in its own 
regard in elucidating mental function and dysfunction, we 
focus here on psychological-process models. This class of 
model has the unique advantage of being simple enough 
so that it can be fit directly to behavior; that is, it is pre-
ferred, from a statistical analysis point of view, given the 
level of data collected. The fitted parameters often quan-
tify cognitive ability in terms of psychological-process 
variables rather than behavioral summary statistics. For 
example, in a simple detection task, one might consider 
the RT speed as a good measure of task performance. 
However, by adjusting the speed-accuracy trade-off, mean 
RT can easily be shortened just by increasing the false 
alarm rate. This obviously would not indicate an individ-
ual’s superior processing abilities. An SSM analysis, how-
ever, would be able to disentangle response caution (i.e., 

Table 1. Terminology

Term Definition

Psychological-process model A computational model that tries to parameterize the cognitive processes 
underlying behavior. This class of models is not primarily concerned with neural 
implementations of these processes. Often these models have a parsimonious 
parameterization that allows them to be fit to behavior.

Drift-diffusion model An evidence-accumulation model used in decision-making research.
Reinforcement learning Learning to adapt behavior to maximize rewards and minimize punishment.
Parameter estimation/fitting The process of finding parameters that best capture the behavior on a certain task.
Bayesian modeling A parameter-estimation method that allows for great flexibility in defining structure and 

prior information about a certain domain.
Comorbidity The co-occurrence of multiple disorders in one individual.
Heterogeneity The fact that there is systematic variation between subjects diagnosed with the same 

mental illness.
Task-impurity problem The fact that no single cognitive task measures just one construct but that task 

performance is a mixture of distinct cognitive processes.
Multidimensional profile A multidimensional descriptor of a subject’s cognitive abilities as measured by 

summary statistics (e.g., accuracy) of cognitive tasks spanning multiple cognitive 
domains.

Computational multidimensional profile A multidimensional profile that includes parameters estimated from a psychological-
process model that (a) more directly relates to cognitive ability and (b) deconstructs 
different cognitive processes that contribute to individual task performance (i.e., task-
impurity problem).

Clinical and 
Nonclinical Population

Level 1:
Cognitive-Task

Battery

Level 2:
Computational

Modeling

Level 4:
Classification and 

Clustering

Level 3:
Parameter
Estimation

Fig. 1. Illustration of the four levels of computational psychiatry. Clinical and nonclinical populations are tested on a battery of cognitive tasks. 
Computational models can relate raw task performance (e.g., response time and accuracy) to psychological and neurocognitive processes. These 
models can be estimated via various methods (depicted is a simplified graphic of the HDDM or hierarchical drift-diffusion model). Finally, on the 
basis of a resulting computational multidimensional profile, supervised and unsupervised learning algorithms can be trained to either predict dis-
ease state, uncover groups and subgroups in clinical and healthy populations, or relate model parameters to clinical symptom severity.
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decision threshold) and processing abilities (i.e., drift 
rate): These are generative parameters that produce the 
joint distribution of accuracy and RT. Intuitively, an 
increase in decision threshold would lead to more accu-
rate but slower responses, whereas an increase in drift 
rate would lead to higher accuracy but also faster 
responses (Ratcliff & McKoon, 2008). In the following sec-
tion, we present a simulation experiment that shows how 
two groups can be clearly separated in their DDM param-
eters but strongly overlap when described in terms of RT 
and accuracy summary statistics.

SSMs. As outlined earlier, RL models have already 
proven to be a valuable tool in explaining neuropsycho-
logical disorders and their symptoms. A computational-
psychiatric framework that aims to explain the 
multifaceted domain of mental illness must include com-
putational cognitive neuroscience models that cover a 
broad range of cognitive processes (see, e.g., O’Reilly, 
Munakata, Frank, Hazy, & Contributors, 2012, for a broad 
coverage of such models). We focus on SSMs as an illus-
trative example of how these models have been applied 
to study normal and aberrant neurocognitive phenom-
ena, how they can be fit to data using Bayesian estima-
tion, and how subgroups of similar subjects can be 
inferred using mixture models.

SSMs (e.g., Townsend & Ashby, 1983), such as the 
DDM, have established themselves as the de facto stan-
dard for modeling data from simple decision-making 
tasks (e.g., Smith & Ratcliff, 2004). Each decision is 

modeled as a sequential extraction and accumulation of 
information from the environment or internal representa-
tions. Once the accumulated evidence crosses a thresh-
old, a corresponding response is executed. This simple 
assumption about the underlying psychological process 
has the important property of reproducing not only 
choice probability and mean RT but also the entire distri-
bution of RTs separately for accurate and erroneous 
choices in simple two-choice decision-making tasks. It is 
interesting that this evolution of the decision signal in 
SSMs can also be interpreted as a Bayesian update pro-
cess (e.g., Bitzer, Park, Blankenburg, & Kiebel, 2014; 
Deneve, 2008; J. I. Gold & Shadlen, 2002; Huang & Rao, 
2013). This may be useful because it would place SSMs 
under a more axiomatic framework and prevent the 
impression that SSMs are merely convenient heuristics.

The DDM models decision making in two-choice 
tasks. Each choice is represented as an upper and lower 
boundary. A drift process accumulates evidence over 
time until it crosses one of the two boundaries and initi-
ates the corresponding response (Ratcliff & Rouder, 1998; 
Smith & Ratcliff, 2004). The speed with which the accu-
mulation process approaches one of the two boundaries 
is called the drift rate and represents the relative evi-
dence for or against a particular response. Because there 
is noise in the drift process, the time of the boundary 
crossing and the selected response will vary between tri-
als. The distance between the two boundaries (i.e., 
threshold) influences how much evidence must be accu-
mulated until a response is executed. A lower threshold 
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Fig. 2. Trajectories of multiple drift processes (blue and red lines, middle panel). Evidence is accumulated 
over time (x-axis) with drift rate (v) until one of two boundaries, separated by threshold (a), is crossed and a 
response is initiated. Upper (blue) and lower (red) panels contain histograms over boundary-crossing times for 
two possible responses. The histogram shapes match closely to that observed in response-time measurements 
of research subjects.
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makes responding faster in general but increases the 
influence of noise on decision making, whereas a higher 
threshold leads to more cautious responding. RT, how-
ever, is not solely composed of the decision-making pro-
cess—perception, movement initiation, and execution all 
take time and are summarized into one variable called 
nondecision time. The starting point of the drift process 
relative to the two boundaries can influence whether one 
response has a prepotent bias. This pattern gives rise to 
the RT distributions of both choices (see Fig. 2 for trajec-
tories of multiple drift processes; mathematical details of 
the methods motivated herein can be found in the Drift-
Diffusion Model section in the Supplemental Material 
available online).

Relationship to cognitive neuroscience. SSMs were 
originally developed from a pure information-processing 
point of view and primarily used in psychology as a high-
level approximation of the decision process. More recent 
efforts in cognitive neuroscience have simultaneously (a) 
validated core assumptions of the model by showing that 
neurons indeed integrate evidence probabilistically dur-
ing decision making ( J. I. Gold & Shadlen, 2007; Smith & 
Ratcliff, 2004) and (b) applied this model to describe and 
understand neural correlates of cognitive processes (e.g., 
Cavanagh et al., 2011; Forstmann, Anwander, et al., 2010).

Furthermore, multiple routes to decision-threshold 
modulation have been identified, thereby demonstrating 
the value of this modeling approach for managing prob-
lems of the context sensitivity of cognitive function, 
causal ambiguity, and the task-impurity problem. On one 
hand, decision threshold in the speed-accuracy trade-off 
is modulated by changes in the functional connectivity 
between presupplementary motor area and striatum 
(Forstmann, Anwander, et al., 2010). On the other hand, 
neural-network modeling validated by studies of PD 
patients implanted with a deep-brain stimulator (Frank, 
Samanta, Moustafa, & Sherman, 2007) suggests that the 
STN is implicated in raising the decision threshold if 
there is conflict between two options associated with 
similar rewards. This result was further corroborated by 
Cavanagh et al. (2011), who found that trial-to-trial varia-
tions in frontal theta power (as measured by electroen-
cephalography, EEG, as a measure of response conflict; 
Cavanagh, Zambrano-Vazquez, & Allen, 2012) is corre-
lated with an increase in decision threshold during high-
conflict trials. As predicted, this relationship was reversed 
when STN function was disrupted by deep-brain stimula-
tion in PD patients. When deep-brain stimulators were 
turned off, patients exhibited the same conflict-induced 
regulation of decision threshold as a function of cortical 
theta. Similarly, intraoperative recordings of STN field 
potentials and neuronal spiking showed that STN activity 
responds to conflict during decision making, and is 

predictive of more accurate but slower decisions, as 
expected as a result of threshold regulation (Cavanagh et 
al., 2011; Zaghloul et al., 2012; Zavala et al., 2013). These 
results provide a computational cognitive explanation for 
the clinical symptom of impulsivity observed in PD 
patients receiving deep-brain stimulation (Bronstein et 
al., 2011; Frank, Samanta, et al., 2007; Hälbig et al., 2009).

Application to computational psychiatry. Despite 
its long history, the DDM has been applied to the study 
of psychopathology only recently. For example, threat/
no-threat categorization tasks (e.g., “Is this word threat-
ening or not?”) are used in anxiety research to explore 
biases to threat responses. Subjects with high anxiety are 
more likely to classify a word as threatening than are 
low-anxiety subjects, although the explanation of this 
bias is unclear. One hypothesis assumes that this behav-
ior results from an increased response bias toward threat-
ening words in anxious people (Becker & Rinck, 2004; 
Manguno-Mire, Constans, & Geer, 2005; Windmann & 
Krüger, 1998). Using DDM analysis, White (2009) showed 
that instead of a response bias (or a shifted starting point 
in DDM terminology), anxious people showed a percep-
tual bias toward classifying threatening words, as indi-
cated by an increased DDM drift rate.

In a recent review article, White, Ratcliff, Vasey, and 
McKoon (2010) used this case study to highlight the poten-
tial of the DDM to elucidate research into mental illness. 
Note that in this study, the authors did not hypothesize 
about the underlying neural cause of this threat bias. 
Although there is some evidence that bias in decision 
making is correlated with activity in the parietal network 
(Forstmann, Brown, Dutilh, Neumann, & Wagenmakers, 
2010), this was not tested in respect to threatening words. 
Ultimately, we suggest that this research strategy should be 
applied to infer neural correlates of psychological DDM 
decision-making parameters using functional methods 
such as fMRI and employing modeling techniques at mul-
tiple levels of analysis.

The DDM has also been successfully used to show that 
ADHD subjects were less able to raise their decision thresh-
old when accuracy demands were high (Mulder et al., 
2010). It is interesting that the amount by which ADHD 
subjects did not modulate their decision threshold corre-
lated strongly with patients’ impulsivity/hyperactivity rat-
ing. Moreover, this correlation was specific to impulsivity 
and not inattentiveness. Note that in this case, the use of 
the DSM category (ADHD) may have obscured a more 
robust transdiagnostic association between decision-thresh-
old modulation and hyperactivity, and “hyperactivity” itself 
may mask a variety of different causal processes.

A recent study by Pe, Vandekerckhove, and Kuppens 
(2013) showed that the DDM could also be used to 
explain previously conflicting reports on the influence of 

 by guest on May 5, 2015cpx.sagepub.comDownloaded from 

http://cpx.sagepub.com/


Computational Psychiatry: Clustering and Classification 389

negative distractors on the emotional flanker task in 
depressed patients. Specifically, depression and rumina-
tion (a core symptom of depression) were associated 
with enhanced processing of negative information. These 
results further support the theory that depression is char-
acterized by biased processing of negatively connotated 
information. Critically, this result could not be established 
by analyzing mean RT or accuracy alone, thereby dem-
onstrating the enhanced sensitivity to cognitive behavior 
of computational models.

In sum, SSMs show great promise as a tool for compu-
tational psychiatry. In helping to map out the complex 
interplay of cognitive processes and their neural corre-
lates in mental illness, such models can play a role in 
resolving task impurity and other forms of causal ambi-
guity, identifying and measuring cognitive impairments, 
and associating such impairments with both symptoms 
and neural correlates. However, their applicability 
depends on the ability to accurately estimate them to 
construct individual computational MPs (CMPs). Such 
CMPs are parameter profiles that represent an individu-
al’s functioning as measured by the specific parameters 
that make up the profile and derived from fitting the 
model to task-performance data. In the next section, we 
review different (Level 3) parameter-estimation tech-
niques with a special focus on Bayesian methods that are 
usable for estimating parameters in the DDM and for 
generating individual CMPs. Finally, once SSMs can be fit 
accurately, we move on to identify (Level 4) clustering 
methods that can be used in a Bayesian framework to 
identify meaningful clusters of individuals, given their 
cognitive profiles (CMPs).

Level 3: Parameter estimation

It is critical to have robust and sensitive estimation meth-
ods to identify computational parameters in a variable 
clinical population with the DDM. In the following, we 
describe traditional parameter-estimation methods and 
their pitfalls. We then explain how Bayesian estimation 
provides a complete framework that avoids these pitfalls.

Random versus fixed parameters across groups of 
subjects. Fitting of computational models traditionally is 
treated as an optimization problem in which an objective 
function is minimized. Psychological experiments often 
test multiple subjects on the same behavioral task. Mod-
els are then fit either to individual subjects or to the 
aggregated group data. Both approaches are not ideal. 
When models are fit to individual subjects, we neglect 
any similarity the parameters are likely to have. Although 
we do not necessarily have to make use of this property 
to make useful inferences if we have lots of data, the abil-
ity to infer subject parameters on the basis of 

the estimation of other subjects generally leads to more 
accurate parameter recovery (Wiecki, Sofer, & Frank, 
2013) in cases in which little data are available, as is often 
the case in clinical and neurocognitive experiments. One 
alternative is to aggregate all subject data into one meta-
subject and estimate one set of parameters for the whole 
group. Although useful in some settings, this approach is 
unsuited for the setting of computational psychiatry, 
given that individual differences play a huge role.

Hierarchical Bayesian models. Statistics and machine 
learning have developed efficient and versatile Bayesian 
methods to solve various inference problems (Poirier, 
2006). They more recently have seen wider adoption in 
applied fields such as genetics (Stephens & Balding, 
2009) and psychology (e.g., Clemens, De Vrijer, Selen, 
Van Gisbergen, & Medendorp, 2011). One reason for this 
Bayesian revolution is the ability to quantify the certainty 
one has in a particular estimation. Moreover, hierarchical 
Bayesian models provide an elegant solution to the prob-
lem of estimating parameters of individual subjects out-
lined earlier (viz., the problem of neglecting similarities 
of parameters across subjects). Under the assumption 
that subjects within each group are similar to each other, 
but not identical, a hierarchical model can be constructed 
in which individual parameter estimates are constrained 
by group-level distributions (Nilsson, Rieskamp, & 
Wagenmakers, 2011; Shiffrin, Lee, & Kim, 2008), and 
more so if group members are similar to each other.

Thus, hierarchical Bayesian estimation leverages simi-
larity between individual subjects to share statistical 
power and increase sensitivity in parameter estimation. 
However, note that in our computational-psychiatry 
application, the homogeneity assumption that all subjects 
come from the same normal distribution is almost cer-
tainly violated (see earlier discussion). For example, dif-
ferences between subgroups of ADHD subjects would be 
decreased as the normality assumption pulls them closer 
together. To deal with the heterogeneous data often 
encountered in psychiatry, we discuss mixture models in 
a later section. A detailed description of the mathematical 
details and inference methods of Bayesian statistics rele-
vant for this endeavor can be found in the Bayesian 
Inference section in the Supplemental Material.

Level 4: Supervised and unsupervised 
learning

Given that parameters have been estimated, or even 
given behavioral statistics alone, how can we group indi-
viduals into clusters that might be relevant for diagnostic 
categories or treatments? Bayesian clustering algorithms 
are particularly relevant to our objective, given that they 
(a) deal with the heterogeneity encountered in 
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computational psychiatry and (b) have the potential to 
bootstrap new classifications on the basis of measurable, 
quantitative, computational endophenotypes. Because 
we are describing a toolbox using hierarchical Bayesian 
estimation techniques, we focus this section on mixture 
models, given that they are easily integrated into this 
framework. Where possible, we highlight connections to 
more traditional clustering methods (e.g., “k-means”).

Gaussian mixture models. Gaussian mixture models 
(GMMs) assume parameters to be distributed according 
to one of several Gaussian distributions (i.e., clusters). 
Specifically, given the number of clusters k, each cluster 
mean and variance is estimated from the data. This type 
of model is capable of solving our earlier identified 
problem of assuming heterogeneous subjects to be nor-
mally distributed: By allowing individual subject param-
eters to be assigned to different clusters, we allow 
estimation of different subgroups in our patient and HC 
populations. Note, however, that the number k of how 
many clusters should be estimated must be specified a 
priori in a GMM and remain fixed for the course of the 
estimation. This is problematic, given that we do not 
necessarily know how many subgroups to expect in 
advance. Bayesian nonparametrics solve this issue by 
inferring the number of clusters from data. Dirichlet pro-
cesses GMMs (DPGMMs) belong to the class of Bayesian 
nonparametrics  (Antoniak, 1974). They can be viewed as 
a variant of GMMs with the critical difference that they 
infer the number of clusters from the data (for a review, 
see Gershman & Blei, 2012). An arguably simpler alter-
native, however, is to run multiple clusterings tested with 
different numbers of clusters and perform model com-
parison, as we discuss next.

Model comparison. Model comparison provides mea-
sures to evaluate how well a model can explain the data 
while at the same time penalizing model complexity. 
Measures such as the Bayesian information criterion 
(mathematical details can be found in the Model Com-
parison section in the Supplemental Material) can be 
used to choose the GMM with the least number of clus-
ters that still provide a good fit to the data. Moreover, 
model comparison is used to select between computa-
tional cognitive models that often allow formulation of 
several plausible accounts of cognitive behavior. Of par-
ticular note are Bayes factors that measure the evidence 
of a particular model in comparison with other, compet-
ing models (Kass & Raftery, 1993). More recent, and 
highly relevant to the field of computational psychiatry, 
these methods have been extended to provide proper 
random-effects inference on model structure in heteroge-
neous populations (Stephan, Penny, Daunizeau, Moran, 
& Friston, 2009).

Example Applications

In this last section, we provide a proof of concept by 
demonstrating how the earlier described techniques 
(Levels 1–4) can be combined to (a) recover clusters 
associated with age, on the basis of CMPs as extracted by 
the DDM; and (b) predict brain state (deep-brain stimula-
tion on/off).

Supervised and unsupervised learning 
of age

To demonstrate the concepts presented here, we reana-
lyzed a data set collected and published by Ratcliff et al. 
(2010). The data set consists of two groups of human 
subjects, young (mean age 20.8) and old (mean age 68.6), 
tested on three different tasks: (a) a numerosity-discrimi-
nation task that involved estimation of whether the num-
ber of asterisks presented on the screen was more or less 
than 50 (such that trials with close to 50 asterisks were 
harder than were those with far fewer or far greater), (b) 
a lexical decision task that required subjects to decide 
whether a presented string of letters is an existing word 
of the English language, and (c) a memory-recognition 
task that presented words to be remembered in a training 
phase that were subsequently tested for recall together 
with distractor words. Details of the tasks (including the 
conditions tested), subject characteristics, and DDM anal-
yses can be found in the original publication (Ratcliff  
et al., 2010).

We used the hierarchical DDM (HDDM) toolbox 
(Wiecki et al., 2013) to perform hierarchical Bayesian 
estimation of DDM parameters from subjects’ RT and 
choice data without taking the different groups into 
account. We concatenated the DDM parameters of each 
subject in three tasks into one 22-dimensional CMP.

We next performed factor analysis on the CMP vectors. 
Factor analysis is a statistical technique that uses correla-
tions between parameters to find latent variables (called 
factors). Intuitively, highly correlated parameters will be 
loaded onto the same factor. As shown in the factor-load-
ing matrix in Figure 3, DDM parameters related to pro-
cessing capability (i.e., drift rate) in the three tasks are 
loaded onto the first four factors, whereas nondecision 
times and thresholds in the three tasks are loaded onto 
Factors 5 and 6, respectively. Thus, instead of the 22 orig-
inal dimensions, we are able to describe the cognitive 
variables of individuals using six latent factors.

Classification of impairments and dysfunctions based 
on CMPs is a critical requirement for the clinical applica-
tion of computational psychiatry. Although classification 
of age might not have clinical relevancy, it provides an 
ideal testing environment because age is objectively mea-
surable (as opposed to, e.g., SZ, as described earlier). To 
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classify young versus old, we employed logistic regres-
sion (using Level-2 regularization) on a subset of the data 
and evaluated its prediction accuracy using held-out data 

(by using cross-validation). Classification performance 
was very high (up to 95% accuracy; not shown), which 
demonstrated that cognitive tasks show great potential 
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Fig. 3. Factor-loading matrix. Drift-diffusion model parameters of three tasks are presented along 
the y-axis; the extracted factors are distributed along the x-axis. Color codes indicate loading 
strengths. See the textual discussion for more details. freq = frequency; sig = significance.
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for classifying differences in brain functioning. In this 
case, there was no benefit to using DDM parameters 
compared with using summary statistics on RT and accu-
racy, given that the differences in behavioral profiles 
between subjects with large differences in age were quite 
stark. There are several examples in which usage of a 
computational model does yield a significant increase in 
classification accuracy (see later discussion; also see 
Brodersen et al., 2013) and may be more likely to do so 
if the patterns are more nuanced.

When these techniques are used to classify a mental 
illness such as SZ, there is concern about the validity of 
our labels. If SZ does not represent a homogeneous, 
clearly defined group of individuals but, rather, patients 
with various cognitive and mental abnormalities, how 
could we expect a classifier to predict such an elusive, 
ill-defined label? One potential way to deal with this 
problem is to use an unsupervised clustering algorithm 
to find a new grouping that is hopefully more sensitive to 
the neurocognitive deficits (Fair et al., 2012). As a proof 
of principle, we tested how well GMM clustering could 
recover age-groupings in an unsupervised manner. Note 
that in a clinically more relevant setting, we would not 
necessarily know the correct grouping ahead of time. 
Figure 4 shows the adjusted mutual information (which is 
1 if we perfectly recover the original grouping and 0 if we 
group by chance) for age when estimating two clusters 
based on six latent factors extracted using factor analysis 
(we did not include IQ in the factor analysis here). It is 

notable that the age cluster is not recovered at all when 
the DDM factors are used. Follow-up analysis suggests 
that the clustering selected by GMM picks up on some of 
the structure introduced by IQ (adjusted mutual informa-
tion = 0.1; not shown). This indeed represents a potential 
problem for this unsupervised approach, given that there 
are many sources of individual variation, such as age, IQ, 
or education, we might not be interested in when want-
ing clusters sensitive to pathological sources of variation. 
To address this problem, we regressed the contribution 
of IQ out of every factor to remove this source of varia-
tion. Running GMM on these new regressed factors, we 
observed that the algorithm now clusters into different 
age-groups (adjusted mutual information is 0.25, which 
corresponds to an accuracy of approximately 75%). This 
might thus provide a viable technique in removing 
unwanted sources of interindividual variation, given that 
variables such as age, IQ, or education could just be 
regressed out before doing the clustering—if these nui-
sance variables are known and measured.

The main issue here is that multiple factors can con-
tribute to clusterings of neurocognitive parameters. A 
different solution to this problem is presented in Figure 
5, in which we estimated a GMM allowing for an addi-
tional cluster (three clusters total). As the figure shows, 
even when not regressing IQ out of the parameters, the 
clustering solution shows a clear sensitivity to age, albeit 
none to IQ. Moreover, the use of summary statistics on 
RT and accuracy (mean and standard deviation) alone 
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Fig. 4. Results: adjusted mutual information scores (higher is better, 
where 1 would mean perfect label recovery and 0 would mean chance 
level) for age after estimation of a Gaussian mixture model (GMM) 
with two components on drift-diffusion-model (DDM) factors (see text 
for more details on the factor analysis) and on DDM factors after the 
contribution of IQ was regressed out. Error bars represent standard 
deviations assessed via bootstrap. Asterisks denote significantly higher 
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Fig. 5. Results: adjusted mutual information scores (higher is better, 
where 1 would mean perfect label recovery and 0 would mean chance 
level) for age after estimation of a Gaussian mixture model (GMM) 
with three components on drift-diffusion-model (DDM) factors (see text 
for more details on the factor analysis) and on DDM factors after the 
contribution of IQ was regressed out. Error bars represent standard 
deviations assessed via bootstrap. Asterisks denote significantly higher 
chance performance (*p < .05, ***p < .001). RT = response time.
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did not achieve a comparable level of recovery with the 
GMM (see Figs. 3 and 4). We also performed model  
comparison using BIC (not shown) to find the best num-
ber of clusters when we successively tested different 
numbers of clusters. We found that adding more clusters 
monotonically decreased BIC thus favoring models with 
many clusters, despite the added complexity of these 
models. This might not be surprising given that there are 
many other individual differences beyond age and IQ 
that could affect group membership. It does represent a 
problem for this approach, however, given that it is not 
immediately clear what level of representation should be 
chosen if a purely unsupervised measure such as BIC 
does not provide guidance.

In conclusion, we demonstrated how computational 
modeling and latent variable models can be used to con-
struct CMPs of individuals tested on multiple cognitive 
decision-making tasks. Using supervised machine-learn-
ing methods, we were able to achieve up to 95% accu-
racy in classifying young versus old age. Finally, after we 
regressed IQ out as a nuisance variable, unsupervised 
clustering was able to group young and old individuals 
on the basis of the structure of the CMP space.

Simulation experiment

Although the preceding example demonstrated a clear 
benefit in using the DDM for unsupervised clustering, the 
model parameters were less beneficial compared with 
simple behavioral summary statistics (RT and accuracy) 
when we performed supervised classification. This find-
ing raises the question whether DDM parameters derived 
on the basis of behavioral measures alone can, in prin-
ciple, provide a benefit in supervised learning over sum-
mary statistics. We thus performed a simple experiment 
in which we simulated data from the DDM generating 
two groups with 40 subjects each. The mean parameters 
of the two groups differed in threshold, drift rate, and 
nondecision time (exact values can be found in the 
Parameters Used in Simulation Study section in the 
Supplemental Material). We then recovered DDM param-
eters by estimating the HDDM (without allowing group 
to influence fit, which would be an unfair bias). Summary 
statistics consisted of mean and standard deviation of RT 
and accuracy. Figure 6 shows the area under the curve 
using logistic regression with Level-2 regularization in a 
10-fold cross-validation. As the figure shows, for this 
parameter setting, the DDM-recovered parameters pro-
vide a large benefit over summary statistics. During the 
exploration of various generative parameter settings, 
however, we also found that other settings do not lead to 
an improvement, similar to the result obtained on the 
aging data set. Further research is necessary to establish 

conditions under which DDM provides a clear benefit 
over using the simpler summary statistics.

Predicting brain state on the  
basis of EEG

The previously discussed age example clearly demon-
strated the potential of this approach in a data-driven, 
hypothesis-free manner. To complement this example, we 
tested whether it was possible, using computational meth-
ods, to classify patients’ brain state using computational 
parameters related to measures of impulsivity. We reana-
lyzed a data set from our lab in which PD patients 
implanted with deep-brain stimulators in the STN were 
tested on a reward-based decision-making task (Cavanagh 
et al., 2011). STN deep-brain stimulation is very effective 
in treating the motor symptoms of the disease but can 
sometimes cause cognitive deficits and impulsivity 
(Bronstein et al., 2011; Hälbig et al., 2009). Prior work has 
shown that when faced with conflict between different 
reward values during decision making, HC subjects and 
patients off deep-brain stimulation adaptively slow down 
to make a more considered choice, whereas STN deep-
brain stimulation induces fast impulsive actions. In this 
study, we showed that the degree of RT slowing for high-
conflict trials was related to the degree to which frontal 
theta power increased. DDM model fits revealed that theta 
power increases were specifically related to an increase in 
decision threshold, thereby leading to more cautious but 
accurate responding, whereas deep-brain stimulation 

DDM

0.91***

Classfiying Simulated Date

Ar
ea

 U
nd

er
 th

e 
Cu

rv
e

0.68*

Summary Stats

1.0

0.9

0.8

0.7

0.6

0.5
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the drift-diffusion model (DDM). DDM represents parameters recov-
ered in a hierarchical DDM fit ignoring the group labels. Summary sta-
tistics are mean and standard deviation of response time and accuracy. 
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prevented patients from increasing their threshold despite 
increases in cortical theta, which led to impulsive choice.

These findings lend support to a computational 
hypothesis based on a variety of data across species 
regarding the neural mechanisms for decision-threshold 
regulation. However, the findings were significant at the 
group level. Here, we tested whether we could classify 
individual patients’ deep-brain-stimulation status know-
ing only their DDM parameters (estimated from RT and 
choice data). We also included as a predictor the degree 
to which frontal theta modulated decision threshold 
(effectively, another DDM parameter). Specifically, we 
used logistic regression with Level-2 regularization and 
cross-validation. The features for the classifier were the 
difference in thresholds in the two brain states (on and 
off deep-brain stimulation) and the difference in the 
theta-threshold regression coefficients in high- and low-
conflict trials (on and off deep-brain stimulation). The 
classifier tries to predict which brain state a new subject 
is in on the basis of these difference parameters without 
informing it as to which one corresponds to the on or off 
state. We randomly sampled binary labels for each sub-
ject. The label indicated whether the features were coded 
relative to the on or off state. Intuitively, if the label were 
0 for a subject, the features would contain the change in 
regression coefficients (theta_diff_LC for low conflict and 
theta_diff_HC for high conflict) and threshold (a_dbs) 
when going from deep-brain stimulation on to off. 
Conversely, if the label were 1, the features would con-
tain the change in regression coefficients and threshold 
when going from deep-brain stimulation off to on. The 

job of the classifier then becomes the classification of 
whether an individual is in the deep-brain stimulation on 
or off state on the basis of the change in coefficients. The 
features based on raw RT data were created in a similar 
manner: Instead of using the regression coefficients of 
the influence of theta on decision threshold, we included 
the influence of theta directly on RT in low and high 
conflict (shown to be significantly correlated in Cavanagh 
et al., 2011) as well as the difference in mean RT between 
deep-brain stimulation on and off.

As shown in Figure 7, use of the DDM analysis greatly 
improved classification accuracy. It is interesting that of 
all the parameters fed into the classifier, the degree to 
which theta related to threshold adjustments in high-con-
flict trials was most predictive of deep-brain stimulation 
state (see Fig. 8 for absolute coefficients of the logistic 
regression model using three predictors). This result is 
consistent with that obtained in Cavanagh et al. (2011) 
but extends it to show how an individual patient’s brain 
state, as a biomarker of impulsivity, can be diagnosed.

We thus demonstrated that this DDM analysis can be 
combined with brain measures (here EEG, but other 
measures, such as fMRI, are just as viable) to predict very 
specific changes in brain state. Critically, the influence of 
EEG on RT alone, although significant in Cavanagh et al. 
(2011), did not allow for the same accuracy as the DDM 
analysis. Moreover, this example shows the value of 
being hypothesis driven, given that this link between 
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decision threshold and theta in high-conflict trials (which 
was recovered as the most discriminative feature) was 
suggested by earlier, biologically plausible modeling 
efforts (Wiecki & Frank, 2013).

Although aggregate performance scores (i.e., MPs, 
such as mean accuracy or mean RT) could, in principle, 
be used for classification and clustering, there are some 
unique advantages of using CMPs:

•• Computational models distill domain knowledge 
of the cognitive processes underlying task perfor-
mance. For this reason, they can be seen as feature 
extraction methods that reduce nuisance variables 
and find a process-based representation of cogni-
tive ability and, thus, make it easier for the classi-
fier to separate different groups.

•• Computational modeling can help with the task-
impurity problem. Aggregate performance scores 
summarize the contribution of a mixture of cognitive 
processes involved in a task. Computational models 
try to deconstruct behavior into its individual com-
ponents and identify separable cognitive processes.

•• Neurocognitive models often assume cognitive 
processes to be implemented by certain networks 
of the brain. For this reason, a computational 
parameter identified to have predictive power can 
be linked much easier to neural processes than 
aggregate performance scores.

Applications and Challenges

How could this research program improve mental-health 
diagnosis, treatment, and research? The ultimate hope is that 
psychiatric diagnosis could move away from a symptom-
based classification of mental illness and instead use quan-
tifiable biomarkers. CMPs could contribute to this by 
quantifying subjects’ cognitive abilities in terms of psycho-
logical-process variables that describe the efficacy of their 
neural circuitry.

Psychiatric drugs, as well as other forms of treatment, 
including deep-brain stimulation, have a high degree of 
variability in their efficacy across individuals. By identify-
ing pathological cascades and how they interact with 
treatment, we might be able to predict which form of 
treatment would be effective for an individual and opti-
mize treatment variables.

With regard to clinical research, computational psy-
chiatry can provide tools to link clinical symptoms to 
neurocognitive dysfunction that can open the door to a 
deeper level of understanding as well as provide novel 
targets for future studies into the causes of mental ill-
ness. For pharmacological research, assessment of a 
drug mechanism and its efficacy by clinical ratings alone 
is often noisy, hard to interpret, and biased as a result of 

the placebo effect. More objective and quantitative mea-
sures of neurocognitive function are likely to improve 
on these current issues. Moreover, many psychiatric 
drugs fail in Phase 3 clinical trials even though they 
show promising results for a small subset of enrolled 
patients. If that subset could be identified by cognitive 
testing, the output of the drug-discovery pipeline could 
be enhanced.

Although the potential fruits of this research program 
are thus promising, the expected challenges to be over-
come are nevertheless substantial. We cannot rely on DSM 
categories or a foundational understanding of the brain to 
bootstrap a new system in which to redefine mental ill-
ness. Among the main challenges is finding a good descrip-
tion of normal and abnormal cognitive function. Are there 
distinct clusters of cognitive dysfunction (and if so, how 
many), or is there a continuum with an arbitrary threshold 
on where mental illness begins? This article provides an 
example for how regressing out IQ can allow for better 
classification of age. In more complex psychiatric condi-
tions, we clearly may not always have access to variables 
that affect clustering of behavioral phenotypes in ways 
over which we would like to abstract.

Although the new transdimensional approach of RDoC 
by the National Institute of Mental Health is very promis-
ing, it must be open to additional levels of descriptions, 
such as the neurocognitive computations of the brain. 
Computational psychiatry could then be embedded in 
this framework and translate neurocognitive research 
findings to other domains, including genetics, neurosci-
ence, and clinical psychology.

Conclusions

In the light of the crisis in mental-health research and 
practice and the widely recognized problems with con-
ventional psychiatric classification based on the DSM, 
computational psychiatry is an emerging field that shows 
great promise for pursuing research aimed at understand-
ing mental illness. Computational psychiatry provides 
powerful conceptual and methodological resources that 
enable management of the various features of mental ill-
ness and the various challenges with which researchers 
must cope. More specific, by fitting computational mod-
els to behavioral data, we can estimate computational 
parameters and construct CMPs that provide measures of 
functioning in one or another cognitive domain. Such 
measures are potentially of value in research contexts 
previously organized around symptom-based classifica-
tion as implemented by the DSM. CMPs may function as 
both more precise targets of research and more powerful 
explanatory resources for understanding individual dif-
ferences, significant groupings, dynamic interactivity, and 
hierarchical organization of the brain.
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Decision making appears to provide a good frame-
work for studying mental illness, given that many disor-
ders show abnormalities in core decision-making 
processes. Strategically designed task batteries can pro-
vide the behavioral basis for studying such abnormalities. 
SSMs have a good track record in describing individual 
differences in decision making and can be linked to neu-
ronal processes. Hierarchical Bayesian estimation pro-
vides a compelling toolbox to fit these models directly to 
data because it (a) provides an uncertainty measure, (b) 
allows estimation of individual- and group-level param-
eters simultaneously, (c) allows for direct model compari-
son, and (d) enables deconstruction of symptoms by 
identifying latent clusters that correspond to different 
causal mechanisms. For example, impulsivity is a core 
symptom of many mental disorders, such as ADHD, 
OCD, Tourette’s syndrome, and substance-abuse and eat-
ing disorders (Robbins et al., 2012). Computational cog-
nitive models have already started to deconstruct this 
broadly defined behavioral symptom and have identified 
separate pathways that can all lead to alterations in 
impulse control (Dalley, Everitt, & Robbins, 2011), includ-
ing reduced motor inhibition (Chamberlain et al., 2006; 
Chamberlain et al., 2008), early temporal discounting of 
future rewards, insensitivity toward negative relative to 
positive outcomes (Cockburn & Holroyd, 2010; Frank, 
Santamaria, O’Reilly, & Willcutt, 2007), or an inability to 
adjust the decision threshold appropriately (Cavanagh  
et al., 2011; Frank, Samanta, et al., 2007; Mulder et al., 2010).

Ultimately, the hope is to find novel ways to describe 
and assess mental illness on the basis of objective com-
putational neurocognitive parameters rather than the cur-
rent subjective symptom-based approach. The bottom 
line is that computational psychiatry provides a combina-
tion of computational tools and strategies that are poten-
tially powerful enough to underwrite a research program 
that will lead to a new level of understanding of mental 
illness and to new ways to describe, investigate, and 
assess mental illness on the basis of identifiable and 
reproducible neurocognitive CMPs.
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