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a b s t r a c t

Larger error-related negativities (ERNs) have been consistently found in obsessive-compulsive disorder
(OCD) patients, and are thought to reflect the activities of a hyperactive cortico-striatal circuit dur-
ing action monitoring. We previously observed that obsessive-compulsive (OC) symptomatic students
(non-patients) have larger ERNs during errors in a response competition task, yet smaller ERNs in a rein-
forcement learning task. The finding of a task-specific dissociation suggests that distinct yet partially
overlapping medio-frontal systems underlie the ERN in different tasks, and that OC symptoms are asso-
ciated with functional differences in these systems. Here, we used EEG source localization to identify
why OC symptoms are associated with hyperactive ERNs to errors yet hypoactive ERNs when selecting
maladaptive actions. At rest, OC symptomatology predicted greater activity in rostral anterior cingulate
cortex (rACC) and lower activity in dorsal anterior cingulate cortex (dACC). When compared to a group
with low OC symptom scores, the high OC group had greater rACC reactivity during errors in the response

competition task and less deactivation of dACC activity during errors in the reinforcement learning task.
The degree of activation in these areas correlated with ERN amplitudes during both tasks in the high OC
group, but not in the low group. Interactive anterior cingulate cortex (ACC) systems associated avoidance
of maladaptive actions were intact in the high OC group, but were related to poorer performance on a
third task: probabilistic reversal learning. These novel findings link both tonic and phasic activities in the

alter
ACC to action monitoring
participants.

Neuroimaging investigations have implicated a hyperactive
ortico-striatal circuit in the etiology of obsessive-compulsive
isorder (OCD). OCD patients are characterized by greater rest-

ng striatal dopaminergic tone and heightened ventromedial
refrontal cortex (vmPFC) and anterior cingulate cortex (ACC)
etabolism, which often correlate with the severity of obsessive

ymptomatology (Cavedini, Gorini, & Bellodi, 2006; Denys, van
er Wee, Janssen, De Geus, & Westenberg, 2004; Denys, Zohar,

Westenberg, 2004; Hesse et al., 2005; van der Wee et al.,
004), and which resolve after successful treatment (Perani et al.,
995). Presentation of stimuli that are consistent with individual

bsessive-compulsive (OC) patient concerns is associated with
reater activity in striatum, vmPFC, and ACC, which often correlate
ith anxiety scores (Adler et al., 2000; Chen, Xie, Han, Cui, &

hang, 2004; Cottraux et al., 1996; Mataix-Cols et al., 2004; Nakao
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ations, including dissociation in performance deficits, in OC symptomatic

© 2010 Elsevier Ltd. All rights reserved.

et al., 2005b; Rauch et al., 1994; Rosenberg & Keshavan, 1998)
and resolve after successful treatment (Nakao et al., 2005b). The
functional implications of a hyperactive cortico-striatal circuit
in OCD have been examined using tasks that challenge action
monitoring processes. The term action monitoring refers to the
processes of error detection and conflict monitoring during goal-
directed responses, processes that are strongly associated with
ACC functioning (Botvinick, Braver, Barch, Carter, & Cohen, 2001).

Although it is assumed that investigations of hyperactive rest-
ing metabolism and altered action monitoring may help identify
the aberrant neural systems underlying the intrusive thoughts
and repetitive behaviors that characterize OCD, there has been
little emphasis on understanding how tonic (resting) and phasic
(event-related) brain activities relate to each other—even within
normative samples. For example, it is possible that dissociation

in phasic error signals does not reflect altered action monitoring
per se, but rather are reflective of differential tonic activities in
the underlying neural systems. Here, we extend findings from
our previous study that discovered task dissociation in neuro-
electric reflections of internal error signaling in OC symptomatic

http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:jim.f.cav@gmail.com
dx.doi.org/10.1016/j.neuropsychologia.2010.03.031
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tudents with no differences in performance (Gründler, Cavanagh,
igueroa, Frank, & Allen, 2009). This current investigation used
EG source localization to link tonic and phasic activities in the
CC to dissociations in both error signaling and task performance

n OC symptomatic participants. The findings suggest that phasic
rain responses may be reflective of both tonic levels of activity
nd altered performance abilities, but the choice of task is crucial
hen determining the difference.

. Committing errors

Larger response-related frontocentral voltage deflections in the
EG following error commission, termed error-related negativities
ERNs), have also been consistently found in OCD patients (Endrass,
lawohn, Schuster, & Kathmann, 2008; Gehring, Himle, & Nisenson,
000; Hajcak, Franklin, Foa, & Simons, 2008; Johannes et al., 2001;
uchsow et al., 2005), and in highly symptomatic non-patients
Gründler et al., 2009; Hajcak & Simons, 2002; Santesso, Segalowitz,

Schmidt, 2006). EEG source localization and EEG-informed func-
ional magnetic resonance imaging (fMRI) have both implicated the
orsal ACC (dACC) as the proposed neural generator of the ERN dur-

ng response errors (Debener et al., 2005; Ullsperger & von Cramon,
004), although rostral areas of the ACC (rACC) have been pro-
osed to contribute to this signal as well (Luu, Tucker, Derryberry,
eed, & Poulsen, 2003). fMRI investigations have revealed that rACC
reas are more active in OCD patients than controls following error
ommission (Fitzgerald et al., 2005; Maltby, Tolin, Worhunsky,
’Keefe, & Kiehl, 2005; Ursu, Stenger, Shear, Jones, & Carter, 2003).
onverging evidence suggests that the neural reaction to error com-
ission reflects a hyperactive ACC in OCD patients, yet EEG studies

ave never investigated the source-localized influence of ACC sub-
egions as a contributing factor to larger ERNs in OCD patients.

. Learning to avoid errors

Our previous investigation revealed that the relationship
etween medio-frontal activation and action monitoring in OC
ymptomatic non-patients is task-dependent, with larger ERNs
o errors in a response competition task, and smaller ERNs to
uboptimal choices in a probabilistic reinforcement learning task
Gründler et al., 2009). This pattern of results implicates potentially
issociable neural systems underlying suboptimal choices during
einforcement learning compared to motor errors of commission;
here OC symptoms appear to reflect dissociation in the func-

ioning of these systems. In reinforcement learning tasks, larger
rror signals have been associated with a greater tendency to learn
o avoid selecting actions that have probabilistically led to nega-
ive outcomes, sometimes termed NoGo learning (Frank, D’Lauro,

Curran, 2007; Frank, Seeberger, & O’Reilly, 2004; Frank, Woroch,
Curran, 2005; Holroyd & Coles, 2002). Although the direct corre-

ation between individual differences in ERN amplitude and NoGo
earning (Frank et al., 2007; Frank et al., 2005) was replicated in our
arlier investigation (Gründler et al., 2009), there were no relation-
hips between NoGo performance and OC symptomatology.

In fact, despite reliable findings of differences in brain activ-
ty between OC patients and controls, differences in behavioral
erformance are rare in action monitoring and reinforcement

earning tasks (Endrass et al., 2008; Gehring et al., 2000; Hajcak
t al., 2008; Hajcak & Simons, 2002; Johannes et al., 2001;
altby et al., 2005; Ruchsow et al., 2005; Ursu et al., 2003;
ut see: Fitzgerald et al., 2005). In contrast to slow probabilis-
ic integration of punishment cues over multiple trials (NoGo
earning), OCD patients have shown deficits in learning to rapidly
vercome goal-directed stimulus–response relationships during
robabilistic reversal learning (Chamberlain et al., 2008; Kim et
logia 48 (2010) 2098–2109 2099

al., 2003; Remijnse et al., 2006; Valerius, Lumpp, Kuelz, Freyer, &
Voderholzer, 2008). Probabilistic reversal learning is characterized
by the sudden reversal of a probabilistically learned relationship
of value between stimuli, requiring higher level cognitive con-
trol, response inhibition, and attention to error feedback to flexibly
alter behavior (Cools, Clark, Owen, & Robbins, 2002). A probabilis-
tic reversal learning task was included in Study II of our previous
investigation (Gründler et al., 2009), with the results of that task
presented for the first time in the present report. Since no study
measuring the ERN has investigated probabilistic reversal learning
in OCD, this approach offers the opportunity to extend investiga-
tions of ACC action monitoring systems with a task known to be
affected by OCD.

3. The current investigation

Here we extend our prior ERP findings (Gründler et al., 2009) by
applying an EEG source localization method known as standardized
low resonance electrical tomography analysis (sLORETA) (Pascual-
Marqui, 2002) to investigate how tonic (resting) and phasic (error-
related) activities in the medial PFC are affected by obsessive-
compulsive symptomatology. Unlike some methods of source-
localization, sLORETA represents the smoothest distribution of
source activities without a priori user specification. We investi-
gated the correlations between source-localized activity in rACC
and dACC with ERN amplitudes from both the response competition
and reinforcement learning tasks. Both sLORETA Regions of Interest
and ERN amplitudes were used to predict individual differences in
avoidance (NoGo) and reversal learning in High and Low OC groups.

4. Methods

4.1. Participants

Data for this investigation were taken from the two studies described in our pre-
vious report (Gründler et al., 2009), which have been combined for this investigation.
All participants gave informed consent and the research ethics committee of the Uni-
versity of Arizona approved both studies. Participants were recruited from pretest
materials given to undergraduate students in introductory psychology classes. For
each Study, more than 1000 students completed the Obsessive-Compulsive Inven-
tory – Revised (Foa et al., 2002). Participants over the entire range of the OCI-R scores
were recruited for the studies. The recommended clinical significant cutoff score of
21 (Foa et al., 2002) was used to create a High (>20) and a Low (<21) OC group (High
M = 37.9 SD = 9.95; Low M = 8.12 SD = 5.65).

Participants were excluded from analyses if they had a history of neurological
disease or head trauma, current use of psychoactive medications, or if there was a
change in their OCI-R score between the experimental session and the recruitment
score which resulted in a change in OC grouping criterion. Following these exclu-
sion criterion, resting EEG data were available from 107 young adults (37 High and
70 Low). Additional exclusion criteria (see ERP data processing below) resulted in
probabilistic learning ERP data from 70 young adults (24 High and 46 Low), with
sLORETA images for 66 of these participants (23 High and 43 Low). Flanker task
data were collected for only a subset of subjects, resulting in ERP data and sLORETA
images available from 34 (16 High and 18 Low) participants.

4.2. Tasks

First, all participants sat in a resting state while EEG activity was recorded. In
both studies, participants rested while 1 min segments of alternating eyes open or
eyes closed EEG data were recorded. Participants in Study I rested for 4 min then
performed the probabilistic learning task two times with different pseudo-randomly
assigned character sets. Behavioral and EEG data were computed over the average
of the combined tasks. In Study II, participants rested for 6 min, then performed a
variant of the Erikson flanker task and one session of the probabilistic learning task
followed by a reversal learning task. For the purposes of this investigation, data from
Studies I and II (resting, probabilistic learning) have been combined, although some
data were only gathered during Study II (flanker task, probabilistic reversal learning
task). See Fig. 1 for a visual depiction of all tasks.
The probabilistic learning task consisted of a forced-choice training phase con-
sisting of up to six blocks of 60 trials each, followed by a subsequent testing phase
(Frank et al., 2004). During the training phase the participants were presented with
three stimulus pairs (termed AB, CD, EF pairs). Each stimulus was associated with a
different probabilistic chance of receiving ‘Correct’ or ‘Incorrect’ feedback (see Fig. 1
for feedback probabilities). The participants underwent training trials (consisting
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Fig. 1. Examples of tasks. Probabilistic learning: during training, each pair is presented separately. Participants have to select one of the two stimuli, slowly integrating
‘Correct’ and ‘Incorrect’ feedback (each stimulus has a unique probabilistic chance of being ‘Correct’) in order to maximize their accuracy. During the testing phase, each
stimulus is paired with all other stimuli and participants must choose the best one, without the aid of feedback. Note that the letter and percentage are not presented to
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he participant, nor are the example boxes surrounding the choice. An example ER
e identified with a button press (i.e. right button for ‘F’, left button for ‘E’); errors
he training phase of the probabilistic learning task, but after four consecutive iden
ecomes the optimal choice.

f one to six blocks of 60 stimuli each) until they reached a minimum criterion of
hoosing the probabilistically best stimulus in each pair (AB ≥ 65%, CD ≥ 60%, and
F ≥ 50% correct choices). For each pair, the decision to reliably choose a stimulus
i.e. A over B) can be derived by either learning that the choice of stimulus A is cor-

ect (Go learning) or by learning that the choice of stimulus B is incorrect (NoGo
earning), or some degree of both.

To test whether the participants learned more from positive or negative feed-
ack, a testing phase followed the training phase. During the testing phase all
ossible stimulus pairs (i.e. AD, CF, etc.) were presented eight times (120 trials
otal) and no feedback was provided. Thus, each pair had an optimal and subop-
hown to a suboptimal choice during testing. Flankers task: the center letter must
tor commission elicit an ERN. Probabilistic reversal learning: this task is similar to
ions of the optimal stimulus (‘A’), the probabilities switch and the alternative (‘B’)

timal response based on what was learned during the training phase. ERP data were
taken from the responses in this testing phase. Measures of reward seeking (Go
learning) and punishment avoidance (NoGo learning) were also taken from this test
phase. Go learning was defined as the percent of the choices of the A stimulus over

C, D, E and F stimuli, where NoGo learning was defined as the percent of choices of
C, D, E and F over B (Frank et al., 2007; Frank et al., 2005). A measure of valenced
learning bias was computed as the difference of Go accuracy minus NoGo accuracy,
with more positive scores reflecting a tendency to learn more from Go over NoGo.

In Study II, participants completed a modified Erikson flankers task. Each trial
(400 total) on this speeded response task requires the participant to press one of two
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NoGo accuracy (F < 1). This task dissociation in ERN amplitude was
detailed in our previous report (Gründler et al., 2009), as was the
lack of behavioral differences between groups even in the presence
of altered ERN amplitudes (see Fig. 1).

1 All data are presented as [mean (SD)]: flanker error count: [Low: 72 (42); High:
64 (23)]; flanker correct RT ms: [Low: 453 (70); High: 461 (60)]; flanker error RT
ms: [Low: 419 (85); High: 432 (73)]; probabilistic learning percent accuracy: [Low:
70 (9); High: 69 (11)]; probabilistic learning correct RT: [Low: 921 (351); High: 892
(318)]; probabilistic learning error RT: [Low: 1010 (335); High: 987 (336)]; sLORETA
epoch count for flankers: [Low: 71 (43); High: 59 (22)]; sLORETA epoch count for
J.F. Cavanagh et al. / Neurop

esponse buttons in order to identify the center letter in a string that is either congru-
nt (i.e. MMMMM or NNNNN) or incongruent (i.e. NNMNN or MMNMM) from the
ankers. Errors are likely to occur on incongruent trials due to increased response
ompetition. Participants in Study II additionally performed a reversal learning task
t the end of the probabilistic learning task. This reversal learning task used the ‘A’
nd ‘B’ stimuli (80% and 20% correct) from the probabilistic learning task in order
o examine reversals from a relatively well-learned stimulus response pair. Instruc-
ions indicated that the participant should try to choose the correct stimulus, but
hat the computer might change which stimulus was correct—so they should try
o keep up. There were 60 forced-choice trials in total, with feedback and timing
arameters identical to the probabilistic learning task. Reversals occurred after the
articipant chose the optimal stimulus (80%) four consecutive times (regardless of
eedback), upon which time the probabilities in the next trial were reversed for
ach stimulus (‘A’ went from 80% to 20% correct, and visa versa). The total number
f stimulus value reversals over the 60 trial block was used as an index of reversal
earning success.

.3. EEG recording

Scalp voltage was measured using 62 Ag/AgCl electrodes referenced to a site
etween Cz and CPz using a Neuroscan Synamps2 system. Additionally, two mastoid
hannels were recorded, as were separate bipolar channels for recording horizontal
nd vertical eye movements. EEG was recorded continuously in DC mode with a
ow-pass hardware filter at 100 Hz for Study I and in AC mode with bandpass filter
.5–100 Hz) for Study II. Both studies used a sampling rate of 500 Hz, impedances
ere kept under 10 k�. All EEG data from Study I were high-pass filtered at .05 Hz

efore analyses.

.4. Response-locked ERPs

Response-locked EEG epochs were taken for optimal and suboptimal choices
uring the test phase in the probabilistic learning task, and for correct and erroneous
hoices in the flanker task (as detailed in Gründler et al., 2009). All EEG epochs
ere re-referenced to linked mastoids, eyeblinks were corrected using a regression
ethod (Semlitsch, Anderer, Schuster, & Presslich, 1986), and epochs were averaged

or each condition and task. For the quantification of the response-related ERPs,
aw data were filtered from .5 to 15 Hz (96 dB/octave) prior to epoching, baseline
orrected from −100 to 0 ms, followed by trough-to-peak measurements (trough:
argest negativity within 0–120 ms, peak: largest positivity in the prior 120 ms) to
etermine baseline-independent amplitudes by subtracting the amplitude of the
RN trough from the preceding peak, with the primary interest at the Cz electrode.
hus a more positive value indicates a larger ERN.

.5. sLORETA processing

Two minutes of eyes closed rest were epoched into non-overlapping 2.048 s
pochs for each participant. These epochs were then cleaned of eyeblink and
uscle artifacts using Independent Components Analysis from the EEGLab toolbox

Delorme & Makeig, 2004). All cleaned, resting epochs were spectrally transformed
n sLORETA using stationary fast Fourier transformation (see Frei et al., 2001
or more information) with frequency windows for the following bands: delta
1.5–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–12 Hz), beta1 (12–20 Hz),
eta2 (20–30 Hz), gamma (30–50 Hz), and global (1.5–50 Hz). Three dimensional
urrent density estimates for the average power within each band were then com-
uted. All data were normalized within-subjects prior to statistical testing. Resting
urrent density power correlates of the OCI-R were run using the non-parametric
tatistical package in the sLORETA module, which displays statistical results over
he entire cortex exceeding a p < .05 threshold of statistical significance.

Response-locked epochs (−300 to 300 ms) surrounding error (ERN) and correct
CRN) responses for the probabilistic learning task and flankers task were eyeblink
orrected (Semlitsch et al., 1986), averaged within each condition, and then con-
erted to sLORETA estimates of 3D current density. Four participants were removed
rom the probabilistic learning task ERP data set prior to sLORETA transformation
ue to excessive artifact or bad electrodes in sites other than Cz. All data were nor-
alized within-subjects prior to statistical testing, which were performed within

0 ms windows surrounding the peak of each error and correct response-related ERP
flankers: 66–106 ms; probabilistic learning: 76–126 ms). Current density power
ifferences were computed within groups for error > correct contrasts. Additionally,
his within-subject accuracy difference contrast (error > correct) was tested between
roups in a mixed model fashion using the non-parametric statistical package in the
LORETA module.

Methods for sLORETA Region of Interest (ROI) analyses were determined for
ub-regions of the ACC using custom Matlab (The MathWorks; Natick, MA) scripts,
argely following the methods of Pizzagalli, Peccoralo, Davidson, & Cohen (2006).

ower in all 6239 voxels was normalized to a power of 1 and log transformed at each
ime point. ROI values thus reflect the log transformed fraction of total power across
ll voxels, separately for each frequency band. Voxels within Brodmann Areas (BA)
4 and 32 were split into rostral and dorsal areas using the following determination:
orsal ACC = z > 15 and y < 35, else rostral ACC. Activity at each time point in these
ACC and dACC ROIs was averaged together for resting data, and within the same
logia 48 (2010) 2098–2109 2101

50 ms window surrounding the peak of each error and correct ERP that was used for
whole brain contrasts.

4.6. Statistical analyses

Behavioral data from the probabilistic learning and the probabilistic reversal
learning tasks were only used in participants who were able to choose the most
rewarding stimulus (A) over the least rewarding stimulus (B) more than 50% of the
time during the test phase, since data from participants who fail this basic crite-
rion are not interpretable (Frank et al., 2007; Frank et al., 2004; Frank et al., 2005).
This criterion removed 25 participants from the final analyses. In addition to the
exclusion criterion for behavioral performance, participants were excluded from
task-related EEG analyses if there were fewer than 30 EEG epochs in any condition
(this excluded an additional 14 participants). Note that all methods used for behav-
ioral and ERP measures are identical with our previous report; except whereas the
previous report used difference wave (ERN–CRN) amplitudes, this report utilizes the
raw ERN and CRN ERPs.

Separate 2 (ROI: rACC, dACC) × 2 (Group: High OCI-R, Low OCI-R) ANOVAs were
used to test for group differences in rACC and dACC power at rest. Separate 2
(Accuracy: Error, Correct) × 2 (ROI: rACC, dACC) × 2 (Group: High OCI-R, Low OCI-R)
ANOVAs were used to test for group differences in error-specific ACC sub-region
activation; planned comparisons were used to decompose significant high-level
interactions. Fisher’s z tests were used to test the difference between correlations.
Effect sizes are reported as partial �2 for ANOVA interactions, Cohen’s d for t-tests
and R2 for correlations.

5. Results

5.1. Performance and ERPs

The results presentation begins with a review of key findings
that were previously reported (Gründler et al., 2009) and that are
summarized in Fig. 2. There were no significant group differences
or correlations with the OCI-R on the probabilistic learning perfor-
mance measurements of test accuracy, test reaction time (RT), Go
accuracy, Go RT, NoGo accuracy, NoGo RT, learning bias (Go–NoGo),
or length of training. There were no significant group differences or
correlations with the OCI-R on the flanker task performance mea-
sures of correct RT, error RT, error rate, post-error RT slowing, or
percent of errors that were self-corrected. Additionally, there were
no significant group differences or correlations with the OCI-R with
the number of ERN epochs included in ERP/sLORETA analyses.1

Each task elicited a larger response-related voltage negativity
on error trials compared to correct trials (probabilistic learn-
ing ERN > CRN: t(69) = 3.10, p < .01, d = .40; flankers ERN > CRN:
t(35) = 8.44, p < .01, d = 1.35). ERN amplitudes in the flankers task
were larger in the High OCI-R group than the Low OCI-R
group (t(32) = 2.24, p < 05, d = .75). Conversely, probabilistic learn-
ing task ERN amplitude was negatively correlated with OCI-R score
(r(70) = −.32, p < .01, R2 = .10). ERN amplitudes were positively cor-
related with NoGo accuracy (r(70) = .29, p < .01, R2 = .08), but there
was no relationship between OCI-R score and NoGo accuracy
(r(70) = −.06),2 nor was there evidence for an interaction between
OCI-R score and the relationship between ERN amplitude and
probabilistic learning: [Low: 59 (21); High: 53 (21)].
2 Note that this OCI-R–NoGo statistic (and the data displayed in Fig. 2) is taken

from the sample with the learning criterion exclusion (AB > .5) and the additional
EEG exclusion criteria (at least 30 ERNs) for the purpose of continuity. The pattern
in the data following the learning criterion exclusion alone is nearly identical: OCI-R
and NoGo r(84) = −.07, p = .55.
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Fig. 2. In the probabilistic learning task, OCI-R score is inversely correlated with
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Fig. 3. Resting EEG. sLORETA figures show non-parametric correlation tests of OCI-
R score and resting EEG band power. Hotter or cooler colors indicate statistical
thresholds for voxels which were positively or negatively correlated with the OCI-R,
respectively. All slices are x = −5, and approximate Region of Interest (ROI) masks are
drawn over the global power slice. Whole brain analyses show greater ventrome-
dial PFC and lower dorsomedial PFC global power activities with increasing OCI-R
score. ROI analyses demonstrate the significant interaction whereby the High OCI-R
group is characterized by greater rACC and lower dACC power at rest. Below, these
effects are expanded for each discrete frequency band. Both whole brain and ROI
RN amplitude, and ERN amplitude is correlated with punishment avoidance (NoGo
ccuracy), but there is no relationship between OCI-R score and NoGo accuracy.
owever, there was a relationship between higher OCI-R score and poorer reversal

earning.

The only performance metric that differed as a function of OCI-
score occurred in the probabilistic reversal learning task, which
e report here for the first time. There was a negative correla-

ion between OCI-R score and the number of successful reversals
r(41) = −.43, p < .01, R2 = .18; Group differences: t(39) = 3.02, p < .01,
= .97 [Low M = 5.9, SD = 1.4 High: M = 4.3, SD = 2.1]). Reversal

earning success was significantly correlated with NoGo accuracy
r(41) = .35, p < .05, R2 = .12) but not Go accuracy (r(41) = .02, p > .05).
lthough individual differences in avoidance and reversal learning
cuities were related, OC symptoms were only related to reversal
not NoGo) performance.
.2. Resting EEG

Fig. 3 shows the correlation between OCI-R score and rest-
ng EEG power, where non-parametric permutation tests and ROI

correlations show increased vmPFC/rACC activity in slow frequencies and decreased
dmPFC/dACC activity in faster frequencies as a function of OCI-R score.
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ig. 4. Flankers task. All ROI values, sLORETA statistical threshold images (x = −5),
he ERPs. Errors are associated with an increase in dACC power, yet the High OCI-R
rror-correct contrast. In the High group, greater rACC reactivity to errors correlate

nalyses reveal that current density in the medial frontal cor-
ex varies as a function of obsessive-compulsive symptomatology:
ith greater activity in vmPFC, including rACC, and lower activ-

ty in dorsomedial PFC (dmPFC), including dACC. A Group × ROI
NOVA revealed a significant interaction, such that the High group
as characterized by greater rACC and lower dACC global power

t rest compared to the Low group (F(1,105) = 4.26, p < .05, par-
ial �2 = .04; absent any simple main effects for Group, p > .05).
hese global power differences varied within distinct frequency
ands. Both non-parametric permutation tests and ROI corre-

ations both reveal that increased OCI-R score correlated with
ncreased rACC power in low frequency bands and decreased
ACC power in faster frequency bands. Although the OCI-R scores
ere highly co-linear with Beck Depression Inventory (BDI)

cores (r(107) = .53, p < .01, R2 = .28), all significant OCI-R–ROI cor-
elations remain significant when accounting for variance due
o BDI in a regression model. In summary, individuals with

levated OCI-R scores demonstrate greater activity at rest in
mPFC, including rACC, and lower activity in dmPFC, including
ACC.3

3 Additional ROI analyses included a wider sample of vmPFC (BA10, BA11, BA25
nd rACC) and dmPFC (BA6, BA8, BA9 and dACC) areas, where these additional BAs
nclude voxels in the medial PFC only (between X = −14 and X = 14). Findings from
hese larger mPFC ROIs were very similar to the ACC ROIs alone. Following a priori
ypotheses, and for the sake of parsimony, all analyses focus on ACC ROIs.
eadmaps (±10 �V) are shown for the time range in the highlighted window over
is characterized by greater vmPFC/rACC activity than the Low OCI-R group in the
larger ERN amplitudes.

5.3. Flankers task

Fig. 4 shows the flanker task ERPs, sLORETA images, and ROI val-
ues for the error-correct difference. Non-parametric permutation
tests reveal a large area in dmPFC (BA6, BA8, and dACC) that are
more active during errors than correct trials. Between group com-
parisons of the error-correct contrast reveal that the High group is
characterized by relatively greater vmPFC activity, including rACC
activity, than the Low group.

An Accuracy × ROI × Group ANOVA revealed a significant
Accuracy × ROI interaction (F(1,32) = 21.28, p < .01, �2 = .40), with
no main effects or interactions with group. Contrasts revealed a
difference in Accuracy conditions in the dACC ROI only (F = 8.36,
p < .01), where dACC power was increased in both groups following
errors (see Fig. 4). Dorsal ACC power significantly correlated with
ERN amplitude (r(34) = .34, p = .05, R2 = .12), with no evidence for
an interaction between group and the relationship between dACC
power and ERN amplitude (F < 1). In line with the permutation
test findings of increased rACC power, only the High group was

characterized by a correlation between rACC ROI power and ERN
amplitude (r(16) = .53, p < .05, R2 = .28), a relationship that was not
found in the Low group (r(18) = .03, p = .90).4 In summary, dACC
power was increased following errors, and dACC power correlated

4 Although the difference between these correlations was not statistically signifi-
cant (p = .14), when this analysis was performed in a larger time window (0–150 ms),
the correlations were more divergent between groups (High: r(16) = .58, p < .05,
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Fig. 5. pt Probabilistic learning task. All ROI values, sLORETA statistical threshold images (x = −5), and headmaps (±4 �V) are shown for the time range in the highlighted
window over the ERPs. Errors are associated with reciprocal activation in ACC sub-regions (lower dACC, higher rACC) in the Low group only; this pattern is not seen in the
High group. The High OCI-R group is characterized by greater dACC activity than the Low OCI-R group in the error-correct contrast (although this pattern is likely reflective
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f a lack of deactivation). Whereas increased rACC activity correlates with ERN amp
n the High group.

ith ERN amplitude in all participants. Group differences were
nly apparent in the rACC ROI, where the sLORETA contrasts reveal
hat the High OC group had relatively greater vmPFC/rACC power,
nd where greater rACC ROI power correlated with larger ERN
mplitudes in the High group only.

.4. Probabilistic learning task

Fig. 5 shows the probabilistic learning task ERPs, sLORETA
mages, and ROI values for the error-correct difference. Non-
arametric permutation tests revealed minor differences between
rror and correct trials, mainly in the Low group where activity
as lower on error trials in parts of the dACC, posterior cingulate,

nd medial BA6. Between group comparisons of the error-correct
ontrast reveal that the High group was characterized by relatively

reater dACC activity than the Low group, although this could be
lternatively be characterized as a lack of deactivation in dACC
egions, given the error-related dACC deactivation observed in the
ow group.

2 = .34; Low: r(18) = −.12, p = .66) and were significantly different from each other
z = −2.04, p < .05).
in the Low group, the degree of dACC deactivation correlates with ERN amplitude

A significant Accuracy × ROI × Group three-way interaction
(F(1,64) = 3.92, p = .05, partial �2 = .06) revealed evidence of group
differences in error-related ACC sub-region activation. Separate
Accuracy × ROI ANOVAs reveal that only the Low group was char-
acterized by error-specific reciprocal ROI activities of increased
rACC and decreased dACC, as demonstrated by an Accuracy × ROI
interaction (F(1,42) = 12.41, p < .01, partial �2 = .23; absent any simple
main effects for Accuracy, p > .05), a pattern that was not seen in the
High group (F < 1). The two groups also display opposite relation-
ships between ACC activity and ERN amplitude: whereas increased
rACC activity in the Low group correlates with larger ERN ampli-
tudes (r(43) = .34, p < .05, R2 = .12), dACC deactivation in the High
group correlates with larger ERN amplitudes (r(23) = −.40, p = .05,
R2 = .16). This latter correlation suggests that the lack of dACC deac-
tivation in the High OCI-R group may be directly related to the
smaller ERN amplitudes observed in the probabilistic learning task.
5.5. Brain–behavior relationships

Table 1 shows how in the Low group only, the degree of phasic
decrease in dACC power during probabilistic error commission cor-
related with individual differences in the ability to learn to avoid
punishment. Conversely, in the High group, phasic increases in rACC
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Fig. 6. Summary of brain–behavior relationships for individual differences within Low OCI-R (left) and High OCI-R (right) groups in probabilistic tasks. (A) In the Low group,
error-related decreases in dACC power predict NoGo bias; yet in the High group error-related increases in rACC power predict NoGo bias. (B) In the Low group, error-related
increases in rACC power predict larger ERNs; yet in the High group error-related decreases in dACC power predict larger ERNs. This regional dissociation (shown in A and
B) does not reveal if the smaller ERN in the High group is only reflective of the degree that different (possibly compensatory) neural systems are recruited, or if smaller
ERNs are reflective of a true deficit in action monitoring systems in the High group. (C) Evidence for altered action monitoring as a function of high obsessive-compulsive
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group. Only in the High group, ERN amplitude in the probabilistic
learning task predicted future reversal learning success (r(13) = .73,
p < .01, R2 = .53), a pattern that was significantly different than the
null effect found in the Low group (r(16) = −.10, p = .70; z = 1.97,
ymptomatology is seen in the probabilistic reversal learning task, where smaller E
roup only.

ower correlated with punishment avoidance learning.5 Fig. 6 sum-
arizes the source–ERP–behavioral relationships, where greater

ACC deactivation predicted NoGo bias in the Low group, but larger
RN amplitudes in the High group. Conversely, greater rACC reac-
ivity predicted larger ERN amplitudes in the Low group, but NoGo
ias in the High group. This pattern of intact brain–behavior rela-
ionships does not reveal whether the group difference in ERN

mplitude is a functionally relevant indicator of a deficit in the
unctioning of action monitoring systems, or simply a result of the
egree that different cortical processing systems are recruited for
his task.

5 Low OCI-R: These same effects hold even after accounting for resting effects
y computing individual change scores (task-rest): Bias: (r(43) = .40, p < .01, R2 = .16);
oGo: (r(43) = −.49, p < .01, R2 = .24); Go: (r(43) = .17, p > .29); between groups compar-

son of bias and NoGo: (z’s > 2.5, p’s < .01). High OCI-R: These effects largely hold even
fter accounting for resting effects by computing individual change scores (task-
est): Bias: (r(23) = −.43, p < .05, R2 = .18); NoGo remains a trend: (r(23) = .39, p = .07,
2 = .15); Go: (r(23) = −.27, p > .20); although the between groups comparison of bias
nd NoGo do not remain significant at the p < .05 threshold: (z’s > 1.6, p’s < .10). In
um, tonic (resting) individual differences in dACC or rACC power do not appear
o affect these brain-behavior relationships within the Low group, but tonic effects

ay have a slight influence in these relationships within the High group.
plitudes predicted poorer future performance during reversal learning in the High

However, evidence from the reversal learning task suggests
that the probabilistic learning ERN may be a functionally rele-
vant indicator of deficient action monitoring processes in the High
p < .05). Differential patterns of regional cingulate phasic activi-

Table 1
Within-group correlations (Pearson’s r) between error-related sub-regional cingu-
late activities and learning accuracies [Low OCI-R: N = 43, High OCI-R: N = 23].

Learning metric Group z-Test

Low OCI-R High OCI-R

Bias: Go > NoGo
Dorsal ACC .36* −.35 2.71**

Rostral ACC .10 −.45* 2.12*

NoGo
Dorsal ACC −.38* .15 −2.00*

Rostral ACC −.22 .39* −2.32*

* p < .05.
** p < .01.
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ies in the High group may be able to function during response
election of values that have been integrated over time (NoGo), but
ay be unable to compensate for rapidly overcoming well-learned

timulus–response associations (reversal).

. Discussion

OC symptoms predicted a pattern of relatively greater rACC
ower and relatively lower dACC power at rest, suggesting tonic
lteration as a function of OC symptom severity. High OC symp-
oms were associated with relatively greater rACC activity during
rrors on the response competition task, and less deactivation of
ACC activity during errors in the reinforcement learning task. The
egree of ACC reactivity in these areas correlated with the size of
RN amplitudes for each task in the High group, but not the Low
roup. This pattern of relationships suggests that task-specific pha-
ic activation of ACC sub-regions are altered as a function of OC
ymptom severity, and this alteration is partially reflected in the
calp-recorded ERN.

The direct relationship between individual differences in
RN amplitude and punishment avoidance learning was similar
etween groups, even though activity in different cingulate sub-
egions were correlated with these indices in High and Low groups.
lthough this sub-regional dissociation did not affect punishment
voidance learning, evidence of diminished performance was found
n the High group where smaller ERN amplitudes predicted poorer
uture performance during reversal learning. These novel findings
ink both tonic and phasic activities in the ACC to action monitor-
ng alterations, including dissociation in task performance, in OC
ymptomatic participants.

.1. Tonic cingulate sub-region activity

OC symptom-related correlations with resting vmPFC/rACC
ower may be reflective of the hyperactive metabolic activity
een in OC patients. EEG source-localized power in most bands
as been shown to directly correlate with functional metabolism
Oakes et al., 2004), particularly theta band power in the rACC
Pizzagalli, Oakes, & Davidson, 2003), providing support that this
ovel measurement of resting neural functioning reflects similar
mPFC hyperactivation described in the extant patient literature
Adler et al., 2000; Cavedini et al., 2002; Chen et al., 2004; Denys,
an der Wee, et al., 2004; Denys, Zohar, et al., 2004; Hesse et al.,
005; Mataix-Cols et al., 2004; Nakao et al., 2005a; Rosenberg &
eshavan, 1998; van der Wee et al., 2004). The finding of lower
esting dACC power as a function of OC symptomatology is con-
istent with neuroimaging findings of lower resting metabolism of
CD patients (Yucel et al., 2007), yet diminished tonic rACC and
ACC activity have also been found in clinical depression (Mayberg
t al., 1997; Pizzagalli et al., 2001). However, even after account-
ng for variance associated with depressive symptomatology, this
nvestigation found that obsessive-compulsive symptoms, rather
han depressive symptoms, underlie the individual differences in
esting EEG.

.2. Phasic cingulate sub-region activation

Intracranial EEG recordings have indicated an increase theta
ower in the vmPFC/rACC and a decrease in beta power in the
mPFC/dACC during manual responses, especially during response
onflict (Cohen, Ridderinkhof, Haupt, Elger, & Fell, 2008). While the

ime window for ROI analysis (50 ms) precluded the ability to parse
requency dynamics within each ACC sub-region in this investiga-
ion, both of these specific frequency bands (theta and beta) were
ltered at rest in the respective ACC sub-regions as a function of
C symptoms in this investigation. Since rACC areas often show
logia 48 (2010) 2098–2109

a functional trade-off in activation with dACC areas (Bush, Luu, &
Posner, 2000), both rACC hyperactivation and dACC hypoactivation
may contribute to altered action monitoring signals as measured
by ERN amplitude and even possibly the fMRI Blood Oxygen Level
Dependent (BOLD) response.

In this investigation, reciprocal activation of rACC and dACC
EEG power was seen during errors during the probabilistic learn-
ing task in the Low OCI-R group; this pattern was not present in
the High OCI-R group. During response competition errors, the
High group was characterized by greater rACC activity, in addi-
tion to dACC activation that was common to both groups, again
demonstrating an alteration in reciprocal cingulate sub-region acti-
vation. This pattern of results hints that a single dynamic, present
at rest in high OC individuals, underlies alteration in phasic action
monitoring signals: rACC hyperactivity and dACC hypoactivity may
contribute to inflexible reciprocal phasic activation of cingulate
sub-regions.

6.3. Error commission and the ERN

During motor errors of commission on the flankers task, dACC
activity correlated with ERN amplitude without any group differ-
ences. However, only the High group had a correlation between
rACC reactivity and ERN amplitude. The link between increased
rACC reactivity and larger ERN amplitudes in High OC participants
is convergent with findings of relatively greater rACC activation
from fMRI studies (Fitzgerald et al., 2005; Maltby et al., 2005; Ursu
et al., 2003). The rostral part of the ACC has been related to assess-
ing the salience of affective and homeostatic challenges (Bush et al.,
2000). Increased ERNs relate to trait and state level affective lability,
and ERNs are larger in individuals with anxiety disorders (Hajcak,
McDonald, & Simons, 2003; Olvet & Hajcak, 2008) and negative
affect (Hajcak, McDonald, & Simons, 2004; Luu, Collins, & Tucker,
2000). Future investigations may aim to probe the relationship
between increased affective salience, increased rACC reactivity, and
larger ERNs.

6.4. Error avoidance and the ERN

In contrast to such studies where response contingencies are
known and erroneous responses reflect response errors of which
subjects are generally aware, participants are rarely explicitly
aware of the reinforcement probabilities on this type of rein-
forcement learning task. Moreover, there are no outright “errors”
to make on a probabilistic task, only suboptimal choices. These
suboptimal choices are unlikely to be as obvious or meaningful
as errors-of-commission on a flanker task and these probabilis-
tic errors may even reflect a different type of cognitive process:
conflict due to a value judgment violation, an exploratory or
uncertain response, or a sub-threshold error signal. The find-
ing of phasically increased rACC and decreased dACC power in
relation to both ERN amplitude and NoGo performance is a
novel advancement in the field of reinforcement learning; yet
more normative work must be done before OC symptom-related
alterations (inflexible reciprocal phasic activation) can be fully
interpreted.

6.5. Brain–behavior linkages

The ERN is understood to be a signal of internal action monitor-
ing processes, and larger amplitudes have been shown to correlate

with the degree of post-error behavioral adaptation (Cavanagh,
Cohen, & Allen, 2009; Debener et al., 2005). However, the OC
patient literature has failed to show a consistent effect of altered
performance on response competition or reinforcement learning
tasks in OCD patients (Endrass et al., 2008; Gehring et al., 2000;
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ajcak et al., 2008; Hajcak & Simons, 2002; Johannes et al., 2001;
altby et al., 2005; Ruchsow et al., 2005; Ursu et al., 2003; but

ee: Fitzgerald et al., 2005). Recent studies have suggested that
putative performance monitoring dysfunction in OCD may not

ven be selective to error processing, since larger voltage negativ-
ties to correct responses are also observed in patients (Endrass et
l., 2008) and highly symptomatic non-patients (Hajcak & Simons,
002). Thus, it is not clear if ERN differences between patient and
ontrol groups are functionally relevant indicators of altered action
onitoring adaptations, or if they are a result of the degree that

ifferent cortical processing systems are recruited due to “baseline
hifts”. Evidence from this investigation supports both these pos-
ibilities, but suggests that the choice of task is a crucial variable to
eveal these differences.

This investigation discovered that the High OC group may be
ompromised in their ability to reciprocally alter rACC and dACC
ctivities in a phasic manner. This lack of reciprocal activation does
ot appear to hinder avoidance learning in the High OC group, pos-
ibly due to compensatory use of different cortical systems within
he mPFC as detailed in Fig. 6. Compensatory neural responses
uring reinforcement and action learning have been detailed in
arkinson’s (Bedard & Sanes, 2009) and schizophrenic patients
Weickert et al., 2009) in the absence of performance deficits.

hereas avoidance learning appears intact, probabilistic reversal
earning is compromised in OCD patients (Chamberlain et al., 2008;
im et al., 2003; Remijnse et al., 2006; Valerius et al., 2008). Our
nding of a probabilistic learning deficit as a function of OC symp-
oms implicates possible deficits in the interactive systems of error

onitoring, response inhibition, and high-order task structure sys-
ems in the brain, especially when quickly overcoming previously
ell-learned responses. The finding of a relationship between ERN

mplitude and reversal success in the High group represents the
rst relationship between an altered response-related ERP and a
ehavioral consequence as a function of OC symptomatology in the
xtant literature. This is a novel and important finding, since it sug-
ests that ACC sub-regions involved in probabilistic error avoidance
re directly related to performance deficits in rapid probabilistic
eversal learning.

.6. Limitations and future directions

The use of student populations for clinical analogues demands
eplication with OCD patients, but this methodology pro-
ides unique advantages: a young medically healthy and
sychopharmaceutical-free sample, the absence of severe comor-
id psychiatric conditions, homogeneity in age, and the ease of
sing larger sample sizes. Moreover, a multitude of findings com-
on to the patient literature were replicated here: including

yperactive resting vmPFC activity, larger error commission ERNs,
nd a deficit in reversal learning. The use of tonic and phasic source-
ocalized EEG to account for the observed task dissociation in ERN
mplitudes is a novel methodological advancement in the study
f individual differences. These individual differences in OC symp-
omatology make strong and parsimonious predictions for future
nvestigations with OCD patients.

This investigation localized the sources of phase-locked activi-
ies contributing to the ERPs, but not phase-varying activities which
emain unidentified as in any ERP study (Trujillo & Allen, 2007). The
LORETA method of EEG source localization uses a standard MNI
emplate for all participants, which would not account for struc-
ural variations in sulci or gyri across participant groups. Given that

CD patients have been characterized by diminished grey matter

n the ACC (Rotge et al., 2009) the contribution of structural differ-
nces between groups will not be accounted for in the analysis of
esting and functional EEG activities. However, this possibility may
e actually diminished by the use of student analogues as opposed
logia 48 (2010) 2098–2109 2107

to a patient population. Future investigations should replicate these
tonic and phasic interdependencies in a patient population with an
optimized methodology for functional localization, such as PET or
fMRI. The specificity of these results to OCD should also be com-
pared to other anxiety and mood disorders (Olvet & Hajcak, 2008).
Given that diminished tonic ACC activity may also be a correlate of
depressive symptomatology (Mayberg et al., 1997; Pizzagalli et al.,
2001), comparison studies are needed in order to fully characterize
the functioning of the medial PFC in OCD.

Event-related brain responses do not exist in the vacuum of sin-
gle moment; they are likely just a partial transient reflection of
sustained, communicative, or adaptive system activities. It remains
an open question whether altered action monitoring signals in OCD
reflect a true difference in adaptive performance, a tonic “base-
line shift” in activity levels, or an altered context of interaction
with other neural systems involved in cognitive control (like lat-
eral PFC; Cavanagh et al., 2009) or affective reactivity (perhaps
insula; Magno, Foxe, Molholm, Robertson, & Garavan, 2006). This
investigation suggests that the choice of task may be an important
starting point for dissociating these myriad influences on event-
related brain activity.

7. Conclusion

EEG source localization revealed that a single dynamic, present
at rest, contributes to altered action monitoring signals in highly
OC symptomatic participants. A pattern of rostral cingulate hyper-
activation and dorsal cingulate hypoactivation may contribute to
altered functioning in circumstances that require flexible alter-
ation of goal-directed performance. These novel findings link
both tonic and phasic activities in the ACC to action monitor-
ing alterations, including dissociation in performance deficits, in
OC symptomatic participants. Differential modulation of medial
prefrontal systems may be related to obsessive-compulsive symp-
toms, with hypoactivity in dorsomedial systems that promote rapid
active avoidance, but hyperactivity in ventromedial systems that
are sensitive to maladaptive responses. The functional interac-
tion of these systems may be compromised in OCD patients when
recruited to overcome well-learned actions that perpetuate bad
outcomes.
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