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Abstract

■ Computational modeling has become a central aspect of
research in the cognitive neurosciences. As the field matures,
it is increasingly important to move beyond standard models
to quantitatively assess models with richer dynamics that may
better reflect underlying cognitive and neural processes. For
example, sequential sampling models (SSMs) are a general class
of models of decision-making intended to capture processes
jointly giving rise to RT distributions and choice data in n-
alternative choice paradigms. A number of model variations
are of theoretical interest, but empirical data analysis has histor-
ically been tied to a small subset for which likelihood functions
are analytically tractable. Advances in methods designed for

likelihood-free inference have recently made it computationally
feasible to consider a much larger spectrum of SSMs. In addi-
tion, recent work has motivated the combination of SSMs with
reinforcement learning models, which had historically been con-
sidered in separate literatures. Here, we provide a significant
addition to the widely used HDDM Python toolbox and include
a tutorial for how users can easily fit and assess a (user-extensible)
wide variety of SSMs and how they can be combined with rein-
forcement learning models. The extension comes batteries
included, including model visualization tools, posterior predic-
tive checks, and ability to link trial-wise neural signals with
model parameters via hierarchical Bayesian regression. ■

INTRODUCTION

The drift diffusion model (DDM, also called diffusion
decision model or Ratcliff diffusion model; Ratcliff,
Smith, Brown, & McKoon, 2016; Ratcliff, 1978) and,
more generally, the framework of sequential sampling
models (SSMs; Heathcote, Matzke, & Heathcote, 2022;
Tillman, Van Zandt, & Logan, 2020; Voss, Lerche, Mertens,
& Voss, 2019; Ratcliff et al., 2016; Hawkins, Forstmann,
Wagenmakers, Ratcliff, & Brown, 2015) have become a
mainstay of the cognitive scientist’s model arsenal in the
last two decades (Lawlor et al., 2020; Wieschen, Voss, &
Radev, 2020; Van Zandt, Colonius, & Proctor, 2000).

SSMs are used to model neurocognitive processes that
jointly give rise to choice and RT data in a multitude of
domains, spanning from perceptual discrimination to
memory retrieval to preference-based choice (Smith,
Ratcliff, & Sewell, 2014; Krajbich, Lu, Camerer, & Rangel,
2012; Krajbich & Rangel, 2011; Ratcliff, Thapar, &
McKoon, 2006; Ratcliff, 1978) across species (Doi, Fan,

Gold, & Ding, 2020; Yartsev, Hanks, Yoon, & Brody,
2018; Gold & Shadlen, 2007). Moreover, researchers
are often interested in the underlying neural dynamics
that give rise to such choice processes. As such, many
studies include additional measurements such as EEG,
fMRI, or eye-tracking signals as covariates, which act as
latent variables and connect to model parameters (e.g.,
via a regression model) to drive trial-specific parameter
valuations (Doi et al., 2020; Yartsev et al., 2018; Frank
et al., 2015; Forstmann et al., 2010; Rangel, Camerer,
& Montague, 2008). See Figure 1 for an illustration of
the DDM and some canonical experimental paradigms.
The widespread interest and continuous use of SSMs

across the research community has spurred the develop-
ment of several software packages targeting the estimation
of such models (Fontanesi, 2022; Heathcote et al., 2019;
Vandekerckhove & Tuerlinckx, 2008). For a hierarchical
Bayesian approach to parameter estimation, the HDDM
toolbox in Python (Wiecki, Sofer, & Frank, 2013; available
at github.com/hddm-devs/hddm) is widely used and the
backbone of hundreds of studies published in peer-
reviewed journals.
HDDM allows users to conveniently specify and esti-

mate DDM parameters for a wide range of experimental
designs, including the incorporation of trial-by-trial covar-
iates via regression models targeting specific parameters.
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As an example, one may use this framework to estimate
whether trial-by-trial drift rates in a DDM covary with neu-
ral activity in a given region (and/or temporal dynamic),
pupil dilation, or eye gaze position. Moreover, by using
hierarchical Bayesian estimation, HDDM optimizes the
inference about such parameters at the individual subject
and group levels.
Nevertheless, until now, HDDM and other such tool-

boxes have been largely limited to fitting the two-
alternative choice DDM (albeit allowing for the full DDM
with intertrial parameter variability). The widespread
interest in SSMs has however also spurred theoretical
and empirical investigations into various alternative model
variants. Notable examples are, among others, race
models with more than two decision options, the leaky
competing accumulator model (Usher & McClelland,

2001), SSMs with dynamic decision boundaries (True-
blood, Heathcote, Evans, & Holmes, 2021; Ratcliff &
Frank, 2012; Cisek, Puskas, & El-Murr, 2009), and more
recently, SSMs based on Levy flights rather than basic
Gaussian diffusions (Wieschen et al., 2020). Moreover,
as mentioned earlier, SSMs naturally extend to n-choice
paradigms.

A similar state of affairs is observed for another class
of cognitive models that aim to simultaneously model
the dynamics of a feedback-based learning across trials
as well as the within-trial decision process. One way to
achieve this is by replacing the choice rule in a rein-
forcement learning (RL) process, in itself an important
theoretical framework in the study of learning behavior
across trials (Collins & Shenhav, 2022; Eckstein,
Wilbrecht, & Collins, 2021; McDougle & Collins, 2021;

Figure 1. DDM and some example applications.
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Dowd, Frank, Collins, Gold, & Barch, 2016) with cogni-
tive process models such as SSMs. This forms a powerful
combination of modeling frameworks. Although recent
studies moved into this direction (Fontanesi, 2022;
Pedersen & Frank, 2020; Fontanesi, Gluth, Spektor, &
Rieskamp, 2019; Turner, 2019; Pedersen, Frank, & Biele,
2017), they have again been limited to an application of
the basic DDM.

Despite the great interest in these classes of models,
tractable inference and, therefore, widespread adoption
of such models has been hampered by the lack of
easy-to-compute likelihood functions (including essen-
tially all of the examples provided above). In particular,
although many interesting models are straightforward
to simulate, often researchers want to go the other
way: from the observed data to infer the most likely
parameters. For all but the simplest models, such likeli-
hood functions are analytically intractable, and hence
previous approaches required computationally costly
simulations and/or lacked flexibility in applying such
methods to different scenarios (Boehm, Cox, Gantner,
& Stevenson, 2021; Shinn, Lam, & Murray, 2020; Palestro,
Sederberg, Osth, Van Zandt, & Turner, 2019; Turner &
Van Zandt, 2018; Turner & Sederberg, 2014). We recently
developed a novel approach using artificial neural net-
works that can, given sufficient training data, approxi-
mate likelihoods for a large class of SSM variants, thereby
amortizing the cost and enabling rapid, efficient, and flex-
ible inference (Fengler, Govindarajan, Chen, & Frank,
2021). We dubbed such networks LANs, for “likelihood
approximation networks.”

The core idea behind computation amortization is to
run an expensive process only once, so that the fruits of
this labor can later be reused and shared with the rest of
the community. Profiting from the computational labor
incurred in other research groups enables researchers to
consider a larger bank of generative models and to
sharpen conclusions that may be drawn from their
experimental data. The benefit is threefold. Experi-
menters will be able to adjudicate between a rising
number of competing models (theoretical accounts)
and capture richer dynamics informed by neural activity,
and at the same time, new models proposed by theore-
ticians can find wider adoption and be tested against
data much sooner.

Just as streamlining the analysis of simple SSMs (via,
e.g., the HDDM toolbox and others) allowed an
increase in adoption, streamlining the production and
inference pipeline for amortized likelihoods, we hope,
will drive the embrace of SSM variations in the model-
ing and experimental community by making a much
larger class of models ready to be fit to experimental
data.

Here, we develop an extension to the widely used
HDDM toolbox, which generalizes it to allow for flexible
simulation and estimation of a large class of SSMs by
reusing amortized likelihood functions.

Specifically, this extension incorporates the following:

• LAN-based (Fengler et al., 2021) likelihoods for a vari-
ety of SSMs (batteries included)

• LAN-driven extension of the RL–DDM capabilities,
which allows RL learning rules to be applied to all
included SSMs

• New plots that focus on visual communications of
results across models

• An easy interface for users to import and incorporate
their own models and likelihoods into HDDM

This article is formulated as a tutorial to support appli-
cation of the HDDM LAN extension for data analysis prob-
lems involving SSMs.
The rest of the article is organized as follows. We start by

providing some basic overview of the capabilities of
HDDM. We then give a brief overview of LANs (Fengler
et al., 2021). Themain part of this article constitutes a tuto-
rial with a detailed introduction on how to use these new
features in HDDM. We conclude by embedding the new
features into a broader agenda and, finally, mention limi-
tations and preview future developments.

HDDM: THE BASICS

The HDDM Python package (Wiecki et al., 2013) was
designed to make hierarchical Bayesian inference for
DDMs simple for end users with some programming expe-
rience in Python. The toolbox has been widely used for
this purpose by the research community, and the feature
set evolves to accommodate new use cases. This section
serves as a minimal introduction to HDDM to render the
present tutorial self-contained. To get a deeper introduc-
tion to HDDM itself, please refer to the original article
(Wiecki et al., 2013), an extension article specifically con-
cerning RL capabilities (Pedersen & Frank, 2020), and the
documentation of the package. Here, we concern our-
selves with a very basic workflow that uses the HDDM
package for inference.

Data

HDDM expects a data set, provided as a pandas Data-
Frame (McKinney, 2010) with three basic columns: a
“subj_idx” column that identifies the subject, a
“response” column that specifies the choice taken
in a given trial (usually coded as 1 for “correct” choices
and 0 for “incorrect” choices), and an “rt” column that
stores the trial-wise RTs (in seconds). Other columns can
be added, for example, to be used as covariates (task
condition or additional measurements such as trial-wise
neural data). Here, we take the example of a data set that
is provided with the HDDM package. Codeblock 1 shows
how to load this data set into a Python interpreter, as
shown below:
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HDDM Model

Once we have our data in the format expected by HDDM,
we can now specify an HDDM model. We focus on a
simple example here: a basic hierarchical model that
estimates separate drift rates (v) as a function of task con-
dition, denoted by the “stim” column, and moreover
estimates the starting point bias z. (Boundary separation,
otherwise known as decision threshold a and nondecision
time t, is also estimated by default.)
This model assumes that the subject-level z, a, and t

parameters are each drawn from the respective group
distributions, the parameters of which are also inferred.
The v parameters derive from separate group distribu-
tions for each value of “stim”. Details about the choices
of group priors and hyperparameters can be found in the
original toolbox paper (Wiecki et al., 2013). Codeblocks 2
and 3 show how to construct and sample from such a
model.

Sample and Analyze

With theHDDMmodel defined, the goal is to fit thismodel
to a given data set. In a Bayesian context, this implies
obtaining a posterior distribution over model parameters.
For completeness, we note that such posterior distribu-
tions are defined via Bayes’ rule,

p θjDð Þ∝ p Djθð Þp θð Þ

where D is our data, θ is our set of parameters, p(D|θ)
defines the likelihood (analytic in the case of the standard
HDDM class) of our data set under the model, and p(θ)
defines our initial prior over the parameters. HDDM uses
the probabilistic programming toolbox PyMC (Patil,
Huard, & Fonnesbeck, 2010) to generate samples from
the posterior distribution via Markov chain Monte Carlo
(MCMC; specifically, using coordinate-wise slice samples

Codeblock 1. Loading package-included data.

Codeblock 2. Initializing HDDM model.

Codeblock 3. Sampling from a basic HDDM model.
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[Neal, 1995]). To generate samples from the posterior, we
simply type.

HDDM then provides access to a variety of tools to ana-
lyze the posterior and generate quantities of interest,
including the following:

1. Chain summaries: To get a quick glance at mean
posterior estimates (and their uncertainty) for
parameters.

2. Trace plots and the Gelman–Rubin statistic (Brooks &
Gelman, 1998): To understand issues with chain con-
vergence (i.e., whether one can trust that the esti-
mates are truly drawn from the posterior).

3. The deviance information criterion (Spiegelhalter,
Best, Carlin, & Van der Linde, 2014): As a score to
be used for purposes of model comparison (with
caution).

4. Posterior predictive plots: To check for the absolute
fit of a given model to data (potentially as a function
of task condition, etc.).

The HDDM LAN extension maintains this basic HDDM
workflow, whichwe hope facilitates seamless transition for
current users of HDDM. After some brief explanations
concerning approximate likelihoods, which form the
spine of the extension, we will expose the added capabil-
ities in detail.

APPROXIMATE LIKELIHOODS

Approximate Bayesian inference is an active area of
research. Indeed, the last decade has seen a multitude

of proposals for new algorithms, many of which rely in
one way or another on popular deep learning techniques
(Tejero-Cantero et al., 2020; Greenberg, Nonnenmacher,
& Macke, 2019; Lueckmann, Bassetto, Karaletsos, &
Macke, 2019; Papamakarios, Nalisnick, Rezende,
Mohamed, & Lakshminarayanan, 2019; Papamakarios,
Sterratt, & Murray, 2019; Gutmann, Dutta, Kaski, &
Corander, 2018; Papamakarios & Murray, 2016). Relevant
to our goals here are algorithms that can estimate trial-
by-trial likelihoods for a given model. The main idea is to
replace the “likelihood” term in Bayes’ rule with an
approximation p̂(D|θ), which can be evaluated via a for-
ward pass through a simple neural network. Once the
networks are trained, these “amortized” likelihoods can
then be used as a plug-in (replacing the analytical likeli-
hood function) to run approximate inference. Having
access to approximate likelihoods, the user will now be
able to apply HDDM to a broad variety of SSMs.
The HDDM extension described here is based on a

specific likelihood amortization algorithm, which we
dubbed LANs (Fengler et al., 2021). Details regarding
this LAN approach, including methods, parameter
recovery studies, and thorough tests, can be found in
Fengler and colleagues (2021). Note that, in principle,
our extension supports the integration of any approxi-
mate (or exact) likelihood, in the context of a now
simple interface for adding models to HDDM. The
scope remains limited only insofar as HDDM remains
specialized toward choice/RT modeling. Figure 2 pro-
vides some visual intuition regarding the ideas behind
LANs.

Figure 2. Depiction of the general idea behind LANs. We use a simulator of a likelihood-free cognitive process model to generate training data.
These training data are then used to train a neural network, which predicts the log-likelihood for a given feature vector consisting of model
parameters, as well as a particular choice and RT. This neural network then acts as a stand-in for a likelihood function facilitating approximate
Bayesian inference. Crucially, these networks are then fully and flexibly reusable for inference on data derived from any experimental design.
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HDDM EXTENSION: STEP BY STEP

A Central Database for Models:
hddm.model_config

To accommodate the multitude of new models, HDDM>
0.9 now uses a model specification dictionary to extract
data about a given model that is relevant for inference.
Themodel_configmodule contains a central dictionary
with which the user can interrogate to inspect models that
are currently supplied with HDDM. Codeblock 4 shows
how to list the models included by name. For each model,
we have a specification dictionary. Codeblock 5 provides
an example for the simple DDM.
We focus on the most important aspects of this dictio-

nary (more options are available). Under “params”,
the parameter names for the given model are listed.
“params_trans” specifies if the sampler should trans-
form the parameter at the given position (transforming
parameters can be helpful for convergence, especially if
the parameter space is strongly constrained a priori, e.g.,
between 0 and 1). The order follows the list supplied
under “params”. “param_bounds” l is ts the
parameter-wise lower and upper bounds of parameters
that the sampler can explore. This is important in the con-
text of LAN-based likelihoods, which are only valid in the
range of parameters that were observed during training.
We trained the LANs included in HDDM on a broad range
of parameters (spanning quite a large range of sensible
data, you can inspect the training bounds in the hddm.
model_config.model_config dictionary under the
param_bounds key). However, it cannot be guaranteed
that these were broad enough for any given empirical data
set. If the provided LANs are deemed inappropriate for a
given data set (e.g., if parameter estimates hit the bounds

upon fitting), it is always possible to retrain on an even
broader range of parameters. Ruling out convergence
issues, however, should be the first order of business in
such cases.

HDDM uses the inverse logistic (or logit) transforma-
tion for the sampler to operate on an unconstrained
parameter space. For a parameter θ and parameter bounds
[a,b], this transformation takes θ from a value in [a,b] to a
value x in (−∞, ∞) via

x ¼ ln
θ− a
b− θ

� �

A given SSM usually has a “decision boundary”,
which is supplied as a function that can be evaluated over
time points (t0,…, tn) given boundary parameters (sup-
plied implicitly via “params”). The values representing
each choice are reported as a list under “choices”.
A note of caution: If a user wants to estimate a new model
that is not currently in HDDM, a new LAN (or generally
likelihood) has to be created for it to be added to the
model_config dictionary. Simply changing a setting in
an existing model_config dictionary will not work.
Under the “hddm_include” key, a list holds a working
default for the include argument expected from the
HDDM classes. Finally, “params_default” specify the
parameter values that are fixed (“not fit”) by HDDM, and
“params_std_upper” specify upper bounds on group-
level standard deviations for each parameter (optional, but
this can help constrain the parameter ranges proposed by
the sampler, making it more efficient).

These model_config dictionaries provide a scaf-
folding for model specification, which is applied

Codeblock 4. model_config—list available models.

Codeblock 5. DDM specifications in model_config.
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throughout all of the new functionalities discussed in
the next sections.

Batteries Included: hddm.simulators and hddm.
network_inspectors

The new HDDMnn (where nn = neural network),
HDDMnnRegressor, and HDDMnnStimCoding classes
have access to a (growing) stock of supplied SSMs, includ-
ing rapid compiled (Behnel et al., 2010) simulators, and
rapid likelihood evaluation via LANs (Fengler et al.,
2021) and their implementation in PyTorch (Paszke
et al., 2019). Wewill discuss how to fit thesemodels to data
in the next section. Here, we describe how one can access
the low-level simulators and LANs directly, in case one
wants to adopt them for custom purposes. We also show
how to assess the degree to which the LAN approximates

the true (empirical) likelihood for a given model. Users
who only want to apply existing SSMs in HDDM to fit data
can skip to the next section. As described in the previous
section, the user can check which models are currently
available by using the model_config dictionary.
Figure 3 provides some pictorial examples. For a given
model, a docstring includes some information (and possi-
ble warnings) about usage. As an example, let us pick the
“angle”model, which is an SSM that allows for the decision
boundary to decline linearly across time with some esti-
mated angle (note that, although other aspects of the
model are standard DDM, even in this case, the likelihood
is analytically intractable). Nevertheless, we previously
observed that inference using LANs yields good parameter
recovery, as per Fengler and colleagues (2021).
Codeblock 6 illustrates such a docstring. Codeblock 7

shows how we can simulate synthetic data from this

Figure 3. Graphical examples for some of the sequential sampling included in HDDM.

Codeblock 6. model_config docstring for the angle model.
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model. Following the code, the variable out is now a
three-tuple. The first element contains an array of RTs,
the second contains an array of choices, and finally, the
third element returns a dictionary of metadata concern-
ing the simulation run. Next, we can access the LAN cor-
responding to our angle model directly by typing the
code in Codeblock 8. We can utilize the get_torch_
mlp function, which is defined in the network_
inspectors submodule.
The lan_angle object defined in Codeblock 8 is in

fact a method that defines the forward pass through a
given LAN. It expects as input a matrix where each row
defines a parameter vector suitable for the SSM of choice
(here angle, so we need a value for each of the parameters
[“v”, “a”, “z”, “t”, “theta”], which can be
found in our model_config dictionary). Two elements
are then added: an RT and a choice at which we would
like to evaluate our likelihood. Codeblock 9 provides a
full example.
To facilitate a simple sanity check, we provide the

kde_vs_lan_likelihoods plot, which can be
accessed from the network_inspectors submodule.
This plot lets the user compare LAN likelihoods against
empirical likelihoods from simulator data for a given
matrix of parameter vectors (Fengler et al., 2021). The
empirical likelihoods are defined via kernel density estima-
tors (KDEs) (Silverman, 1986). We show an example in
Codeblock 10. Figure 4 shows the output.

Fitting Data Using HDDMnn, HDDMnnRegressor, and
HDDMnnStimCoding Classes

Us ing the HDDMnn , HDDMnnRegressor , and
HDDMnnStimCoding classes, we can follow the general
workflow established by the basic HDDM package to per-
form Bayesian inference. In this section, we will fit the
angle model to the example data set provided with the
HDDM package. Codeblock 11 shows us how to load

the corresponding data set, after which we can set up
our HDDM model and draw 1000 MCMC samples using
the code in Codeblock 12.

We note a few differences between a call to construct
an HDDMnn class and a standard HDDM class. First is the
supply of the model argument specifying which SSM to
fit (requires that this model is already available in HDDM;
see above). Second is the inclusion of model-specific
parameters under the include argument. The workflow
is otherwise equivalent, a fact that is conserved for the
HDDMnnRegressor and HDDMnnStimCoding classes.
A third difference concerns the choice of argument
defaults. The HDDMnn class uses noninformative priors,
instead of the informative priors derived from the litera-
ture that form the default for the basic HDDM class.
Because, as per our earlier discussions, variants of SSMs
are historically rarely fit to experimental data, we cannot
easily derive reasonable informative priors from the liter-
ature and therefore choose to remain agnostic in our
beliefs about the parameters underlying a given data
set. If the research community starts fitting SSM variants
to experimental data, this state of affairs may evolve
through collective learning. At this point, we caution
the user to however not use these new models blindly.
We strongly encourage conducting appropriate parame-
ter recovery studies, specific to the experimental data
set under consideration. We refer to the section on Infer-
ence Validation Tools below, for how HDDM might help
in this procedure.

New Visualization Plots: hddm.plotting

On the basis of ourmodel fit from the previous section, we
illustrate a few new informative plots, which are now
included in HDDM. We can generally distinguish between
two types of plots: plots that use the traces only (to display
posterior parameter estimates) and plots that make use
of the model simulators (to display how well the model

Codeblock 8. Loading a torch network from the package.

Codeblock 7. Using the simulator simulator for generating synthetic data.
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can reproduce empirical data given posterior parame-
ters). The first such plot is produced by the plot_
caterpillar function, which presents an approximate
posterior 99% highest density interval (specifically, we
show the 1%–99% range in the cumulative distribution
function of the posterior), for each parameter.
Codeblock 13 shows us how to invoke this function,
and Figure 5 illustrates the resulting plot.

The second such plot is the a posterior pair plot, called
via the plot_posterior_pair function. This plot
shows the pairwise posterior distribution, subject by sub-
ject (and, i f provided, condition by condition).
Codeblock 14 illustrates how to call this function, and
Figure 6 exemplifies the resulting output.
A last very useful plot addition is what we call the “model

plot,” an extension to the standard posterior, predictive

Codeblock 9. Check forward pass of supplied angle network.
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plot, which can be used to visualize the impact of the
parameter posteriors on decision dynamics. For example,
if one is estimating a linearly collapsing bound, instead of
only interpreting the posterior angle parameter, one can
see how that translates to the evolving decision bound
over time in tandem with the estimating drift rate and
so forth. It is an extension of the plot_posterior_
predictive function. This function operates by manip-
ulating matplotlib axes objects, via a supplied axes
manipulator. The novel axis manipulator in the example

shown in Codeblock 15 is the _plot_func_model func-
tion. Figure 7 shows the resulting plot.

We use thismoment to illustrate how the anglemodel in
fact outperforms the DDM on this example data set. For
this purpose, we take an example subject from Figure 7
and contrast the posterior predictive of the angle model
with the posterior predictive of the DDM side by side in
Figure 8. We clearly see that the DDM model has trouble
capturing the leading edge and the tail behavior of the RT
distributions simultaneously, whereas the angle model

Codeblock 10. Example usage of the kde_vs_lan_likelihood() function to compare LAN likelihoods to empirical kernel-density estimates.
KDE = kernel density estimator.

Figure 4. Example of a
kde_vs_lan_likelihoods
plot. If the green (deterministic)
and gray (stochastic) lines
overlap, then the approximate
likelihood (MLP = multilayered
perceptron, the neural network
that provides our LAN) is a
good fit to the actual likelihood.
KDE = kernel density
estimator.
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strikes a much better balance. Although this example does
not present a fully rigorous model comparison (deviance
information criterion scores, for example, however bear
out the same conclusion) exercise, it provides a hint at
the benefits one may expect from utilizing an expanded
model space.

Inference Validation Tools: simulator_h_c()

Validating that a model is identifiable on simulated data is
an important aspect of a trustworthy inference procedure
(Tran, Van Maanen, Heathcote, & Matzke, 2021; Evans,
Trueblood, & Holmes, 2020; Wilson & Collins, 2019;
Holmes & Trueblood, 2018). We have two layers of

uncertainty in this regard. First, LANs are approximate
likelihoods. A model that is otherwise identifiable could
in principle lose this property when using LANs to esti-
mate its parameters from a data set, should the LAN
not have been trained adequately. Second, a given model
can inherently be unidentifiable for a given data set
and/or theoretical commitments (regardless of whether
its likelihood is analytic or approximate). As a simple
example, consider an experimental data set that does
not include enough samples to identify the parameter
of a model of interest with any degree of accuracy.
Slightly more involved, the posterior could tend to be
multimodal, a problem for MCMC samplers that can lead
to faulty inference. Although increasing the number of

Codeblock 12. Sampling from an HDDMnn model.

Codeblock 13. Example usage of the caterpillar_plot() function.

Codeblock 11. Loading package-supplied Cavanagh data set.
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trials in an experiment and/or increasing the number of
participants can help remedy this situation, this is not a
guarantee. Apart from the size and structure of the
empirical data set, our modeling commitments play an
important role for identifiability too. As an example, we
might have experimental data from a random dot motion
task, and we are interested in modeling the choices and
RTs of participating subjects with our angle model. A

reasonable assumption is that the v parameter (a rough
proxy for processing speed) differs depending on the dif-
ficulty of the trial. However, the parameters t and a may
not depend on the difficulty because we do not have a
good a priori theoretical reason to suspect that the non-
decision time (t) and the initial the boundary separation
a (the degree of evidence expected to take a decision)
will differ across experimental conditions. These

Figure 5. Example of a caterpillar_plot. The plot, split by model parameters, shows the 99% (line ends) and 95% (gray band ends) highest
density intervals of the posterior for each parameter. Multiple styling options exist.

Codeblock 14. Example concerning usage of the plot_posterior_pair() function.
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commitments are embedded in the model itself (they are
assumptions on the data-generating process imposed by
the modeler) and determine jointly with an experimental
data set whether inference can be successful. For a mod-
eler, it is therefore of paramount importance to check
whether their chosen combinations of theoretical com-
mitments and experimental data set jointly lead to an
inference procedure that is accurate. Because the space
of models incorporated into HDDM has been signifi-
cantly expanded with the LAN extension, we provide a
few tools to help facilitate parameter recovery studies,

which are relevant to real experimental data analysis
and plan to supplement these tools even further in the
future.
First, we provide the simulator_h_c function, in the

hddm_dataset_generators submodule. The func-
tion is quite flexible; however, we will showcase a particu-
larly relevant use case. Taking our cav_data data set
loaded previously, we would like to generate data from
our angle model in such a way that we encode assump-
tions about our model into the generated data set. In
the example below, we assume that the v and theta

Figure 6. Example of a
posterior_pair_plot in
the context of parameter
recovery. The plot is organized
per stochastic node (here,
grouped by the “subj_idx”
column where in this example
“subj_idx” = “0”). The
diagonal shows the marginal
posterior of a given parameter
as a histogram. The elements
below the diagonal show
pairwise posteriors via
(approximate) level curves.
These plots are especially
useful to identify parameter
collinearities, which indicate
parameter-trade-offs and
can hint at issues with
identifiability. This example
shows how the theta
(boundary collapse)
and a (boundary separation)
parameters as well as the t
(nondecision time) and a
parameters trade-off in
the posterior. We refer to
Fengler and colleagues
(2021) for parameter recovery
results using the underlying
angle SSM. We note that
such parameter trade-offs
and attached identifiability issues not only derive from a given likelihood model but are also affected by the data and parameter structure as
task design and modeling choices.

Codeblock 15. Example usage of the plot_posterior_predictive() function.
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parameters vary as a function of the “stim” column. For
each value of “stim”, a group-level μ and σ (defining the
mean and standard deviation of a group-level normal dis-
tribution) are generated, and subject-level parameters are

sampled from this group distribution. This mirrors exactly
the modeling assumptions when specifying an HDDM
model with the depends_on argument set to {“v”:
“stim”, “theta”: “stim”}.

Figure 7. Example of a model_plot. This plot shows the underlying data in blue, with choices and RTs presented as histograms (positive y axis for
Choice Option 1, negative y axis for Choice Option 0 or −1). The black histograms show the RTs and choices under the parameters corresponding
to the posterior mean. In addition, the plot shows a graphical depiction of the model corresponding to parameters drawn from the posterior
distribution in black. Various options exist to add and drop elements from this plot; the provided example corresponds to what we consider the most
useful settings for purposes of illustration. Note that, in the interest of space, we only illustrate the first six subjects here. PostPred = posterior
predictive.

Figure 8. Contrasting the posterior predictive of the angle and DDM model on an example subject. A shows the angle model, and (B) shows the
DDM. Although the fits are not dramatically better for this data set (in our experience, more extreme differences can be seen in other cases), the
angle model shows two characteristic differences to the DDM model fit. First, it better captures the graceful initial increase in density for short RTs.
Second, it captures the slower decrease in density for longer RTs, as compared to the DDM, for which the RT density falls off quicker than is apparent
in the data. Both of these effects are directly produced by allowing a collapsing bound, instead of the DDM’s static, parallel bounds. PostPred =
posterior predictive.
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Codeblock 16 provides an example on how to call this
function. The simulator_h_c function returns the
respective data set (here sim_data) exchanging values
in the previous RT and response columns with simulation
data. Trial-by-trial parameters are attached to the data
frame as well. The parameter_dict dictionary contains
all the parameters of the respective hierarchical model
that was used to generate the synthetic data. This param-
eter dictionary follows the parameter naming conventions
of HDDM exactly. We can fit this data using the HDDMnn
class as illustrated in Codeblock 17.

The plots defined in the previous section allow us to
specify a parameter_recovery_mode, which we can

utilize to check how well our estimation worked on our
synthetic data set. Codeblocks 18, 19, and 20 and
Figures 9, 10, and 11 show, respectively, code and plot
examples.
Note how both the plot_posterior_pair function

and the plot_posterior_predictive function take
the parameter_recovery_mode argument to add a
ground truth to the visualization automatically (the
ground truth is expected to be included in the data set
attached to the HDDM model itself ). The plot_
caterpillar function needs a ground_truth_
parameter_dict argument to add the ground-truth
parameters. The simulator_h_c function provides such

Codeblock 16. Using the simulator_h_c() function.
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Codeblock 18. caterpillar plot for fit to simulated data.

Codeblock 19. model_plot for fit to simulated data.

Codeblock 20. posterior_pair_plot for fit to simulated data.

Codeblock 17. Fitting an HDDMnn model to synthetic data.
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a compatible dictionary of ground-truth parameters. Using
the set of tools in this section, we hope that HDDM
conveniently facilitates application-relevant parameter
recovery studies.

Adding to the Bank of SSMs: User-Supplied
Custom Models

The newmodels immediately available for usewithHDDM
are just the beginning. HDDM allows users to define their
own models via adjusting the model_config and the
provision of custom likelihood functions. The goal of this
functionality is twofold. First, we aim tomake HDDMmax-
imally flexible for advanced users, cutting down red tape to
allow creative usage. Second, we hope tomotivate users to
follow through with a two-step process of model integra-
tion. Step 1 involves easy testing of new likelihoods
through HDDM, however, with somewhat limited auxil-
iary functionality (one can generate plots based on the

posterior traces, but other plots will not work because of
the lack of a simulator). Step 2 involves sharing the model
likelihood and a suitable simulator with the community to
allow full integration with HDDM as well as other similar
toolboxes that operate across programming languages and
probabilistic programming frameworks. In future work,
we hope to flesh out a pipeline that allows users to follow
a simple sequence of steps to full integration of their cus-
tommodels with HDDM. Here, we show how to complete
Step 1, defining an HDDMnn model with a custom likeli-
hood to allow fitting a new model through HDDM. See
the section on Future Work for some guidance on produc-
ing your own LAN, or contact the authors.
We start with configuring the model_config dictio-

nary. We add a “custom” key and assign the specifics
of our new model. For illustration purposes, we will add
the angle model to HDDM (although it is already provided
with the LAN extension). In addition, we need to define a
basic likelihood function that takes in a vector (or

Figure 9. Example of a caterpillar_plot. The plot is split by model parameter kind, showing parameter-wise, the 99% (line ends) and 95%
(gray band ends) highest density intervals (HDIs) of the posterior. In the context of parameter recovery studies, the user can provide ground-truth
parameters to the plot, which will be shown as blue tick marks on top of the HDIs. Multiple styling options exist. Note, in the interest of space, we
show only three of the five basic parameters here: [“v”, “a”, “theta”] of the underlying model (leaving out [“z”, “t”]).
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Figure 10. Example of a model_plot. This plot shows the underlying data in blue, with choices and RTs presented as a histogram (positive y axis
for Choice Option 1, negative y axis for Choice Option 0 or−1). The black histograms show the RTs and choices under the parameters corresponding
to the posterior mean. In addition, the plot shows a graphical depiction of the model corresponding to parameters drawn from the posterior
distribution in black, as well as such a depiction for the ground-truth parameters in blue, in case these were provided (e.g., if one is performing
recovery from simulated data). Inclusion of the ground-truth parameters distinguishes the present display from Figure 7. Various options exist to add
and drop elements from this plot; the provided example corresponds to what we consider the most useful settings for purposes of illustration. Note
that, in the interest of space, we only illustrate the first six subjects here. PostPred = posterior predictive.

Figure 11. Example of a
posterior_pair_plot in
the context of parameter
recovery. The plot is organized
per stochastic node (here,
grouped by the “stim” and
“subj_idx” columns where
in this example (“stim” =
“LL”, “subj_idx” = “0”).
The diagonal shows the
marginal posterior of a given
parameter as a histogram,
adding the ground-truth
parameter as a blue tick mark.
The elements below the
diagonal show pairwise
posteriors via (approximate)
level curves and add the
respective ground truths as a
blue cross.
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matrix/2d numpy array) of parameters, ordered accord-
ing to the list in the “params” key above. As an example,
we load our LAN for the angle model (as supplied by
HDDM) as if it is a custom network. Finally, we can fit
our newly defined custom model. Codeblock 21 illus-
trates the whole process.

Note that the only difference to a normal call to the
hddm.HDDMnn class is supplying appropriatemodel spec-
ifications for our custom likelihood. We supply the model
argument as “custom” alongside our own configuration
dictionary to the model_config argument. In addition,
we explicitly pass to the network argument, our cus-
tom_network defining the likelihood.

Moreover, we note that the supply of custom networks
opens up multiple degrees of freedom to explore
improved likelihood approximations. As an example,
users may utilize LANs trained on the log-RT distributions
instead of the original RT distributions of an SSM.

Combining SSMs with RL

Although the previous sections focused on employing
SSMs in modeling stationary environments, a host of com-
monly applied experimental task paradigms involve some
form of learning that results from the agent’s interactions

with the environment. Although SSMs can be used to
model the decision processes, we need additional machin-
ery to capture the learning dynamics that arise while par-
ticipants perform such tasks. RL (Sutton & Barto, 2018) is
one computational framework that can allow us to account
for such learning processes. In RL, researchers typically
assume a simple softmax choice rule, informed by some
“utility” (or “goodness”) measure of taking a particular
action in a given state. Mathematically, the choice proba-
bilities are expressed as

paction;i tð Þ ¼ eqaction;i tð ÞP
je

qaction; j tð Þ

Although RL models can account for learning dynamics in
basic choice behavior, the choice functions commonly
employed (e.g., softmax) cannot capture the RT. To com-
bine the strengths of SSMs and RL models, recent studies
have used the DDM to jointly model choice and RT distri-
butions during learning (Pedersen&Frank, 2020; Fontanesi
et al., 2019; Pedersen et al., 2017). Such an approach
allows researchers to study not only the across-trial
dynamics of learning but also the within-trial dynamics of
choice processes, using a single model. The main idea
behind these models is to allow an RL process to drive
the trial-by-trial parameters of an SSM (such as the basic

Codeblock 21. Construct and fit an HDDMnn model using a custom likelihood.
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DDM), which in turn is used to jointly capture RT and
choice behavior for a given trial. This can be applied in
complex tasks that involve learning from feedback (see
Figure 12). This results in a much more broadly applicable
class of models and naturally lends itself for use in compu-
tational modeling of numerous cognitive tasks where the
learning process informs the decision-making process.
Indeed, a recent study showed that the joint modeling
of choice and RT data can improve parameter identifia-
bility of RL models, by providing additional information
about choice dynamics (Ballard & McClure, 2019). How-
ever, to date, such models have been limited by the form
of the decision model. Many RL tasks involve more than
two responses, making the DDM inapplicable. Similarly,
the assumption of a fixed threshold may not be valid. For
example, during the early learning phase, the differences
in q-values, and hence drift rates, will be close to zero,
and there is little value in accumulating evidence. A stan-
dard DDM model would predict that such choices are
associated with very-long-tail RT distributions. A more
appropriate assumption would be that learners use a col-
lapsing bound so that, when no evidence is present, the
decision process can terminate.
Utilizing the power of LANs, we can further generalize

the RL–DDM framework to include a much broader class
of SSMs as the decision-making process. The rest of this
section provides some details and code examples for these
new RL-SSMs.

Test Bed

We test our method on a synthetic data set of the two-
armed bandit task with binary outcomes. However, our
approach can be generalized to any n-armed bandit task
given a pretrained LAN that outputs likelihoods for the
corresponding n-choice decision process (e.g., race
models). Themodel employed a simple delta learning rule
(Rescorla, 1972) to update the action values:

qaction;i t þ 1ð Þ ¼ qaction;i tð Þ þ α� r tð Þ− qaction;i tð Þ
� �

where qaction(t) denotes expected reward (q-value) for the
chosen action at time t, r(t) denotes reward obtained at
time t, and α (referred to as rl_alpha in the result plots)
denotes the learning rate. The trial-by-trial drift rate
depends on the expected reward value learned by the
RL rule. The drift rate is therefore a function of q-value
updates and is computed by the following linking
function:

v tð Þ ¼ qaction;1 tð Þ−qaction;2 tð Þ� � � s
where s is a scaling factor of the difference in q-values. In
other words, the scalar s is the drift rate when the differ-
ence between the q-values of both the actions is exactly 1
(note that we refer to the scalar s as v in the correspond-
ing figure). We show an example parameter recovery plot
for this Rescorla–Wagner learning model connected to an
SSM with collapsing bound in Figure 13.

Figure 12. RL–SSM: combining RL and SSMs.
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Model Definitions for RL with model_config_RL

Just like the model_config, the new HDDM version
includes model_config_rl, which is the central data-
base for the RL models used in the RLSSM settings. Below
is an example for simple Rescorla–Wagner updates
(Rescorla, 1972), a basic RL rule. The learning rate
(referred to as rl_alpha in Figure 13 to avoid nomenclature
conflicts with the alpha parameter in some SSMs) is the
only parameter in the update rule. We do not transform
this parameter (“params_trans” is set to 0) and specify
the parameter bounds for the sampler as [0, 1]. Note that,
for hierarchical sampling, the learning rate parameter α is
transformed internally in the package. Therefore, the out-
put trace for the learning rate parameter must be trans-
formed by an inverse-logit function,

1
1þ e−α

to get the learning rate values back in range [0, 1].
Codeblock 22 shows us an example of such a model_
config_rl dictionary.

Analyzing Instrumental Learning Data:
The HDDMnnRL Class

Running HDDMnnRL presents only a few slight adjust-
ments compared to the other HDDM classes. First, the data
frame containing the experimental data should be prop-
erly formatted. For every subject in each condition, the tri-
als must be sorted in ascending order to ensure proper RL
updates. The column split_by identifies each row with
a specific task condition (as integer). The feedback col-
umn gives the reward feedback on the current trial, and
q_init denotes the initial q values for the model. The
rest of the data columns are the same as in other HDDM
classes. Codeblock 23 provides an example.
We can fit the data loaded in Codeblock 23 using

the HDDMnnRL class. We showcase such a fit using the
Weibull model in conjunction with the classic Rescorla–
Wagner learning rule (Rescorla, 1972). The HDDMnnRL
class definition (shown in Codeblock 24) takes a
few additional arguments compared to the HDDMnn
class: “rl_rule” specifies the RL update rule to be
used, and non_centered flag denotes if the RL param-
eters should be reparameterized to avoid troublesome

Figure 13. Parameter recovery on a sample synthetic data set using the RL + Weibull model. Posterior distributions for subject-level and group-level
parameters are shown using caterpillar plots. The thick black lines correspond to 5th–95th percentiles; thin black lines correspond to 1st–99th
percentiles. The blue tick marks show the ground-truth values of respective parameters. Note that, in the interest of space, we show only a subset of
the parameters of the model—the two boundary parameters alpha and beta and the RL rate rl_alpha.

Codeblock 22. model_config definition for RL–SSM models.
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sampling from the neck of the funnel of probability densi-
ties (Betancourt & Girolami, 2013; Papaspiliopoulos,
Roberts, & Sköld, 2007). Figure 13 shows a caterpillar plot
to verify the LAN-based parameter recovery on a sample
RL–SSM model.

Neural Regressors for RL–SSM with the
HDDMnnRLRegressor Class

The new HDDMnnRLRegressor class is aimed at captur-
ing even richer (learning or choice) dynamics informed
by neural activity, just like the HDDMnnRegressor class
described above for basic SSMs. The extension works the
same as the bespoke HDDMnnRegressor class, except
that the model is now informed by an RL process to

account for the across-trial dynamics of learning. The
method allows estimation of the parameters (coefficients
and intercepts) linking the neural activity in a given
region and time point to the RL–SSM parameters.

The usage of HDDMnnRLRegressor class is the
same as HDDMnnRL class except that our data frame will
now have additional column(s) for neural (or other, e.g.,
EEG, pupil dilation) trial-by-trial covariates. Just as with
the HDDMnnRegressor class, the model definition will
also include specifying regression formulas that link
covariates to model parameters. For example, if the
boundary threshold parameter a is dependent on some
neural measure neural_reg, Codeblock 25 shows us
how to specify a corresponding HDDMnnRLRegressor
model.

Codeblock 23. Reading in RL–SSM example data.

Codeblock 24. Constructing and sampling from an HDDMnnRL model.

Codeblock 25. Constructing and sampling from an HDDMnnRLRegressor model.

Fengler et al. 1801

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/10/1780/2041775/jocn_a_01902.pdf by BR
O

W
N

 U
N

IVER
SITY user on 02 D

ecem
ber 2022



Finally, it is important to note that we are continually
adding new functionalities to the HDDMnnRL and
HDDMnnRLRegressor classes. Given the state of active
development for these classes, we suggest that the users
refer to the HDDM documentation for any updates to the
usage syntax or other changes.

More Resources

The original HDDM (Wiecki et al., 2013) article as well as the
original HDDMrl article (Pedersen & Frank, 2020) are good
resources on the basics of HDDM. The documentation
provides examples for many complex use cases, including
a long tutorial specifically designed to illustrate the
HDDMnn classes and another tutorial specifically designed
to showcase the HDDMnnRL classes. Through the HDDM
user group, an active community of HDDM users, one can
find support onmany problems and use cases that may not
come up in the official documentation or published work.

Concluding Thoughts

We hope this tutorial can help kick-start a more wide-
spread application of SSMs in the analysis of experimental
choice and RT data. We consider the initial implementa-
tion with focus on LANs (Fengler et al., 2021) as a starting
point, which allows a significant generalization of the
model space that can be considered by experimenters.
The ultimate goal, however, is to lead toward community
engagement, providing an easy interface for the addition
of custom models as a start, which could greatly expand
the space of models accessible to research groups across
the world. We elaborate on a few possible directions for
advancements in the next section.

LIMITATIONS AND FUTURE WORK

The presented extension to HDDM greatly expands the
capabilities of a tried-and-tested Python toolbox, popular
in the cognitive modeling sphere. However, using HDDM
as the vehicle of choice, limitations endemic to the tool-
box design remain and warrant a look ahead. First, HDDM
is based on PyMC2 (Patil et al., 2010), a probabilistic
modeling framework that has since been superseded by
its successor PyMC3 (Salvatier, Wiecki, & Fonnesbeck,
2016; PyMC 4.0, a rebranded PyMC has just been released
too). Because PyMC2 is not an evolving toolbox, HDDM is
currently bound to fairly basic MCMC algorithms, specifi-
cally a coordinate-wise slice sampler (Neal, 2003).
Although we have confirmed adequate posterior sampling
and estimation using our LANs, estimation may be ren-
dered more efficient if one were to leverage more recent
MCMC algorithms such as Hamiltonian Monte Carlo
(Hoffman & Gelman, 2014). Moreover, new libraries have
emerged that act as independent functionality providers
for other probabilistic programming frameworks, for
example, the ArViz (Kumar, Carroll, Hartikainen, &Martin,
2019) python library that provides a wide array of

capabilities from posterior visualizations to the computa-
tion of model comparison metrics such as the Widely
Applicable Information Criterion (Watanabe, 2013). Cus-
tom scripts can be used currently to deploy ArViz within
HDDM. We are moreover working on a successor to
HDDM (we dub it HSSM), which will be built on top of
one or more of these modern probabilistic programming
libraries. Second, we realize that a major bottleneck in the
wider adoption of LANs (and other likelihood approxima-
tors) lies in the supply of amortizers. Although our exten-
sion comes batteries included, we focused on supplying a
few SSM variants of proven interest in the literature, as well
as some that we used for our or laboratory-adjacent
research. It is not HDDM but user-friendly training pipe-
lines for amortizers that we believe to spur the quantum
leap in activity in this space. Although we are working on
the supply of such a pipeline for LANs (Fengler et al.,
2021), our hope is that the community will provide many
alternatives. Third, we caution against uninformed use of
approximate likelihoods. Before basing results of empiri-
cal studies on inference performed with LANs or other
approximate likelihoods (e.g., user supplied), it is essen-
tial to test for the quality of inference that may be
expected. Inference can be unreliable in manifold ways
(Talts, Betancourt, Simpson, Vehtari, & Gelman, 2018;
Gelman & Rubin, 1992; Geweke, 1992). Parameter recov-
ery studies and calibration tests, for example, simulation-
based calibration (Talts et al., 2018), should form the
backbone of trust in reported analysis on empirical (exper-
imental) data sets. To help the application of a universal
standard of rigor, we are working on a set of guidelines,
such as a suggested battery of tests to pass, before given
user-supplied likelihoods should be made available to the
public. Other interesting work in this sphere is emerging
(Hermans, Delaunoy, Rozet, Wehenkel, & Louppe, 2021;
Lueckmann, Boelts, Greenberg, Goncalves, &Macke, 2021).
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Diversity in Citation Practices

Retrospective analysis of the citations in every article pub-
lished in this journal from 2010 to 2021 reveals a persistent
pattern of gender imbalance: Although the proportions of
authorship teams (categorized by estimated gender iden-
tification of first author/last author) publishing in the Jour-
nal of Cognitive Neuroscience ( JoCN) during this period
were M(an)/M = .407, W(oman)/M = .32, M/W = .115,
and W/W = .159, the comparable proportions for the arti-
cles that these authorship teams cited were M/M = .549,
W/M = .257, M/W = .109, and W/W = .085 (Postle and
Fulvio, JoCN, 34:1, pp. 1–3). Consequently, JoCN encour-
ages all authors to consider gender balance explicitly when
selecting which articles to cite and gives them the oppor-
tunity to report their article’s gender citation balance. The
authors of this article report its proportions of citations by
gender category to be as follows: M/M= .692,W/M= .135,
M/W = .135, and W/W = .038.
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