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Abstract

Adaptive sequential behavior is a hallmark of human cognition. In particular, humans can

learn to produce precise spatiotemporal sequences given a certain context. For instance,

musicians can not only reproduce learned action sequences in a context-dependent man-

ner, they can also quickly and flexibly reapply them in any desired tempo or rhythm without

overwriting previous learning. Existing neural network models fail to account for these prop-

erties. We argue that this limitation emerges from the fact that sequence information (i.e.,

the position of the action) and timing (i.e., the moment of response execution) are typically

stored in the same neural network weights. Here, we augment a biologically plausible recur-

rent neural network of cortical dynamics to include a basal ganglia-thalamic module which

uses reinforcement learning to dynamically modulate action. This “associative cluster-

dependent chain” (ACDC) model modularly stores sequence and timing information in dis-

tinct loci of the network. This feature increases computational power and allows ACDC to

display a wide range of temporal properties (e.g., multiple sequences, temporal shifting,

rescaling, and compositionality), while still accounting for several behavioral and neurophys-

iological empirical observations. Finally, we apply this ACDC network to show how it can

learn the famous “Thunderstruck” song intro and then flexibly play it in a “bossa nova”

rhythm without further training.

Author summary

How do humans flexibly adapt action sequences? For instance, musicians can learn a song

and quickly speed up or slow down the tempo, or even play the song following a

completely different rhythm (e.g., a rock song using a bossa nova rhythm). In this work,

we build a biologically plausible network of cortico-basal ganglia interactions that explains

how this temporal flexibility may emerge in the brain. Crucially, our model factorizes

sequence order and action timing, respectively represented in cortical and basal ganglia

dynamics. This factorization allows full temporal flexibility, i.e. the timing of a learned
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action sequence can be recomposed without interfering with the order of the sequence. As

such, our model is capable of learning asynchronous action sequences, and flexibly shift,

rescale, and recompose them, while accounting for biological data.

Introduction

Learning and manipulating sequential patterns of motor output are essential for virtually all

domains of human behavior. For instance, musicians can learn multiple precise spatiotempo-

ral sequences, each with their own rhythm. They can later modify the tempo to a learned

sequence, or even apply a completely different rhythm, e.g., perform a rock song with a bossa

nova rhythm. Thus, musicians can quickly and flexibly manipulate action timing in action

sequences. Similar capabilities abound in other domains, such as language production and

athletics.

Precisely timed action sequences are thought to emerge from dynamical neural patterns of

activity. In particular, sparse sequential activity patterns observed in basal ganglia [1–5], hippo-

campus [6–9] and the cortex [10–12] are thought to provide a temporal (ordinal) signal for

these action sequences to emerge. However, although seminal modeling work has been carried

out to understand how sequences emerge in neural networks [13–15], the mechanistic and

dynamic principles by which these neural patterns afford sequential flexibility remain

unknown. While several neural network models of corticostriatal circuits exist, these are typi-

cally applied to single shot stimulus-action pairings rather than sequential choices, despite

extensive evidence that basal ganglia is implicated in such sequential behaviors [16,17] (but see

[18] for a nuanced view).

We sought to develop a biologically plausible neural computational model of cortico-basal

ganglia circuitry sufficiently powerful to learn arbitrary sequences (e.g., scales) and easily

adjust their timing and expression on the fly. In particular, we aimed for the network to be

able to learn multiple arbitrary sequences and to allow for temporal asynchrony, shifting,

rescaling, and compositionality. We define these terms more precisely below.

Neurocomputational models of sequence production can be broadly categorized in three

classes, each with their advantages and disadvantages in computational power and their ability

to account for behavioral and neural data.

• In associative chain models (also termed synfire chain [19–21]), activation flows sequentially

from one neuron (or neuronal population) to another through feedforward connections

[22]. The sequence emerges from the hard-wired structure of the chain. Associative chain

models produce sequential and persistent neural activity, as observed empirically [23,24].

They can deal with inherent compression of sequential activity, and learn to produce each

action in the sequence at any desired precise time [22]. However, these models are not

equipped to facilitate temporal rescaling: the finding that learned action sequences can be

sped up (compressed) or slowed down (dilated) without the need to overwrite previous

learning [25,26]. Moreover, it is unclear how these models implement temporal shifting: the

ability to start the action sequence earlier or later in time, without modifying the action

sequence structure. Chain models also do not straightforwardly allow networks to encode

more than a single sequence, given their hard-wired nature.

• Cluster-based models also involve a chained sequence of activation, but this sequence is

learned via cell assemblies (clusters) that are chained within a recurrent neural network

(RNN), for instance, through spike timing dependent plasticity [27–32]. Hence, the chaining
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emerges from synaptic learning rather than being hard-wired. Once the chain is learnt, a sin-

gle initial input pulse to the RNN induces a sequential activation whereby activation flows

from one cluster to another. Cluster-based models allow temporal rescaling [28] while also

producing sequential and persistent patterns of activity [27]. Furthermore, they provide a

simple mechanism allowing a network to encode multiple sequences. By selectively activat-

ing a specific cluster within the RNN, only the cluster “in line” (i.e., connected to the previ-

ous cluster) is activated sequentially. Therefore, the RNN can encode multiple sequential

actions by learning (and selectively activating) distinct cluster chains encoded in the connec-

tivity matrix [28]. Yet, it is unclear how these models could facilitate action sequences with

temporal asynchrony: the ability to learn, and flexibly manipulate, motor sequences with

varying inter-action intervals (an advantage of associative chain models [22]). Indeed, clus-

ter-based models can flexibly manipulate sequences; however, these sequences are typically

iso-synchronous [28]. In addition, although emergent connectivity within and between clus-

ters (or units) can arise via unsupervised learning [33], this connectivity crucially depends

on the sequential nature and timing of the teaching input signal to the distinct subsets of the

RNN.

• State-space models [34] do not assume a chaining structure at all. Based on a (sparse) ran-

domly connected RNN structure, these models produce a neural trajectory that evolves in

high-dimensional space which can be used as a temporal basis to perform a range of complex

tasks [35]. However, to reliably reproduce the same task, neural trajectories need to be robust

to noise. To that end, state-space models typically harness a noiseless neural trajectory

(based on any random connectivity) which is then subsequently used as a continuous teach-

ing signal in presence of noise [34,36,37]. Alternatively, each individual unit in the RNN can

be taught via supervised learning to reproduce the neural activity of an empirical dataset

[38]. The resultant learned neural trajectory [39] acts as a robust travelling wave that can be

decoded by downstream neurons to produce highly complex and flexible motor sequences

[40]. However, to reproduce reliable motor sequences, state-space models require highly

supervised teaching signals specifying the full neural trajectory and non-biological learning

mechanisms (e.g., residual least squares learning algorithms [38,41]). Recent work has

shown that biological learning rules using local information can effectively learn complex

(sequential) tasks [42–44] (albeit not as effectively as non-biological rules). State-space mod-

els can also implement a rudimentary form of temporal rescaling, in that they can rescale the

timing of the execution of a single motor response [45], and iso-synchronous action

sequences (e.g., index tapping at a steady rhythm) [34]. However, these models do not sup-

port temporal rescaling in the more general case (i.e., asynchronous action sequences). Fur-

thermore, given their focus on cortical networks, these models do not address the growing

evidence that action sequences unfold over multiple levels within cortico-basal ganglia-tha-

lamic loops, with attractor state switches occurring in the prefrontal cortex [46] and action

timing represented in the basal ganglia [2,4].

• Finally, none of the models have tackled how a learned sequence at a particular tempo can

be executed with a completely different tempo which may have been learned for a different

sequence (e.g., applying a bossa nova rhythm to a rock song). We refer to this ability as tem-
poral compositionality.

In sum, all models can account for distinct functionalities in sequence production, but fail

to provide a plausible neurocomputational mechanism from which most fundamental abili-

ties–temporal asynchrony, shifting, rescaling, compositionality–can emerge and interact.

These limitations arise from a property common to all action sequence models: action identity,
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timing and sequence order are represented jointly within the recurrent weights of the network.

In the reinforcement learning domain, such joint coding of task features facilitates only rigid

forms of generalization and transfer, whereas the ability to code task features compositionally

facilitates more robust transfer [47] that can better account for human behavior [48]. However,

the mechanisms for such compositionality in neural networks remains unknown.

Here, we develop a biologically inspired (we further discuss biological plausibility of our

model in the Discussion) RNN called the associative cluster-dependent chain (ACDC) model.

By combining strengths of the associative chain and cluster-based models, ACDC accounts for

biological data. As we show below, the novelty in our model is twofold. First, we propose a bio-

logically-plausible model of cortico-basal ganglia-thalamic loops that decomposes the func-

tions of cortex and basal ganglia and learns sequences based on simple local and (biologically

motivated) supervised learning rules. Second, this decomposition affords greater flexibility in

generating desired action sequences, supporting temporal asynchrony, shifting, rescaling, and

compositionality in a single model. Crucially, our model factorizes action sequence features

within the circuit, with cortical RNN representing latent states within a sequence, and BG con-

trolling both the timing of the transitions from one state to the next and which actions are

linked to sequence positions. Factorizing order and timing information by storing them sepa-

rately in a premotor cortical RNN, which is dynamically gated by a basal ganglia-thalamus

module, affords independent (and flexible) manipulation of sequence order and action timing,

and thus increases computational flexibility.

Results

We start by providing the reader with an intuitive functioning of the ACDC model (Fig 1).

The Methods section provides detailed mathematical formulation and further grounds the

model within the context of neurophysiological observations on the premotor cortex (PMC)

and the BG. The ACDC model comprises a context module encoding the sequences to be exe-

cuted (e.g., which song is to be played), and is provided as input to a RNN. This input targets a

subset of RNN excitatory units, which cluster together via Hebbian learning, encoding the first

latent state in the sequence (but not its specific action). In turn, the G (for Go) units in the BG

learn (also via Hebbian learning) to link this RNN cluster to the appropriate action (blue

arrow 1 in Fig 1), allowing it to accumulate evidence for the first action in the sequence. The G

node, part of a G-A-N triplet, projects excitatory connections to its correspondent A (for

Action) node (blue arrow 2 in Fig 1) which learns (via a delta rule) weight values for these pro-

jections to fine-tune the appropriate timing for this particular action. The A node represents

motor thalamus, and its activation has two important consequences. First, it sends a thalamos-

triatal back-projection to excite the N node (blue arrow 3C in Fig 1), which finally inhibits the

G node via lateral connections from D2 to D1 medium spiny neurons [49]. Second, the tha-

lamic A node triggers a transition in the RNN, via a combination of excitatory projections to

another RNN cluster (blue arrow 3A in Fig 1), and to a shared inhibitory neuron (blue arrow

3B in Fig 1), consistent with evidence that thalamic units target both cortical excitatory and

inhibitory neurons [50–52]. Thus, whenever an action is executed, the ratio of excitatory to

inhibitory inputs to the RNN is perturbed in a way that induces a transition from the current

cluster to the next cluster in line (targeted by the feedback projections of the current A node,

blue arrow 3A in Fig 1) to be expressed (see Methods for more details).

Learning takes place over fast and slow time scales. Hebbian learning is fast and unfolds

within the dynamics of a trial (i.e., during the evolution of an action sequence). In contrast, the

delta rule is slow and is implemented between trials, via a signed error computed through the

discrepancy between the action timing provided by the tutor and the generated action. Action
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sequences are learned sequentially: the model learns to produce the first action at the appropri-

ate time, then the second, and so forth. Sequential learning improves motor execution [53–

57], and is at the base of several theoretical models of motor sequence learning [58–60].

At a higher-level, order is encoded as a sequence of attractor states represented by persistent

activation in distinct excitatory RNN unit clusters (cell assemblies). These clusters do not rep-

resent the actions themselves but rather their abstract order; the specific actions to be executed

are learned via RNN projections to the BG and their timing is encoded in the weights of topo-

graphic projections to the motor thalamus. To optimize precise action timing, the weights

between action identity (G unit activity) and execution (timing for a given action conditional

on G unit activity) are learned via supervised learning (i.e., delta rule), perhaps summarizing

the role of cerebellum in error corrective learning. This allows us to model tasks in which a

tutor provides feedback (e.g., [61]; see Methods). Finally, feedback to the RNN from thalamic

activity ultimately creates a cortico-basal ganglia loop. Each loop subtends the appropriate

action order, identity and timing execution, allowing precisely timed action sequences to

unfold. As we show below, our model architecture, allowing to uniquely encode timing

Fig 1. Simplified ACDC model architecture (left). An input context layer indicates which sequence needs to be learned or executed. The premotor

cortex (PMC) is subtended by a RNN that learns (via Hebbian learning) to form clusters of excitatory neurons encoding order in the sequence, and

which are regulated by an inhibitory neuron. In turn, each cluster learns to trigger action plans, topographically represented in the BG. Specific actions

are executed in the thalamus at specific times based on learned connections from BG to thalamus. Motor activity is then fed back to the RNN, closing

the cortico-basal ganglia loop. The unfolding of several iterations of this loop is responsible for the execution of precisely timed action sequences.

Dashed lines are plastic connections, and the associated learning rule is indicated (Hebb = hebbian learning, Delta = delta rule). Note that the plastic

connections from action identity to action execution correspond solely to the blue projection n˚2 on the detailed architecture figure. ACDC full model

architecture (right). A. Input layer: codes for contexts indicating the sequence to be learned/produced in a N length binary vector. B. RNN: represents

recurrently interconnected neurons of the PMC, composed of a subset of interconnected neurons (i.e., clusters) that can give rise to sequential

activation states after learning via cortico-basal ganglia loops. All excitatory nodes in the RNN project to a shared inhibitory neuron (orange node),

which in turn inhibits all excitatory neurons (purple nodes; shown for just one cluster for visual simplicity). C. The BG: composed of two neuron types

G (Go cells) and N (No Go cells). Go nodes accumulate evidence over time and excite Action (A) nodes in the BG output /thalamus layer. Once activity

in a Go node reaches a specific threshold, the corresponding action is executed. Once executed, Action nodes reciprocally activate No Go nodes which

in turn suppress Go nodes, shutting down action execution. The thalamus: is composed of Action nodes whose activity represents action execution.

The jth Action node selectively projects excitatory connections to the i+1th cluster in the RNN, the shared inhibitory neuron and the jth No Go node in

the BG. Light blue arrows represent the ith cortico-basal ganglia loop instance. The subindex i refers to the ordinal position in the sequence, i.e. the

order the action possesses in the sequence. The subindex j represents the action that is associated to the ordinal position in the sequence.

https://doi.org/10.1371/journal.pcbi.1009854.g001
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information in a distinct subset of the network (BG) than the one encoding order (PMC), will

prove to display advantageous properties. In particular, being able to flexibly control, via exter-

nal stimulation, the dynamics of the BG will result in a model displaying several temporal flexi-

bility properties.

Learning precise spatiotemporal sequences

Simulation 1: Learning temporally asynchronous action sequences. Fig 2 shows simula-

tion 1, where the ACDC model learns to produce a precisely timed, temporally asynchronous,

action sequence (here, for 6 actions). The goal of the model is to produce each action sequen-

tially at the appropriate time, here at 200, 250, 400, 700, 750 and 900 ms. This is an arbitrarily

chosen timing sequence; the model can (learn to) produce any timed, synchronous (see below)

or asynchronous, sequence. Fig 2A shows how the activity of each Action node progressively

reaches the optimal time (depicted by color coded vertical dashed lines), reflected in a decrease

in the action timing error (Fig 2B) and in the weight changes between Go and Action nodes

(Fig 2C).

Fig 2D depicts the RNN connectivity matrix after learning (weights are zero before learn-

ing). Excitatory projections to the RNN from the input and motor layer are pseudo-random,

with the restriction that two different projections never excite the same RNN neuron. These

pseudo-random projections make it hard to visually identify the presence of clusters in Fig 2D;

importantly however, this connectivity matrix does induce clustered dynamics (see S2 Video).

Fig 2E shows how the ith cluster in the RNN learns to be (almost) selectively wired with the jth

Go node. Finally, for completeness and transparency, Fig 2F portrays the dynamics of G (left)

and N (right) nodes after learning of the sequence.

Temporal flexibility properties of the ACDC model

Having established learned RNN clusters during sequences, we now focus on the flexibility

properties of the ACDC model after learning, without having to overwrite learned weights.

First, we show that a previously learnt action sequence with temporal asynchrony can be flexi-

bly reproduced. Second, we show that this sequence can be initiated earlier or later in time; we

call this property temporal shifting. Third, we demonstrate how action sequences can be com-

pressed or dilated, i.e., temporal rescaling. Fourth, we show how a given ordered sequence can

be produced with a completely different tempo, a property that we refer to as temporal compo-
sitionality. Fifth, we describe how the model can also output sustained action execution.

Finally, we show how the ACDC model can learn (a part of) the Thunderstruck song, which is

then flexibly played on a bossa nova tempo; thereby recapitulating the temporal flexibility

properties.

Simulation 2: Reproduction of previously learnt action sequence displaying temporal

asynchrony. In simulation 1, we demonstrated that the ACDC model can learn precisely

timed, temporally asynchronous, action sequences. In simulation 2, we freeze the weights and

simply observe that the network can reproduce the sequence maintaining its precision in

action timing (Fig 3A).

Simulation 3: Temporal shifting. The previous action sequence can be shifted in time,

i.e., initiated earlier or later. Importantly, this shift can occur without changing the timing

between actions (i.e., sequence timing is preserved). The ACDC model achieves flexible tem-

poral shifting by implementing an additive positive (to start the sequence earlier) or negative

(to start it later) input to the first Go node of the sequence, analogous to the top-down input

from pre-SMA to striatum thought to bias starting points for evidence accumulation [62]

(although similar effects could be implemented by dopaminergic modulation; see Discussion).
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Fig 2. ACDC’s learning dynamics. A. Learning a precisely timed action sequence. Each action execution (A node activation) is

progressively shifted towards the optimal action time (depicted by the color coded vertical dashed line; x-axis represents time). Learning

progresses from darker to brightest colors. The ’black trials’ are early learning trials where the different shades are not distinguishable B.

Learning evolution. Color coded traces represent the evolution of the error as a function of trial number for each action in the sequence.

Learning unfolds sequentially, whereby timing errors are minimized for the first action before the second action starts learning.

Therefore, each action (except action 1) starts off with a plateaued error level until the preceding action reaches the optimal time. Some

action timings are learned faster than others because their optimal time weight value is closer to their initial value. The error is computed

by subtracting the observed from the desired response time and plotted in seconds. C. BG weights encode time. Action timing is

learned by changing the weights from BG Go nodes to thalamus Action nodes. The left and right panel show respectively the weights
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In simulation 3, we inject an additional input of +1 or -1 to the first Go node during the first

100 ms of the 1 second time window. Fig 3B shows how the sequence is shifted earlier in time

for the positive input (left panel) and later in time for the negative input (right panel). More-

over, Fig 3C shows that as this additional input lasts longer, the distance (in time) between the

first action of the shifted sequence and that of the original sequence increases linearly.

Simulation 4: Temporal rescaling. Musicians can learn a rhythm, i.e., a precisely timed

action sequence, and instantly temporally rescale (compress or dilate) that rhythm without

additional learning. In our model, flexible rescaling is achieved by sending a multiplicative

input (ρ) to all Go nodes simultaneously (i.e. the ρ parameter multiplies the net input in Eq 5,

see Methods); if ρ> 1 or 0< ρ< 1 the sequence is respectively compressed or dilated. Fig 3D

shows temporal rescaling for ρ values of 1.2 (compression, left panel in Fig 3D) and 0.9 (dila-

tion, right panel in Fig 3D). Importantly, temporally rescaling the sequence does not affect the

temporal structure of action sequences. For 100 values of ρ, ranging from 0.9 to 1.2, we com-

puted the relative ratio between a sequence of 3 actions. The ratio was computed by subtract-

ing the time of action 1 from that of action 2 (subtraction 1), then the time of action 2 from

that of action 3 (subtraction 2), and dividing subtraction 2 / subtraction 1. We performed this

computation for the action triplets 1-2-3, 2-3-4, 3-4-5 and 4-5-6, and summed the ratios. Fig

3E shows that this sum of ratios stays constant (mean = 7.5, s.d. = 0.12), thereby indicating

that temporal structure is maintained albeit rescaled. Note that rescaling also induces a tiny

shift in the sequence. This is an emergent property of a global rescaling signal to all Go nodes

of the network; this slight shift could be avoided by targeting all but the first Go node with the

multiplicative term.

Simulation 5: Temporal compositionality. Musicians must also be capable of temporal

compositionality; that is, applying a desired tempo to an action sequence that was learned in a

different tempo (e.g., apply a bossa nova tempo to a rock song; see below). In simulation 5, we

assume that desired tempos are learned and extracted from other sequences, which then can

then be used as a dynamical multiplicative input signal to all Go nodes (Fig 3F right panel).

Therefore, whereas temporal rescaling makes use of a constant ρ multiplicative input value to

the Go nodes, temporal compositionality is achieved by a dynamic multiplicative input (the ρ
multiplicative input value follows the blue trace in the right panel of Fig 3F). The result is to

produce the learned sequence (described in Fig 3A) to the tempo described by the multiplica-

tive signal. Fig 3F (left panel) shows how the time of each action in the sequence does not

accord with the learned tempo (color coded vertical dashed lines), but is rather produced at

the novel desired timing (vertical solid lines).

Simulation 6: Sustained motor activation. The ACDC model is also capable of produc-

ing sustained motor activation for any element within the sequence, for instance sustained

notes in a musical scale. Our model can achieve sustained motor activation via two mecha-

nisms. First, via a flexible mechanism similar to that of rhythm compositionality, a multiplica-

tive signal (ρ = 0.1) is sent to the Go node during the period in which sustained motor

values before and after learning. For instance, the second action (red trace in B) starts off being produced too slowly. Hence, weights

increase until they produce the optimal action time for action 2. Color bars indicate weight values. D. RNN connectivity matrix after

learning. The RNN connectivity matrix is initialized as a blank slate (all values are set to 0). After learning, the RNN connectivity matrix

displays the appearance of clusters, whereby groups of 20 neurons are fully interconnected with each other and not connected with other

neurons in the RNN (please refer to S2 Video for better visualization of clusters and their transitions as the sequence unfolds). Color bar

represents weight values. E. RNN ith cluster learns to project to jth Go node (see Fig 1, ’Detailed architecture’, for the meaning of the

indices). The top panel shows the randomly initialized weight values between the RNN excitatory units (before learning). The bottom

panel shows how each cluster (represented by a subset of RNN neurons) is connected to a specific Go node after learning. Color bars

represent weight values. F. Dynamics of G (left panel) and N (right panel) nodes after learning.

https://doi.org/10.1371/journal.pcbi.1009854.g002
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activation is needed. Fig 4 left shows that applying such a signal between the second and third

actions allows motor activation of the second Action node (red trace) to be sustained until the

third action is executed (purple trace). Second, via a learning mechanism, the weight value

between a specific Action-NoGo node pair can be decreased to induce sustained activation of

the Action node (Fig 4, right). Note that we focus here on the mechanistic properties of the

Fig 3. Temporal properties of the ACDC model. A. Simulation 2: Reproduction of action sequence with temporal asynchrony. Each action (i.e. A

node activation, color coded) is produced at the precise desired time indicated by the vertical dashed line (also color coded), within a 1 second time

window. Inter-action interval varies as the sequence unfolds. B. Simulation 3: Temporal shifting. A precisely timed action sequence can be started

earlier (left panel) or later (right panel) by respectively injecting an additional positive or negative input to the first G node (i.e. associated to

accumulating evidence in favor of the first action). Importantly, the temporal structure of the action sequence is not altered. C. Simulation 3: Temporal

shifting varies linearly with additional input time. Applying longer input times leads to increasingly earlier or later shifts in sequence initiation times,

depending on whether additional input is positive (circles) or negative (squares). D. Simulation 4: Temporal rescaling. Action sequences can be

compressed (left panel) or dilated (right panel) by adding a multiplicative input to all G nodes simultaneously. E. Simulation 4: Temporal rescaling

preserves action sequence structure. Importantly, when temporal rescaling is applied to the action sequence, the relative timing between each action

(i.e. the structure) is preserved. Here, we plot the sum of ratios (y-axis, see main text) as a function of the multiplicative input ρ (x-axis). The sum of

ratios value (black circles) stays constant as a function of ρ, indicating a preserved temporal structure even though the sequence is rescaled. F.

Simulation 5: Temporal compositionality. The left panel shows how A nodes activity are activated on the tempo described by the multiplicative signal

(left panel). Vertical dashed and solid lines on the left panel indicate the timing of each action for the previous and novel tempo respectively. As shown,

the respective A nodes become active on the novel tempo.

https://doi.org/10.1371/journal.pcbi.1009854.g003

PLOS COMPUTATIONAL BIOLOGY The ACDC model of action sequence flexibility

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009854 February 2, 2022 9 / 33

https://doi.org/10.1371/journal.pcbi.1009854.g003
https://doi.org/10.1371/journal.pcbi.1009854


model, rather than proposing how the Action-NoGo weights may be learned to support sus-

tained activation.

Simulation 7: The ACDC model in action and sound. Here, the ACDC model learns to

produce the second guitar riff of ACDC’s (the rock group) Thunderstruck song. This riff is

composed of 16 actions hitting six different notes (B5, A5, G#5, F#5, E5, D#5) following an iso-

synchronous rock tempo (Fig 5A). By allowing the model to record each note corresponding

to each sequential action (following Fig 5A), the ACDC model was able to musically reproduce

the riff (S1 Audio file). Notably, S1 Video shows that the RNN dynamics represent sequential

attractor states, encoding order and leading to the production of each action (and sound) in

the sequence (for a slowed down demonstration of similar dynamics with a less complex action

sequence see S2 Video below). Next, we leveraged temporal compositionality to allow the

ACDC model to play the riff but now based on a bossa nova tempo without further training

Fig 4. Simulation 6: Sustained motor activation. Both panels demonstrate that the ACDC model is able to output sustained motor activation as

desired within a sequence. The left panel shows the results of applying a multiplicative signal (ρ = 0.1) to the second No Go node, inducing a sustained

activation of the second action (red trace). The right panel shows a similar effect this time by decreasing the value of the Action-No Go connection of

the third action, in turn inducing sustained activation of the third Action node (purple trace).

https://doi.org/10.1371/journal.pcbi.1009854.g004

Fig 5. Simulation 7: the ACDC produces the Thunderstruck song. A. Second guitar riff from ACDC’s (the group) Thunderstruck song. The riff is

composed of 16 sequential actions creating a isosynchronous rock rhythm over a window of 3500 ms (given a 140 bpm tempo). Each action is

associated to a color coded note). B. Generic bossa nova tempo. We imposed the model to replay the thunderstruck rock tempo song following a bossa

nova rhythm whose tempo is described by the blue trace multiplicative signal. C. Flexible generation of the Thunderstruck song following a bossa

Nova tempo. When the multiplicative input (Fig 3B) is given to the Go nodes of the BG, the ACDC model flexibly reproduces the Thunderstruck song

but now following the bossa nova tempo.

https://doi.org/10.1371/journal.pcbi.1009854.g005
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(Fig 5B and 5C and S2 Audio file). Further note that, altogether, this simulation encapsulates

distinct temporal flexibility properties. First, flexibly reproducing the Thunderstruck song fol-

lowing a bossa nova tempo requires the ability to generate an action sequence with temporal

asynchrony. Second, temporal rescaling is applied to parts of the song as the sequential execu-

tion of consecutive notes need to be sped up or slowed down. Third, the model displays its

ability to produce sustained motor activation (see S2 Audio file).

Behavioral and neurophysiological simulations

Simulation 8: Behavioral simulation. In the motor timing literature, a ubiquitous finding

is scalar variability: when asked to produce an action after a specific time interval, the variabil-

ity in action execution timing increases with the length of interval timing [63–66]. In simula-

tion 8, our model learns to produce a single action at distinct interval timings (i.e. 200, 400,

600 and 800 ms). For each timing, the model produces 500 reaction times (RTs), from which

we extract the standard deviation (SD), and reproduce this process for 100 simulations and

two noise values (gaussian random noise with zero mean and SD of 0.01 or 0.05 is added to

the model Eqs 3–5 and 7). Reproducing empirical patterns, Fig 6 shows that the SD of RTs

increases as a function of interval timing, and thereby demonstrates that the ACDC model dis-

plays scalar variability (see also [67]). Furthermore, the SD value range also increases with

noise values. This effect is explained in our model by having a fixed negative bias on the Action

nodes in the motor layer. Such a feature reduces to having an accumulation-to-bound process

for action execution. Hence, given a specific amount of noise, longer RTs are associated to

wider RT distributions (i.e. larger SD, [68]). The underlying reason is that the effect of noise

on evidence accumulation is amplified as time elapses.

Simulation 9: Neurophysiological simulations. Two other ubiquitous findings are per-

sistent and sequential neural activity. First, several studies have observed persistent neuronal

firing rates in temporal [69–71], parietal [72–75], premotor [76] and prefrontal [77–79] corti-

ces whenever an agent has to hold in working memory task-relevant stimulus features (e.g.,

spatial location). Theoretical work suggests that persistent activation patterns emerge from

recurrently connected networks that settle in one of multiple potential attractor states [80–82].

Second, as motivated in the introduction, sequential activity has also been observed in distinct

sequential behaviors such as spatial navigation [8] and bird song [83–86].

Fig 6. Simulation 8: The ACDC model displays scalar variability. Left (low noise value = 0.01) and right (high noise value = 0.05) panels show that

the standard deviation of RTs increases as a function of the desired action time (i.e. interval timing). Moreover, higher noise values increase the range of

standard deviation. Each dot is the result of 1 out of 100 simulations for each interval timing.

https://doi.org/10.1371/journal.pcbi.1009854.g006
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Interestingly, recent work suggests that sequential switches in attractor states (and hence

persistent neural activity) occur during behavioral switches in action sequences [87]. There-

fore, persistent and sequential activity may emerge from the same mechanism. In our model,

the RNN activation dynamics display such switches from one attractor to another as the action

sequence unfolds. Each attractor state is associated to the persistent activity of neurons form-

ing a cluster in the PMC (RNN). When the action associated to that attractor state (i.e. the jth

action associated to the ith order) is executed, this triggers a switch in attractor state in the

RNN (via cortico-cortical projections from M1 to PMC), as empirically observed [87]. In sim-

ulation 1, the ACDC learns to produce an arbitrary sequence of 6 actions, each with their own

desired execution time within a window of 1 sec (i.e. at 200, 250, 400, 700, 750, 900 ms). Fig 7A

shows the RNN dynamics after learning. Each cluster of activation displays persistent neural

activity until the action is executed, which triggers the following cluster of persistent neural

activity. Hence, activity in the RNN is both persistent and sequential in nature.

Fig 7. Simulation 9: A. Sequential and persistent activation of clustered neural populations within the RNN. The y-axis

represents each RNN unit, the x-axis represents time. The first cluster is activated by the input layer, and maintains persistent

activity until the first action is executed. At that moment, via excitatory projections from the Action nodes (Fig 1C) to the

following (i+1th) cluster in the RNN (Fig 1B) gets activated, and thus displays persistent activation, and so forth via the cortico-

basal ganglia loops (light blue arrows in Fig 1). Color bar represents firing rate. B. Sequential and sparse activation in the BG.

The y-axis represents the G unit activity over time (x-axis). Each G unit responds in a sequential and transient manner, as has

been shown in neurophysiological single-cell recordings of the BG (e.g., [4]). Color bar represents normalized firing rate.

https://doi.org/10.1371/journal.pcbi.1009854.g007
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To gain better visual intuition on the RNN dynamics, we performed dimension reduction

on the row space of the unit (i.e., neuron) by time matrix displayed in Fig 7A. We then dynam-

ically plotted the first 3 principal components (PCs) as a function of time. S2 Video shows that

each cluster of persistent neural activity acts as an attractor state (within the highly dimen-

sional space of the RNN), and the dynamics in the RNN switch from one attractor to the other

when an action is executed, again displaying both persistent and sequential neural dynamics.

The qualitative pattern of the RNN sequential and persistent dynamics (Fig 7A) is different

than observed in rodent [2,8,11] or monkey [1] neurophysiological recordings, which reveal

sequential sparse activation (individual neurons display quick and transient activation as

behavior unfolds). Notably however, the Go nodes in the BG module of our model display

qualitatively similar sequential and sparse activation patterns as that seen empirically in the

BG (Fig 7B; see Figs 2A, 3B, 1E and 8C, respectively of [2,3,5,88]).

Model regimes and robustness

A useful model should be robust to variations in its key parameters and/or should exhibit

regimes in which the model exhibits qualitatively different features [23,89–91]. To examine the

sensitivity of our main results to parameter variations, we start by exploring the model regimes

in a network with fixed connectivity. We focus on the recurrent weights within the excitatory

RNN units, as well as the weights from the G to A units, which we consider similar to recurrent

and feed-forward weights in traditional associative chain models [24]. We explore the neces-

sary weight combinations for the model to execute an entire sequence of 6 actions, within a

temporal window of 1 sec (as described in the learning subsection). Fig 8A shows that weight

values from G to A units subtend the number of actions that can be executed within the 1 sec

temporal window: higher G to A weights progressively lead to sequences with more actions.

Notably, recurrent weight values do not influence the model’s ability to produce the sequence

(no impact of variation along the x-dimension). In contrast to previous models [23], recurrent

and G to A weights (i.e., feed-forward weights) do not control the model regimes, i.e., whether

the model produces damping, sequential or persistent activity. This difference emerges from

divergent architecture between our and previous models. Persistent activation of each action

during the entire sequence cannot emerge in our model. Indeed, action execution is automati-

cally associated to a switch in attractor state within the RNN. This hinders the previous state to

continuously activate its G unit and hence cannot provide evidence for the previous A unit.

Therefore, if any, persistent activation of an action can be maintained only up until the next

action is executed.

As shown in simulation 6, one way of controlling persistent activity is through the weight

values of the A to N unit projections: activation of a particular action shuts down that action

via feedback projections to N units, thereby reducing persistent activation. To quantify persis-

tent activation across an action sequence, we derive a “sustainability” measure by computing

the area under the curve (AUC) for each A unit activity that falls above the value of 0.5, sum-

ming the individual AUCs, and normalizing by the total sequence time (i.e. 1000 ms). Fig 8B

shows a heatmap of this measure as a function of A-N and G-A weight values. Sustainability

increases with lower values of A-N weight values (note that we plot this measure only for

parameter combinations that produced a full six action sequence; otherwise we set this value

to 0). Interestingly, the entire range of sustainability is covered by the A-N weight values over a

broad range of G-A weight values, from transient pulse (blue values) to sustained actions (red

values).

As noted above, a prominent feature of our model is that action execution triggers switches

in RNN attractor states through parallel projections to its excitatory and inhibitory units. For
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the switch to take place, the gain must be stronger on projections to RNN excitatory vs inhibi-

tory units (i.e. γE> γI), allowing the previous cluster to shutdown while also activating the

next cluster in line. To explore the robustness of this property, we used the learned sequence

in simulation 1, and parametrically modulated both gain values (γE and γI values are repre-

sented on the y and x dimension, respectively). As depicted in Fig 8C, a vast range of gain

Fig 8. Model regimes and robustness. A. Number of actions within a sequence as a function of feedforward and recurrent weights. The y- and x-

axis represent G-A and recurrent weight values, respectively. As depicted, the G-A weight values control whether the model can produce six actions

within a 1 sec temporal window, irrespective of the recurrent weight values. The color bar codes the number of actions that are produced within the

sequence; yellow for a full sequence (six actions) and dark blue for no actions. B. Action sustainability. The heatmap reflects the sustainability measure

magnitude (warm colors coding for higher values) as a function of A-N and G-A weight values. As depicted, action sustainability increases with

decreasing values of A-N weights, over a large range of G-A weight values. C. Model regime as a function of the γE and γI parameters. The y- and x-

axis represent γE and γI parameter values, respectively. As depicted, the model can reproduce fully and precisely a learnt action sequence within a broad

range of parameter combination respecting the γE> γI inequality. Color bar is identical to A. D. RNN input overlap. The model can produce a full six

action sequence up to 35% of input overlap to the RNN between contiguous actions; i.e. activating 35% of the previous and subsequent cluster in the

RNN. Stronger overlap leads to a break in the sequence after 2 actions. Color bar is identical to A and C.

https://doi.org/10.1371/journal.pcbi.1009854.g008
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combinations allows the model to fully and precisely reproduce the learnt sequence (yellow

space), as long as γE> γI. Note that some combinations allow for a partial reproduction of the

sequence.

Finally, one simplifying assumption in the model is that feedback inputs to the RNN are

orthogonal and do not overlap (i.e., projections from distinct A units never activate the same

RNN excitatory units). In Fig 8D we relaxed this assumption and progressively increased the

percentage of overlap between contiguous A unit inputs to the RNN. We observed that the

model can continue to produce a complete six action sequence as long as the overlap between

inputs of contiguous actions does not surpass 35%, at which point the model fails to reproduce

a full sequence and only manages to produce the two first actions as two quick pulses. Further,

note that the effect of input overlap is independent of the G-A weight values (taken from a

range that produces a full sequence, see yellow area in Fig 8A).

Discussion

The ACDC model combines the strength of associative chains (e.g., [23]) and cluster-depen-

dent (e.g., [27]) models, while also formalizing how the BG contribute to recurrent cortical

dynamics in sequential behaviors. Our model factorizes action order, identity, and time, which

are represented in distinct loci of the cortico-basal ganglia neural network. Crucially, factoriz-

ing these features provides the network with the ability to independently manipulate the build-

ing blocks of precisely timed action sequences, thereby increasing the computational power of

our model. This increased power is illustrated through several interesting emergent properties.

First, we demonstrated that the ACDC model can learn and reproduce precise spatiotemporal

action sequences with temporal synchrony or asynchrony. Second, our model displays several

flexibility properties: temporal shifting, rescaling and compositionality, and sustained motor

activation; culminating in our model’s ability to reproduce the Thunderstruck song and

change it to a bossa nova tempo. Third, the model can account for behavioral and neurophysi-

ological empirical observations. Finally, we showed that the main model properties are robust

across a range of parameter values.

Encoding order as attractor state switches in the RNN

Recent work suggests that dynamic representations can be understood as switches in activity

of neural networks [92], whereby action sequences emerge from neural attractor states unfold-

ing over time. Indeed, Recanatesi et al. [46] showed that sequential behavior was subtended by

the sequential unfolding of attractor states in rodent secondary motor cortex. Furthermore,

these authors modeled variability in action timing by adding correlated noise to the dynamics

of a RNN, leading to dynamics that jump from one attractor state to another at random times

(hence explaining the variability in action timing). In our model, the switch between cortical

attractor states is not random but is controlled by dynamic BG modulation of excitatory tha-

lamic projections to the RNN that transiently modify the ratio of excitatory to inhibitory

inputs. Within our conceptualization, we suggest that persistent activity within a cluster indi-

cates the latent state that the system is in [90], which in this case reflects the ordinal position in

the sequence. Moreover, in contrast to previous models of frontal cortical BG interactions

[90], the cortical clusters themselves were not assumed to be anatomically hard-wired but

emerged within the RNN via learning.

Alternative models have proposed different mechanisms for encoding ordinal position.

Some models possess a temporal context layer whose state is modified dynamically as time

passes [93–96]. Other models assume that the network input (used to learn the sequence) is

itself sequential in nature [27,28], and learning the spatiotemporal signal depends on the
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sequential nature of the input. Our model is free of this assumption; the network input is a sin-

gle pulse of activation, but can nevertheless reproduce a precisely timed spatiotemporal signal.

This ability emerges from the feedback loop from thalamic Action nodes to the cortical RNN,

triggering transitions to a subsequent cortical attractor. One can therefore consider motor out-

put as part of the teaching input signal to the RNN; because motor activation unfolds sequen-

tially in our model, the sequential nature of the teaching signal emerges from our network

architecture.

Interestingly, the idea that the motor cortex (presumably via motor thalamus neurons) acts

as a teaching signal to other brain areas has received strong support from rodent lesion studies.

For instance, rats are unable to learn a precisely-timed lever press when their M1 cortex is

lesioned [97], and transiently inactivated or disturbed via optogenetic manipulation [98].

More generally, the notion that motor output can influence cognitive representations and

transitions is consistent with the emerging literature on how cognitive functions scaffold on

top of motor functions in cortico-basal ganglia circuits [99,100].

Motor sequence flexibility as inputs to the basal ganglia

Humans can adapt their motor output almost instantaneously given external or internal sti-

muli. For instance, musicians can modify the tempo of a song upon signaling of the conductor.

Such flexibility necessarily needs to stem from fast reconfiguration of neural dynamics, rather

than emerge from changes in networks weights [12]. Murray and Escola [28] proposed a

model of interconnected medium spiny neurons in the striatum that can apply such dynamic

reconfiguration. In particular, their model could perform temporal rescaling of sparse sequen-

tial activity. Yet, flexibility in this model is constrained to isosynchronous sequences (see also

[67,101]). However, a recent model [22] making use of eligibility traces [102–106], manages to

learn precise asynchronous spatiotemporal sequence learning. Still, it is unclear how such a

model can rescale asynchronous sequences, and neither of these models is capable of exhibit-

ing temporal compositionality. Nevertheless, ring-like models with synaptic depression [e.g.,

28] could potentially account for these properties. Indeed, temporal rescaling in these models

is often implemented as changes in the background current (higher current levels lead to faster

rescaling). Therefore, to produce asynchronous sequences, one could imagine a dynamical

background current which is null when no action has to be provided, resulting in a silent net-

work, and turned on when the sequence has to be resumed. However, given a silent noisy net-

work, reactivation of a global current will induce activation of a random cluster in the

sequence and not necessarily the next cluster in line, thereby not displaying robustness in

sequence production. Indeed, for such a system to be viable, the network would need an addi-

tional piece of information, which is a memory of which cluster (or unit) was last active. The

reason is that, in ring-like models the background current is global (i.e., sent to all units).

Thus, if the network goes silent, reactivation of the network would not ensure that the appro-

priate cluster (i.e. the one next in line) becomes active; i.e. noise would randomly activate a

cluster and the sequence would restart from that cluster (see implementation of [28]). Conse-

quently, some extra input signal (representing a memory of which cluster was last active)

should give an advantage to the next cluster in line, in order to ensure that sequence order is

maintained. This extra input signal could take the form of recurrent connections within the

cluster, controlling the activation decay of that cluster such that it would still be active after

long periods of time (as opposed to all other clusters that would be fully silent; see [22]). Note

however that recurrent connections would put a break on the synaptic depression, as these

two parameters trade off; therefore, formal implementation of this proposal would be needed

to understand the model regimes.
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Crucially, the ACDC model can perform temporal rescaling for both iso-synchronous and

asynchronous sequencing, and it can also flexibly switch the tempo altogether through a multi-

plicative signal to the BG. Our model proposes a more robust approach to sequence flexibility.

The sequence in our model is chained by the execution of the previous action, thus our model

does not require an explicit representation of the most recent action. Indeed, what controls the

sequence is a series of local signals (i.e., selective feedback from the motor thalamus to the

RNN [49]) rather than a global signal, and what controls the timing is a global input to the BG.

This feature is key for our model to account for the distinct types of flexibility described in the

results.

It is important to clarify that flexibility in our model is implemented at the action selection

level rather than action execution or implementation. Indeed, although we use musical exam-

ples to motivate our work, our model focuses on the timing/selection of actions rather than

their execution. Even simple finger movements implemented to play the piano require muscle

commands represented as highly dimensional and continuous signals [40,107,108].

The temporal properties of our model discussed above emerge from additional inputs to

the BG. What is the nature of this input? One possibility could be dopaminergic. Indeed, mid-

brain dopaminergic nuclei massively broadcast to the striatum [109], and several studies have

implicated dopamine in controlling movement vigor [110–118]. Dopamine has also been

extensively implicated in impulsive (i.e. pathologically speeded) behavior [119–125]. Further-

more, administration of amphetamine and haloperidol to human participants, respectively

increasing and decreasing tonic dopamine levels, has been associated to faster and slower

response times during a simple reaction time task [126].

If dopamine can flexibly modulate (speed up or slow down) action execution timing, the

question remains upon which psychological process this neuromodulatory effect takes place.

Within the accumulation-to-bound framework [68,127], this effect could potentially alter two

distinct processes. First, dopamine could play a role on the speed (or rate) of evidence accumu-

lation. In line with this hypothesis, several studies have highlighted a clear effect of dopamine

on the drift rate of evidence accumulation in perceptual [128,129] or reward-based [130] deci-

sion-making tasks. Our model implements this possibility. Indeed, inputs to Go nodes modify

(increase or decrease) the drift rate of evidence accumulation. Yet, the speed at which an action

is produced also depends on the response threshold, with lower thresholds increasing speed at

the expense of accuracy [131]. Therefore, a second alternative is that dopamine or other BG

modulations may modify the threshold of action execution [132,133]. Interestingly, Parkin-

son’s disease patients on subthalamic deep brain stimulation tend to behave impulsively [125],

due to modulation of the decision threshold [134–136]. Naturally, both hypotheses are not

mutually exclusive; further research should investigate the effects of dopaminergic and subtha-

lamic modulations regarding motor sequence flexibility.

Limitations and future directions

As previously noted, some of the implementational and biological details of our model remain

to be worked out. First, we simplified the BG gating circuitry, to focus on the G and N popula-

tions, summarizing their effects on downstream thalamus but omitting the disinhibitory cir-

cuitry involving the substantia nigra. Many previous models, including our own, have

simulated the more complete direct and indirect pathways but we did not feel this detail was

necessary for the present purposes. Second, reinforcement learning of action timing is concep-

tually thought to take the form of a three-factor hebbian learning rule [43,103,137–139], where

neurons subtending a rewarding behavior (and hence forming a specific cortical activity pat-

terns) increase their connectivity to D1-receptor containing striatal “Go” populations via
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dopaminergic activity bursts stemming from midbrain nuclei [90,140–143]. While we do not

challenge this mechanism, we focused learning in our model to one synapse downstream,

from Go nodes to thalamic motor neurons. Indeed, recent evidence suggest that error-driven

learning can be achieved via manipulation of BG outputs to thalamus [144]. Third, although

much evidence indicates that the BG learn via reinforcement learning [145–147] (i.e., depend-

ing on whether rewards are better or worse than expected), we incorporated a signed error in

our learning mechanism which is more powerful for timing signals. The supervised delta rule

is only used at the output of our network to optimize readout weights. Thus, we do not view

this learning rule as implausible in our model given that we focus on sequence learning situa-

tions in which signed error feedback is provided (see [61]), such as when a tutor teaches you

how to play the drums and holds the tempo, or in bird-song learning [84] (where a tutor is

available to provide signed error). There are several biologically plausible implementations of

the delta rule when such error signals are available (e.g., [148,149]). Our learning rule in the

BG-thalamus thus summarizes the contributions of these systems in conjunction. Nonetheless,

future work should investigate how and whether complex precise sequences may emerge solely

based on reinforcement learning. In principle, the ACDC model could learn sequences solely

based on RL. However, learning would be much more tedious [43]. In contrast to ACDC,

other models have directly trained the entire time-series of individual RNN units to match

empirical data [38,150], using continuous learning signals (also see [34,36,37,39]). Hence, the

neurophysiological simulations in ACDC (i.e., sequential sparse activation and attractor states)

emerge only from the proposed theoretical architecture in the context of behavioral experi-

ence. Fourth, we implemented a single inhibitory neuron in the RNN-PMC module. Our

focus was on the functional role of inhibitory neurons on the transition of attractor states [28],

and certainly this single unit could be replaced by a larger population. Future versions of the

model should include a broader pool of inhibitory neurons in the RNN as they have been

shown to exhibit mixed selectivity to multiple aspects of a task [151]. Fifth, one assumption in

our model is orthogonality of all projections to the RNN. Although we showed that this

assumption can be relaxed to a certain extent, this feature ensures there is no ordinal interfer-

ence during action sequence execution. In the brain, this orthogonality may be implemented

via mixed selectivity of excitatory frontal neurons that ensure downstream readouts without

interference [152,153]. Interestingly, Márton et al. [154] recently developed a RNN model of

cortico-striatal interactions optimized to learn oculomotor sequences. Similar sequences were

performed by awake monkeys while activity was recorded in their dorsolateral prefrontal and

striatal areas. Learning to implement the correct actions for each sequence pulled apart the

representational structure of action sequences in activity space both in the model and neuronal

recordings. Whereas ordinal representations in our network were hardwired as orthogonal

vectors in the RNN (in order to avoid interference), the work of Márton et al. suggests this

may emerge naturally through learning.

Our model simulates action sequences such as those needed to play the guitar or the piano.

Within this context, each action is represented as a discrete entity. However, many daily life

action sequences are subtended by more continuous actions, as for instance when playing vio-

lin with a bow. The ACDC could be expanded by having more continuous representations of

action plans and execution in our BG-thalamus module. Based on dynamic field theory, one

potential approach would be to represent actions as dynamic neural fields [155–157], which

have been shown to successfully model more continuous reaching actions [158]. Moreover,

these continuous action representations in the BG may require additional inputs from the cer-

ebellum for movement coordination [159] or sequence prediction for motor control [160].

Moreover, our model (as others [22,28,67]) was specifically engineered to account for spatio-

temporal sequences and how these may be flexibly manipulated. This in contrast to other
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instantiations [35,161] of RNNs (i.e. reservoir computing) that find natural solutions to diverse

tasks involving distinct psychological processes (e.g., memory, time estimation, decision-

making).

Finally, recent research focused on how humans extract abstract knowledge, and generalize

this knowledge to other situations [90,162–164]. Indeed, abstracting the action sequence struc-

ture of the Thunderstruck song may be useful for future learning. Transferring the abstract

structure of the Thunderstruck song when learning a novel song that shares a similar structure

should improve learning [165].

Methods

Below we provide a full description of the ACDC model; parameter values for all simulations

are reported in Table 1, and code is available from https://github.com/CristianBucCalderon/

ACDC.

The associative cluster-dependent chain (ACDC) model for flexible motor

timing

Our ACDC model contains four main modules (Fig 1): an input layer (Fig 1A), an RNN (rep-

resenting premotor cortex; Fig 1B) and a BG-thalamus unit (Fig 1C).

The input layer (Fig 1A) consists of a vector of neurons, of which a subset is activated, rep-

resenting sensory or other context that would signal the identity of the sequence to be pro-

duced or learned.

Crucially, the dynamics within the ACDC model evolve as a sequential unfolding of

RNN-BG-thalamus-RNN (i.e., cortico-basal ganglia) loops, depicted by the light blue arrows

in Fig 1. The sequence starts with the activation of a cluster (i.e., densely interconnected) of

excitatory RNN neurons (Fig 1B). Each cluster will come to encode the ith element in the

action sequence. As opposed to single unit, clustered neurons provide a biologically plausible

mechanism for supporting persistent activation within the cluster given a phasic input (i.e., an

attractor, [81,166]). In prefrontal cortical–BG models, such clusters are referred to as “stripes”

based on their anatomical existence, and are independently gated by BG [167]. Once a cluster

is activated, the RNN temporarily settles on an attractor state indicating the ordinal position

(order or rank) in the sequence, analogous to how distinct PFC stripes code for ordinal

Table 1. Parameter values for all simulations.

Parameters Values

α1 (RNN) / α1 (RNN-Go) 0.01 / 0.00002

α2 (RNN) / α2 (RNN-Go) 0.1 / 0.4

Wmax (RNN) / Wmax (RNN-Go) 1 / 0.05

b 0.5

τw 2

η 0.4

ϕ 0.01

JIE 0.1

τa, τn 10

γE / γI 21.4 / 21

τrnn, xin
, JEI

, JEA
, JIA

, JGN
, JNA 1

λrnn / λa 10 / 10000

τg 1000

https://doi.org/10.1371/journal.pcbi.1009854.t001
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positions in phonological loop tasks [167]. However, in ACDC such clusters emerge naturally

via learning rather than hard-coded anatomical entities. Moreover, attractor states are main-

tained via a specific ratio of excitatory to inhibitory inputs: each excitatory neuron projects to

a common single inhibitory neuron (orange circle in Fig 1B) which reciprocally inhibits all

excitatory RNN neurons. As long as the ratio of excitatory to inhibitory inputs is not perturbed

by another input (see below), activation in the cluster will persist and the RNN will continue

representing the ith order in the sequence.

In turn, each excitatory RNN cluster projects to its corresponding “Go” unit in the BG

(blue arrow 1 from ith cluster in Fig 1B to G node in Fig 1C), and each Go cell accumulates evi-

dence for the jth action associated to the ith order (see [134,168] for related computational

models of evidence accumulation in these units, and [169] for empirical data). Striatal Go cells,

via the basal ganglia direct pathway machinery [170,171], facilitate response execution by pro-

jecting towards the corresponding motor thalamus neurons, from here on termed Action

nodes for simplicity (blue arrow 2 from Go to Action nodes in Fig 1C). The BG component

summarizes the contributions of more detailed BG circuitry [140,167,172]. In these models

striatal neurons accumulate evidence, which via the direct and indirect pathways leads to cate-

gorically discrete signals in BG output nuclei, and to disinhibition of the thalamus (e.g.,

[132,168]). These patterns are also observed empirically in terms of striatum accumulation sig-

nals and discrete downstream responses in BG output nuclei once a threshold of accumulation

is reached [169]. Here, we lumped together the double inhibition from striatum to Globus Pal-

lidus (GP) and from GP to the thalamus into a single excitatory projection to keep the model

simple and tractable. Interestingly, optogenetic stimulation of the GP has been shown to

increase the firing rate of motor thalamus neurons [173].

Action nodes possess a negative bias, which acts as a decision threshold, i.e., the net input

needs to exceed this bias in order for action to be executed. This feature again summarizes the

computational role of the output of the BG, which serves to inhibit action execution until suffi-

cient evidence reaches the threshold for action gating ([132,134]; see also [174]). Therefore,

the weight values between Go and Action nodes control the speed of action execution: the BG

encode the rhythm. Action execution can be expressed either as a transient or persistent

response (see simulations; [23]).

In turn, Action nodes project excitatory connections to three distinct parts of the network

simultaneously. First, Action nodes project to the cluster of excitatory neurons in the RNN

representing the i+1th order in the sequences (blue arrow 3a in Fig 1). Second, Action nodes

project to the inhibitory shared neuron (blue arrow 3b to orange node in Fig 1), that in turn

globally inhibits all the clusters in the RNN. In this manner, thalamic Action nodes can update

the cortical representation by separately projecting to both inhibitory and excitatory neurons

[52,175], enabling the RNN to transition from the current state to the next. That is, the activa-

tion of action nodes perturbs the ratio of excitatory to inhibitory RNN inputs in a way that

allows the ith cluster to shut down and the i+1th cluster to be expressed. Third, Action nodes

project excitatory connections back to their corresponding No Go cells (blue arrow 3c from jth

Action node in the thalamus to jth No Go node in the BG, see Fig 1C). In turn, No Go cells

strongly inhibit their corresponding Go cells [132,176,177], thereby shutting down evidence in

favor of the jth action, and hence stopping the execution of the jth action. This loop is then

reproduced with the i+1th RNN cluster and j+1th G-A-N triplet in the BG-thalamus unit, and

so forth until the action sequence is performed in its entirety.

Several features of the model should be highlighted. First, each cluster activation within the

RNN acts as an attractor state representing the ith element in the sequence. Interestingly, cells

in the monkey PMC code for the position in sequence, regardless of the actual movement pro-

duced during that position [178–184]. We therefore assume that the neurons forming each
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cluster represent rank-order-selective neurons whose activation unfolds sequentially: the RNN

encodes order information.

Second, the speed at which each action is executed is driven by how quickly the evidence in

the Go nodes of the BG can cross the decision threshold in the Action nodes: the BG encode

time information. Indeed, several studies suggest that temporal processing is subtended by the

BG in the (non)human primates and rodent brain [1,2,185–189]. Note that there are multiple

routes by which timing can be altered within Go nodes in our model: (i) the learned weight

value between Go and Action nodes; (ii) a bias input to Go nodes (in addition to that coming

from the RNN cluster); and (iii) a multiplicative gain on Go unit activity (see model simula-

tions). As shown in the results section, these separate routes are important for providing tim-

ing and rhythm flexibility.

Third, as in many cortico-BG models (e.g., [134,190]), and motivated by anatomical data

[191] our model is characterized by topographical organization of actions across the BG circuit

and its outputs (i.e., indexed in our model by the subscript j associated in the G-A-N triplet

projections). Recent evidence further confirms topographical action representations in BG-

thalamocortical loops [192–194], whereby causal activation of specific subregions is related to

specific output behaviors [195], and is also supported by human neuroimaging [196] and

monkey/rodent neurophysiology studies [1,197–202]. However, in contrast to previous mod-

els in which BG gating affords action selection of the corresponding cortical action, in the

ACDC model BG gating triggers a cortical dynamical state that initiates the evolution of the

subsequent item in the sequence.

Fourth, we clarify how the ACDC model combines properties of associative chain and clus-

ter-based models. While the ACDC model does initiate a chain via sequential propagation

across cortico-BG loops, the timing of such transitions is controlled by learning the weights

within the BG-thalamus unit, and moreover, what is learned are transitions between clusters

of excitatory RNN neurons representing order in the sequence [27]. Hence, the ACDC model

makes use of two distinct conceptualizations of sequence learning, to achieve greater computa-

tional flexibility (as demonstrated in the result section).

Learning in the ACDC model: Hebbian learning for order and Delta rule

for time

Learning in the ACDC model takes place in three distinct loci of the network, comprising

Hebbian learning for sequence transitions and error-driven learning for precise timing.

First, as previously mentioned, order is coded via persistent activation within clusters of the

RNN. However, in contrast to pure associative chain models, the ACDC does not assume any

feedforward hard-wired structure, but rather learns it. Selective time-dependent inputs to the

RNN (i.e., from the input layer and thalamic Action nodes) activate a subset of neurons within

the RNN, which get clustered together through dynamic synaptic weights:

dWij

dt
¼ � a1ðð1 � xiÞ�xjÞ þ a2ðxi �xjðWmax � WijÞÞ ð1Þ

where �xj is presynaptic activity low-pass filtered over a time scale τw; xi is postsynaptic activity;

α1 and α2 are learning rate parameters. When �xj and xi are both simultaneously > 0, Wij goes

to Wmax; otherwise Wij decreases (note that we clamp Wij such that Wij� 0). Note that �xjðtÞ
will be non-zero if unit j is active within the time window from t − τw! t. Note that low-pass

filtering is not strictly necessary in our version of the model and was implemented to maintain

consistency with previous work in the domain [28]. However, its value should be< 2 other-

wise all RNN units will tend to be connected and action sequence learning will fail.

PLOS COMPUTATIONAL BIOLOGY The ACDC model of action sequence flexibility

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009854 February 2, 2022 21 / 33

https://doi.org/10.1371/journal.pcbi.1009854


Second, Eq 1 is also used to learn connections between the RNN and the Go nodes of the

BG module; here, pre- and postsynaptic activity refer respectively to RNN excitatory unit activ-

ity and Go nodes activity (weight values between RNN units and Go nodes are randomly ini-

tialized from a Gaussian distribution with mean = 0.5 / N and s.d. = 0.1 / N, where N is the

number of RNN excitatory units).

Third, action specific execution time is coded in the weights connecting Go and Action

nodes. Here, we describe time learning as a delta rule, whereby an agent receives a supervisory

signal explicitly indicating whether a specific action has been produced before (positively

signed signal to increase weights) or after (negatively signed signal to decrease weights) the

appropriate time, and is described in Eq 2:

DW ¼ Zðtobserved � tdesiredÞ ð2Þ

where the change in weight (ΔW) between the jth Go and Action nodes is driven by the learn-

ing rate η, and the error computed as the difference between the observed and desired

response time (t) for each action. Weight values between Go and Action nodes are randomly

initialized and drawn from a random Gaussian distribution (mean = 2, s.d. = 0.2). Learning of

precisely timed sequences is shaped sequentially: the model first learns to produce the first

action at the appropriate time (i.e. until the error < φ and φ is a low value, see Table 1), then

the second, and so forth.

Mathematical description of the model dynamics

The input layer reflects a vector of N = 200 neurons of which a subset (20) is activated and

each neuron excites only one neuron in the RNN.

The dynamics within the ACDC model represent the sequential unfolding of RNN-BG-

thalamus-RNN (i.e., cortico-basal ganglia) loops, depicted by the light blue arrows in Fig 1.

The loop starts with the activation of a cluster of excitatory RNN neurons, and the dynamics of

the RNN excitatory neurons are governed by Eq 3:

trnn
dxi

dt
¼ � xi þY

XN

j¼1

Wijxj � JEIxI þ JEAðxAgEÞ þ xin
i

 !

ð3Þ

where xi and xj represent post- and pre-synaptic RNN unit activity (purple nodes in Fig 1B)

and Wij is the recurrent weight matrix. JEI and JEA represent respectively the weights from the

shared inhibitory neuron (orange node in Fig 1B) and from the motor thalamus neurons

(from here on termed Action nodes for simplicity) to the excitatory RNN units. xI, xA and xin

represent respectively the activity of the shared inhibitory neuron, Action nodes (see below),

and the input to the excitatory RNN units. γE is the gain on Action nodes activation projected

to the excitatory RNN neurons (see below for the functional property of this parameter). Ө,

the non-linear transformation function, is governed byӨ(x) = (2 / (1 + e-λx))– 1 (where λ is

the gain parameter and with additional non-linearity at zero, i.e.Ө(x) = 0 ifӨ(x)< 0); and

τrnn is the encoding constant. Note that input projections and all Action nodes to RNN projec-

tions are orthogonal (i.e. some RNN excitatory neurons receive inputs from the input layer,

whereas others receive from inputs from Action nodes; each projection excites 20 RNN units).

The shared inhibitory xI activation is described by Eq 4:

trnn
dxI

dt
¼ � xI þ JIExi þ JIAðxAgIÞ ð4Þ

where JIE, JIA and γI respectively represent the weights from the excitatory RNN neurons to

PLOS COMPUTATIONAL BIOLOGY The ACDC model of action sequence flexibility

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009854 February 2, 2022 22 / 33

https://doi.org/10.1371/journal.pcbi.1009854


their shared inhibitory neuron, the weights from the Action nodes to the shared inhibitory

neuron, and the gain on Action nodes activation for the projections towards the inhibitory

neuron in the RNN.

In turn, each excitatory RNN cluster projects to its corresponding “Go” cell in the BG (blue

arrow 1 from Fig 1B to Go node in Fig 1C), and each Go cell accumulates evidence for the jth

action associated to the ith order, following Eq 5:

tg
dgj
dt
¼ � gj þ

XN

i

Wijxi � JGNnj ð5Þ

where gj is the activation of the jth Go units, Wij is the weight matrix representing connectivity

between RNN and Go units, xi is the acitivity of the RNN excitatory units, JGN is the inhibitory

weight between the jth No Go and Go nodes, nj is the activation of the jth No Go node, and τg is

the encoding constant (with τg>>> 0, thereby simulating evidence accumulation-like

dynamics). Non-linearity at zero is also applied to Go-units.

Striatal Go cells facilitate response execution by projecting towards the corresponding

Action nodes (blue arrow 2 from the Go to Action nodes in Fig 1C), whose dynamics are gov-

erned by Eq 6:

ta
daj

dt
¼ � aj þY JAGgj � b

� �
ð6Þ

where aj is the activation of the jth action, gj is the activation of the jth Go unit, b is the negative

bias (i.e. threshold), Ө is a nonlinear function as in Eq 3, and τa is the encoding constant. JAG is

the weight from the jth Go unit to the jth Action unit, and was initially (i.e. before learning) ran-

domly drawn from a Gaussian distribution with mean = 2 and s.d. = 0.2. In turn, Action nodes

project excitatory connections to three distinct parts of the network simultaneously. First,

Action nodes project to the cluster of excitatory neurons in the RNN representing the i+1th

order in the sequences (blue arrow 3a in Fig 1). Second, Action nodes project to the inhibitory

shared neuron (blue arrow 3b to orange node in Fig 1), that in turn globally inhibits all the

clusters in the RNN. Note that the gain parameter values on Action nodes activity are larger

for projections to the excitatory clusters vs inhibitory neuron of the RNN (i.e. γE> γI). This

allows the activation of Action nodes to perturb the ratio of excitatory to inhibitory RNN

input in a way that allows the ith cluster to shut down and the i+1th cluster to be expressed.

Third, Action nodes project excitatory connections back to their corresponding No Go cells

(blue arrow 3c from jth Action node in the thalamus to jth No Go node in the BG, see Fig 1C).

The dynamics of No Go cells are in turn dictated by Eq 7:

tn
dnj

dt
¼ � nj þ JNAaj ð7Þ

where nj is the activation of the jth No Go node, JNA is the weight from the jth Action unit to

the jth No Go unit, aj is the activation of the jth Action node, and τn is the encoding constant.

In Table 1 we report the parameter values used for all 9 simulations described in the main

text.

Supporting information

S1 Audio file. Simulation 7: Thunderstruck song as reproduced by the ACDC model. This

audio file shows the ability of the ACDC model to learn the second guitar riff of Thunderstruck
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reproduce the 16 actions (associated to 6 notes, see main text) in the correct order and tempo.

(MP4)

S2 Audio file. Simulation 7: Thunderstruck song following a bossa nova rhythm. This

audio file shows the ability of the ACDC model to perform temporal compositionality. The

ACDC model can produce flexibly produce the previously learnt guitar riff (S1 Audio file) fol-

lowing a bossa nova rhythm without any further training.

(MP4)

S1 Video. Simulation 7: Dynamical visualization of RNN and action nodes activity coupled

with simulation-based Thunderstruck song sound. The top left panel shows how RNN

sequential and persistent activity unfolds as a function of time. The bottom left panel is a visu-

alization of RNN dynamics as a neural trajectory in principal component (PC) space. The neu-

ral trajectory displays a pattern of sequential attractor states. The right panel displays how

activity in each Action node (and hence Thunderstruck song note) is executed at the learned

action time.

(MP4)

S2 Video. Simulation 9: Dynamical visualization of RNN and Action nodes activity. The

left panel shows how activity in each Action node is executed at the learned action time, each

color represents the activation of a specific A node in the thalamus. Given the structure and

mechanism described in Fig 1, the right panel displays the neural RNN trajectory showing that

each action execution triggers a switch from the ith to the ith+1 attractor state.

(MP4)
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104. Frémaux N, Sprekeler H, Gerstner W. Functional requirements for reward-modulated spike-timing-

dependent plasticity. J Neurosci. 2010; 30: 13326–13337. https://doi.org/10.1523/JNEUROSCI.6249-

09.2010 PMID: 20926659

105. Soltoggio A, Steil JJ. Solving the distal reward problem with rare correlations. Neural Comput. 2013;

25: 940–978. https://doi.org/10.1162/NECO_a_00419 PMID: 23339615

106. Bellec G, Scherr F, Hajek E, Salaj D, Legenstein R, Maass W. Biologically inspired alternatives to

backpropagation through time for learning in recurrent neural nets. arXiv. 2019; 1–37.

107. Sussillo D, Churchland MM, Kaufman MT, Shenoy K V. A neural network that finds a naturalistic solu-

tion for the production of muscle activity. Nat Neurosci. 2015; 18: 1025–1033. https://doi.org/10.1038/

nn.4042 PMID: 26075643

108. Russo AA, Bittner SR, Perkins SM, Seely JS, London BM, Lara AH, et al. Motor Cortex Embeds Mus-

cle-like Commands in an Untangled Population Response. Neuron. 2018; 97: 953–966.e8. https://doi.

org/10.1016/j.neuron.2018.01.004 PMID: 29398358

109. Watabe-Uchida M, Eshel N, Uchida N. Neural Circuitry of Reward Prediction Error. Annu Rev Neu-

rosci. 2017; 40: 373–394. https://doi.org/10.1146/annurev-neuro-072116-031109 PMID: 28441114

110. Beierholm U, Guitart-Masip M, Economides M, Chowdhury R, Düzel E, Dolan R, et al. Dopamine mod-
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