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Review
Recent advancements in cognitive neuroscience have
afforded a description of neural responses in terms of
latent algorithmic operations. However, the adoption of
this approach to human scalp electroencephalography
(EEG) has been more limited, despite the ability of this
methodology to quantify canonical neuronal processes.
Here, we provide evidence that theta band activities over
the midfrontal cortex appear to reflect a common compu-
tation used for realizing the need for cognitive control.
Moreover, by virtue of inherent properties of field oscilla-
tions, these theta band processes may be used to com-
municate this need and subsequently implement such
control across disparate brain regions. Thus, frontal theta
is a compelling candidate mechanism by which emergent
processes, such as ‘cognitive control’, may be biophysi-
cally realized.

Frontal computations are revealed by theta band
activities
The prefrontal cortex allows us to transcend routines and
habits to make better decisions. However, how does it
actually ‘do’ this? As cognitive neuroscientists, we need
to aim to move beyond descriptive findings and psycholog-
ical correlates for a better understanding of how the brain
underlies the mind. A mechanistic perspective is ideal for
addressing how latent neural features underlie emergent
psychological constructs.

Although the marriage of cognitive neuroscience and
formal computational models has been fruitful, findings
from human scalp EEG are rarely included in major
reviews of this field [1–3]. This is a missed opportunity,
because EEG is sensitive to the canonical computations
that likely underlie emergent psychological constructs
[4,5]. In this review, we describe recent advancements in
the endeavor to define the specific computational roles of
neuronal population oscillations in frontal cortex as mea-
sured by human EEG. In particular, we focus on cortical
theta-band oscillations as a candidate mechanism by
which neurons could compute and communicate top-down
control across broad networks.
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Theta reflects active cortical functioning
Primate theta band (approximately 4–8 Hz) activities re-
flect a more discrete range of activities than the similarly
named ‘theta’ observed in rat hippocampus (approximately
4–12 Hz). In primates, theta is broadly distributed across
the brain [6] and appears to reflect active operations of the
generative cortex, particularly during high-level cognitive
processes, such as memory encoding and retrieval, working
memory retention, novelty detection, and realizing the
need for top-down control [7–10]. Although there is an
array of complex cognitive operations reflected by theta,
we focus here on a narrower subset of cognitive control
processes characterized by a goal-directed bias over habit-
ual responses. We address these control processes in two
sequential parts: (i) the realization of the need for control;
and (ii) ways by which that control may be instantiated.
Although this former area is becoming increasingly well
defined, our understanding of the latter processes remains
ripe with possibilities.

Frontal midline theta and the realization of the need for
control
The realization of the need for control appears to be con-
veyed by frontal midline theta (FMu) activities recorded
from sensors overlying medial prefrontal cortex (mPFC).
These FMu activities have largely been quantified as
event-related potential (ERP) components that reflect
mPFC-related control processes elicited by novel informa-
tion, conflicting stimulus–response requirements, punish-
ing feedback, and the realization of errors. These potentials
are known by varied and sometimes overlapping initialisms;
Figure 1 details the most prominent components (N2, FRN,
CRN, and ERN, see the legend to Figure 1 for a description of
terminology). The scientific history and functional signifi-
cance of these components have each been recently reviewed
[11–13], and they certainly differ on an array of qualities.
Here, we focus on the overwhelming similarities: each of the
eliciting events that evoke these responses shares a need for
increased cognitive control (novelty, conflict, punishment,
and error), and these electrophysiological responses share a
common spectral signature in the theta band [9,14–24]. This
common theta-band characterization merges with a broader
literature that has implicated FMu power dynamics in
cognitive effort [25], working memory [8], and even anxious
temperament [26].

Although EEG certainly suffers from a lack of spatial
specificity, there is compelling evidence from source
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Figure 1. A variety of eliciting events is associated with a similar neuroelectrical signature on the scalp. (A) Traditional event-related potential (ERP) components in the time

domain. N2: an ERP component elicited by novelty or stimulus–response conflict. Feedback-related negativity (FRN): a similar N2-like component elicited by external

feedback signaling that one’s actions were incorrect or yielded a loss. Correct-related negativity (CRN): a small, obligatory component evoked by motor responses even

when these are correct according to the task, and enhanced by response conflict. Error-related negativity (ERN): a massive ERP component evoked by motor commission

errors. Although these ERP components (i.e., peaks and troughs in the signal locked to particular external events and averaged across trials) are related to learning and

adaptive control, they represent a small fraction of ongoing neural dynamics. (B) Time-frequency plots show richer spectral dynamics of event-related neuroelectrical

activity that allow one to study power following particular events without requiring signals to be phase locked. Here, significant increases in power to novelty, conflict,

punishment, and error are outlined in black, revealing a common theta-band feature. (C) Scalp topography of event-related theta activity. The distribution of theta power

bursts is consistently maximal over the frontal midline. Data and statistical tests from [9].
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estimation [11,14,27–30], EEG-informed functional MRI
[31,32], and invasive recordings in humans and monkeys
[33–36] that these FMu activities are generated by midcin-
gulate cortex (MCC) and pre-supplemental motor area (pre-
SMA; Figure 2A). An endogenously generated motor
response or exogenously evoked percept instantiates an
obligatory pattern of phase reset and power enhancement
in midfrontal sensors, largely in the theta band [9]. These
theta dynamics are thought to act as temporal templates for
organizing midfrontal neuronal processes, which are then
enhanced following events indicating a need for increased
control [9]. Collectively, these observations bolster the the-
ory that FMu reflects a common mechanism, a lingua franca,
for implementing adaptive control in a variety of contexts
involving uncertainty about actions and outcomes.

Theta phase is a biologically plausible candidate for
neuronal computation and communication
We propose that these theta-band similarities not only
suggest that these phenomena are aspects of a common
high-level process, but also may indicate how the need
for control is biophysically realized and communicated.
Time-varying changes in the phase angle reflect popula-
tion-wide oscillations of neuronal membrane potentials
[37]. This synchronization can create temporal windows
for segregating cortical populations [38], which can sep-
arate information intake and transfer processes [39,40].
Neuronal populations participating in a given frequency
perturbation will be more (trough) or less (peak) likely to
be excited as a function of the population oscillation and,
thus, will more likely to interact, exchange information,
and modulate synaptic plasticity together [41].

Germane to the current topic, this type of spike-field
coherence has been demonstrated in both rat [23] and
monkey cingulate cortex [35], where increased theta power
is associated with enhanced coupling between single neu-
ron spikes and the phase of the population theta cycle
(Figure 2B). It has previously been proposed that these
midfrontal theta phase-consistent activities could act to
organize neural processes during decision points, such as
where choice-relevant information is integrated to inform
action selection [42] (Figure 2C).

The phase-locked dynamics observed in FMQ signals,
and the proposed underlying oscillatory dynamics thereof,
415
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Figure 2. Theta as a biophysical mechanism for organizing local and distal neurocomputational functions. (A) In humans, midfrontal theta evoked by errors (here, the ERN)

has been localized to midcingulate cortex (MCC) on the basis of dipole source modeling (red) and concurrent hemodynamic activity (blue). (B) Theta activity recorded from

the rostral cingulate sulcus in rhesus macaques. Recordings were made in a region (shown in red) during performance of an antisaccade task. Increased theta power on

anti- versus pro-saccade trials (blue > red traces) was associated with stronger spike-field coupling within the theta rhythm, demonstrating how MCC theta provides a

temporal window for coincident neural activities that contribute to adaptive control. (C) Midfrontal theta is thought to reflect the synchronization of goal-relevant

information around critical decision points, such as action selection. In this example, theta activities coordinate inputs across cortical areas (arrows), particularly at the

trough of the oscillation (gray bars). Action selection is likely to be executed when these sources of choice-relevant information (context, reward, memory, etc.) are

successfully integrated (solid arrows). (D) Theta band phase consistency is thought to reflect the instantiation of transient functional networks (purple and green traces). For

instance, intersite theta band phase consistency following signals of the need for control have been observed between sources modeled in MCC, lateral prefrontal cortex

(lPFC), motor areas, and sensory (i.e., extrastriate visual) cortex. Theta activity may also implement communications between MCC and the basal ganglia (BG). Reproduced,

with permission, from [31] (A), [35,80] (B), and [42] (C).
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Figure 3. Theta band phase consistency between midfrontal and lateral sites is

transiently increased following events that indicate a need for control. Eleven

separate studies (A–K) replicated the finding of theta-band phase synchrony

between midfrontal sites and varied cortical areas, including lateral prefrontal

cortex (presumably for goal or attention reorientation), motor cortex (presumably

to alter motor threshold), and sensory cortices (presumably to boost sensory gain).

Error feedback is punishment; there have been no studies of cue-locked error

signals or feedback-locked conflict. References: A [14], B [15], C [16] D [17], E [18], F

[19], G [20], H [21], I [22], J [23], and K [24].
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also suggest a possible mechanism by which signals of the
need for control entrain other brain networks. Rhythmic
excitability has been proposed to instantiate transient
functional networks between spatially distal sites [41]
(Figure 2D). The MCC is strongly interconnected to cortical
and subcortical areas in a hub-like manner [43], suggesting
that FMQ signals entrain disparate neural systems by this
theta-band phase dynamic when cognitive control is need-
ed. Indeed, a large-amplitude low-frequency temporal or-
ganization scheme may be ideal for organizing activities
across large spatial distances [39,44]. Thus, cross-cortical
Information transmission could function in an emergent
manner if phase-locked FMQ naturally entrains activities
in disparate neural systems.

Such theta-band phase synchrony between midfrontal
and distal sites has been observed following a variety of
FMu signals of the need for control (Figure 3). In addition to
11 replications of this effect in humans [14–24], a similar
pattern of theta-band phase synchrony has recently been
observed in intracranial recordings from monkeys [36].
It remains an active question to determine the direction
of information transfer during the instantiation of control,
because cingulodistal [19,36,16,45], distal-cingulate
416



Box 1. Surprise as a quantum of punctate uncertainty

Major theories of neocortex suggest that it constantly learns from

experience, and violations of learned expectations are expressed as

prediction errors [81–83], which are used to enhance future

predictability or to minimize free energy [84]. Thus, these prediction

error signals serve as a teaching signal and an alarm of the need for

network-wide adaptation [63,84]. Indeed, dynamic programming

models of adaptive control require learning and acting to occur

simultaneously [85]. The emergence of late ERP components is

thought to represent transient expressions of this type of prediction

error [86–88], encompassing traditional ERP-relevant elicitations of

stimulus novelty, probability, entropy, surprise, mismatch, or

salience. These terms all reflect alterations in circumstantial

mismatch processes, and share a common feature in the realization

of uncertainty.

Different theoretical reference frames for various FMQ signals

also share broadly common algorithmic quantification of informa-

tion quality. In fact, each can be interpreted as a type of free energy

or uncertainty to be reduced. The reinforcement learning theory of

ERN and FRN originally proposed that these signals reflect a

punishment prediction error [70], although increasing evidence

has suggested these signals are unsigned prediction errors,

implying that they reflect surprise regardless of whether the

outcome is good or bad [32,68,69] (Box 2). The conflict monitoring

theory of the ERN and N2 suggests that these signals do not reflect

prediction error per se, but rather response conflict in the form of

Hopfield energy (the degree of co-activation of competing states)

[29,89,90]. However, other authors have quantified conflict using

entropy [91], or as a change in expectation at the decision level (i.e.,

from an initial prepotent response to a later controlled response)

[92], all of which are directly translatable to a form of surprise. Thus,

although each of these theoretical reference frames has explanatory

advantages and drawbacks, they have much in common with each

other, and even more in common with broader theories of the

functional organization of neocortical processes.

In sum, prediction errors are a common neurocomputational

currency that has specific representational content depending on

the generative neural system [61], and they appear to be reflected by

event-related EEG dynamics. Given that the FMu surprise signals

observed over mPFC are strongly influenced by the functional

demands of the generative system, they appear to provide a

succinct reflection of basic mPFC functions during adaptive control.
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[46–48], and bidirectional [36] information transfers have
all been described.

Potential roles of theta in the instantiation of control
It is becoming increasingly clear that these FMu activities
reflect uncertainty in varied circumstances (Box 1). Given
that the mPFC is sensitive to varied circumstances indi-
cating a need for control [49], it should be expected that this
system commonly reacts to novelty, conflict, punishment,
and error, each of which indicate a need for enhanced
control processes to change behavior adaptively. Thus, it
is important to consider whether this theta signal acts to
communicate specific information to inform distal control-
lers, or if it functions as a generic ‘alarm’ signal without
detailed information content per se.

The precise and stereotyped nature of the FMu response
to endogenous and exogenous events suggests that the
canonical phase-consistent templates (e.g., Figure 1A)
would enable efficient information encoding, and, thus,
may facilitate information transfer via synchronous inter-
site phase relations (e.g., Figure 2D). Low frequencies such
as theta have been found to act as a temporal template to
carry lower power, higher information content signals, such
as gamma-band activities, via cross-frequency coupling
[50–53]. In fact, gamma-band correlations have been ob-
served between cingulate and lateral frontal sites following
events signaling the need for control [45]. Although the theta
phase duration may be too long to facilitate ideally direct
Hebbian plasticity [51], it may underlie other aspects of
information representation. As described in Figure 2C, the-
ta may facilitate recurrent cycles of integration across mul-
tiple inputs (context, reward, memory, etc.) to inform
controlled action selection, particularly within the cingulate
hub [42]. For example, local theta spike-field coherence has
been observed during long distance fronto-occipital theta
synchrony thought to underlie working memory mainte-
nance [54]. Other studies have shown how hippocampal-
cingulate theta synchrony facilitates information transmis-
sion during controlled action selection [46,47], even eliciting
phase procession of spike timing within the mPFC [48].

However, conflict does not preferentially modulate theta
signals that are phase locked to the conflict-eliciting stim-
ulus, but rather appear to modulate the amplitude of
induced theta oscillations [15,55]. Thus, synchronous
phase relations across frontal areas may not necessarily
reflect specific information transfer related to the conflict-
eliciting stimulus, but rather a more generic process, such
as gain adjustment [56,57], similar to that which has been
posited for frontal cortical neuromodulators, such as nor-
epinephrine [58]. Cingulate-influenced gain adjustment
via induced local inhibition has been proposed to enhance
effortful representation of a context or set shift between
lateral prefrontal cortex (lPFC) areas [56] and boost top-
down influence of frontopolar areas over lPFC [59], and it
could also be utilized to sharpen neural precision for
selective attention in sensory areas [60]. Indeed, distal
control over local inhibition is a primary candidate for
the induction of a synchronous phase relation [40,57],
suggesting that an array of information-processing capa-
bilities is facilitated by basic structural relations between
mPFC and other brain areas. In summary, whereas evoked
FMu activities appear to be well structured to represent
information, it is not known whether this information is
passed to other brain areas for adaptive control or if a
simple alarm signal is used to entrain and override distal
operations.

What to do with a surprise signal?
Here, we describe some ways by which mPFC-generated
surprise signals lead to task-specific adjustments in control
(Figure 4). FMu is sensitive to both unexpected uncertainty
(volatility) and expected uncertainty (risk) [13], suggesting
that it serves as both a teaching signal and an alarm of the
need for control. This observation suggests that the infor-
mation content of the signal, at least as measured on the
human scalp, is minimal. Yet, even a simple signal of
uncertainty can lead to a variety of adaptive adjustments
[61,62]. This is particularly true when such surprise sig-
nals are generated from a neural system that acts as a hub
for shifting attention and behavioral selection [43,49,63].

Surprise can alter the learning rate to reduce volatility

Although prediction errors can act as a basic learning
signal, they can also help determine how much should
be learned from the environment. This varied role of
417
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Figure 4. Algorithmic models of learning and decision-making, and their potential relations to theta band signals reflecting the need for control. (A) Reinforcement (reward

and punishment) learning can be modeled by a variety of similar algorithmic approaches. Shown here is a cartoon example of Q learning [93] during a probabilistic learning

task [94]. The difference between expected and actual reward is calculated as a reward prediction error conveying whether events are better or worse than expected. These

reward prediction errors are then used to adjust future expectations, scaled by a learning rate. (B) A common model of two-alternative forced choice is the drift diffusion

model (DDM) [77]. Black lines indicate the accumulated evidence trace (drift rates) for one decision option over another across multiple example trials that grow towards

one of two boundaries (decision thresholds), defining when a decision is made. (C) Punishment-induced FRN and/or frontal midline theta (FMu) power correlates with the

prediction error [shown in (A)] [68]. Although many investigations have found stronger relations between FRN and/or FMu and worse-than-expected outcomes, more

detailed investigations have revealed that even better-than-expected outcomes can also linearly relate to FRN and/or FMu power, suggesting that much of this relation is

predicated on the need for change rather than the valence of the feedback per se. However, punishment may be associated with an overall larger response (i.e., higher

intercept) [68,95] (D) Response conflict is greater not only during difficult perceptual-performance tasks (such as the Stroop, flanker, or Simon task), but also as a function of

uncertainty when choosing options with probabilistically different reinforcement rates [94]. This type of uncertainty can be quantified by estimating, for example, the Q

values in (A) as belief distributions with means (expected value) but also variance (estimation uncertainty). During dynamic foraging, the degree of theta response to high

uncertainty can predict exploration [68]. (E) Stimulus-induced conflict not only signals a need for increased control (larger N2 and/or FMu), but is also related to a transiently

increased decision threshold on a trial-by-trial level, effectively linking conflict-induced theta power to enhanced response caution [longer response times (RTs), more

accurate at avoiding mistakes] [78].
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prediction errors is a consequence of being a common
neural currency: signed reward prediction errors directly
inform whether to reinforce or punish behavior [64], where-
as unsigned prediction errors may indicate the degree of
impact any given surprise should have on future predic-
tions [65] (Box 2). This latter process is known as a ‘learn-
ing rate’ (Figure 4A). The MCC and surrounding medial
cortex are often specifically implicated in the adjustment of
the effective learning rate during trial-and-error learning
[66,67]. Although it is abundantly clear that FMu relates to
the degree of surprise [32,68,69] (Figure 4C), it is unknown
whether this signal is a reflection of volatility-influenced
learning rate. If so, this may further specify a top-down
(control-related) role of these signals instead of a commonly
assumed bottom-up (midbrain dopamine learning-related)
role [70].

Surprise leads to a shift in behavioral strategy

Surprise signals can indicate a need for higher-level cog-
nitive control over action selection. In simple tasks, both
FMu and prediction error have been shown to predict
subsequent behavioral switching [21,30]. Yet, behavior is
not always diagnostic of implemented control: during more
418
complicated higher-level learning environments, it may be
adaptive to weather temporary bad storms to stick with the
best alternative. For example, FMu does not predict
switching during a probabilistic reversal learning task
[71]. This suggests that FMu reflects prediction error but
does not predict overt policy adjustments. In other words, it
indicates that something needs to be done but does not
necessarily indicate what should be done. Given these
difficulties in assessing latent features of control based
on behavior, computational modeling has been utilized to
reveal how FMu predicts the propensity for enhanced
instrumental control over prepotent actions both between
and within subjects [68,72] (Figure 4D).

Surprise indicates the need for performance adjustment

Surprise can also indicate the need for goal adjustment,
attention realignment, or cautious behavioral restraint.
Whereas surprising events often initially elicit an orient-
ing response characterized by motor inhibition [73,74], the
features of subsequent deliberative performance adjust-
ments have just begun to be understood [75]. One common
example is observed following response errors, where
the amplitude of the FMu signal reliably predicts slower



Box 2. Signed versus unsigned prediction errors

Differences between expectations and outcomes can come in many

forms. If a system codes the degree of expectation violation and

what to do about it (i.e., it was good or bad), then that system is

proposed to code a reward prediction error (i.e., a signed or

Rescorla–Wagner prediction error) [64]. Some midbrain dopaminer-

gic nuclei are proposed to signal such signed prediction errors, with

firing rates scaling with the unexpectedness of a better outcome and

pauses in baseline firing scaling with the unexpectedness of a worse

outcome. If a system only codes the degree of expectation–outcome

difference, that information quality is called simple surprise (i.e., an

unsigned or Pearce–Hall prediction error) [65]. Much of the rest of

the brain appears to code simple surprise [81–84,86].

A signed prediction error is a special case of surprise and, thus, it

requires a larger burden for empirical support. A signal that

functions as a signed prediction error needs to conform to axiomatic

criteria [96] and function in this manner in all cases (or else this

signal would be unreliable and uninterpretable). Whereas early

studies of FMu and/or FRN supported initial predictions [70] of a

punishment or ‘negative reward’ prediction error, many of these

studies were performed using tasks with a win-stay/lose-switch

response requirement that confounds outcome valence and the

need for behavioral adjustment. When tested with more complex

tasks without clear win-stay/lose-switch requirements, FMu/FRN

amplitudes scale with unsigned surprise [32,68,69]. Given this

violation of axiomatic criteria, it is clear that FMu/FRN signals do

not code for the more specific information quality of signed

surprise.

Yet, the brain is a complex system and caveats and complexities

are bound to challenge simple mechanistic hypotheses. Punish-

ments appear to be associated with an overall larger response in

MCC [68,95], which when combined with a surprise signal could be

used to inform a downstream integration of negative prediction

error. It has also been proposed that the phase-consistent and

phase-varying aspects of FMu may differentially contribute to

signed versus unsigned information qualities [97]. The absence of

majority consensus in this field is likely to be overcome as empirical

studies directly test these novel hypotheses.

Box 3. Outstanding questions

� Are frontal theta signals a common mechanism for invoking a

punctate shift from prepotent (e.g., habitual, model-free, or

striatal) to deliberative (e.g., goal-directed, model-based, or

prefrontal) control over action selection?

� What is the directionality and information content of theta phase-

synchronous relations between brain areas during the need for

control?

� To what degree are these same low-frequency frontal coupling

phenomena present in other mammals during similar cognitive

operations [23,36]?

� Do different spectral frequencies represent different types of

information quality during the need for control [22]? Is the specific

modulated frequency also dependent on the temporal stage of

increasingly evolving mismatch operations throughout the cortex

[98]?

� Does the FMu unsigned (Pearce–Hall) prediction error signal scale

the use of a signed (Rescorla–Wagner) dopaminergic prediction

error signal (i.e., does it reflect a dynamic learning rate)?

� Do mPFC and STN communicate using low-frequency oscillatory

processes akin to those observed in cortex?

� Why is there a strong relation between FMu signals and

dispositional anxiety [76,99]? Are these alarm signals inherently

aversive to some degree (i.e., a negativity bias)?

� Are mPFC representations of negativity bias and sensitivity to

surprise [68,95] combined anywhere to signal a signed negative

prediction error, or is this conjunction simply task dependent?
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post-error response times (RTs) [76]. Such slowing may not
only reflect a simple orienting response, but also indicate a
deliberative increase in response caution. The psychophys-
ical outcome of this strategic adaptation appears as a shift
in the speed–accuracy tradeoff with longer RTs for better
accuracy. Such a shift is accounted for by an increase in the
decision threshold as defined by latent models of forced
choice decision-making [77] (Figure 4B). FMu has been
shown to relate on a trial-by-trial level with such a con-
flict-induced adjustment of decision threshold, particularly
mediated by the downstream subthalamic nucleus [78]
(Figure 4E). Yet, if FMu functions as a nonspecific alarm
signal, it may also elicit different changes in other circum-
stances. For example, FMu could relate to a honed adjust-
ment of sensory evidence causing shorter RTs and better
accuracy, which may be accounted for by an increase in the
orthogonal latent quantity of drift rate (Figure 4B).

Caveats for such a broad description
Any description of mPFC processes is bound to be compli-
cated by the high base rate of activation in areas such as
MCC across experimental demands [79]. It should be
expected that some mPFC processes are not reflected by
FMQ, and that some FMQ processes do not necessarily
involve a phasic response to uncertainty. Moreover, other
frequency bands have been shown to have a role in
the implementation of control [19,22,74]. It remains an
important goal to specify the role of frontal theta in rela-
tion to these other frequency bands. Here, we advance the
modest proposal that the class of ERP and/or FMu signals
commonly used to investigate action monitoring, cognitive
control, and reinforcement learning (Figure 1) share a
common feature in the realization of uncertainty and
the communication of the subsequent need for enhanced
control (Box 3).

Concluding remarks
Even a simple surprise signal can be used to communicate
many different things. If the mPFC responds to unsigned
prediction errors using a theta-band process capable of
intersite entrainment, this would provide a plausible mech-
anism by which surprise could influence action selection,
shift attention, cautiously adjust behavior, and enhance
sensory precision. Most compellingly, such seemingly com-
plex interactions may emerge simply by virtue of the con-
nectivity and timing of biophysical processes facilitated by a
common theta-band rhythm.
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