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Growing evidence suggests that the prefrontal cortex (PFC) is
organized hierarchically, with more anterior regions having increas-
ingly abstract representations. How does this organization support
hierarchical cognitive control and the rapid discovery of abstract
action rules? We present computational models at different levels of
description. A neural circuit model simulates interacting corticostriatal
circuits organized hierarchically. In each circuit, the basal ganglia gate
frontal actions, with some striatal units gating the inputs to PFC and
others gating the outputs to influence response selection. Learning at
all of these levels is accomplished via dopaminergic reward prediction
error signals in each corticostriatal circuit. This functionality allows
the system to exhibit conditional if–then hypothesis testing and to
learn rapidly in environments with hierarchical structure. We also
develop a hybrid Bayesian-reinforcement learning mixture of experts
(MoE) model, which can estimate the most likely hypothesis state of
individual participants based on their observed sequence of choices
and rewards. This model yields accurate probabilistic estimates about
which hypotheses are attended by manipulating attentional states in
the generative neural model and recovering them with the MoE model.
This 2-pronged modeling approach leads to multiple quantitative
predictions that are tested with functional magnetic resonance
imaging in the companion paper.
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Introduction

Flexible behavior requires cognitive control, or the ability to

select mappings between states and actions based on internally

maintained representations of context, goals, and anticipated

outcomes (Miller and Cohen 2001; O’Reilly and Frank 2006;

Balleine and O’Doherty 2010). Often, however, control over

action requires simultaneously maintaining features of the

context that are relevant for action selection at different levels

of abstraction and over varying timescales (Koechlin and

Summerfield 2007; Badre 2008; Botvinick 2008). Growing

evidence has suggested that the frontal cortex is functionally

organized to support this type of hierarchical control, such that

progressively rostral portions of frontal cortex govern control

at higher levels of abstraction (Koechlin et al. 2000, 2003;

Christoff et al. 2003, 2009; Koechlin and Hyafil 2007; Badre and

D’Esposito 2007; Badre et al. 2009; Kouneiher et al. 2009).

Recent evidence has indicated that when humans are

confronted with a new rule learning problem, this rostrocaudal

division of labor in frontal cortex supports the search for

relationships between context and action at multiple levels of

abstraction simultaneously (Badre et al. 2010). Human partic-

ipants were scanned with functional magnetic resonance

imaging (fMRI) while performing a reinforcement learning

task in which they learned 18 mappings between the

conjunction of 3 features of a presented stimulus (shape,

orientation, and color) and one of 3 finger responses on a key

pad. Critically, each participant learned 2 such sets of 18 rules.

For one of these sets, an abstract rule was available that would

permit generalization across multiple individual mappings of

stimuli and responses. The results from this experiment

demonstrated that 1) participants were capable of rapidly

discovering and applying the abstract rule when it was

available. 2) fMRI activation was evident in both dorsal

premotor cortex (PMd) and more rostral premotor cortex

(prePMd) early in learning but declined in the prePMd by the

end of learning when no abstract rule was available. 3)

Individual differences in the activation early in learning in

prePMd, but not in PMd, were correlated with participants’

likelihood of discovering an abstract rule when one was

available. And, 4) striatum (caudate and putamen) showed

greater activation by the end of learning during the session

when abstract rules were available. However, the network

dynamics of frontostriatal interactions, as estimated by func-

tional connectivity, did not differ based on the presence or

absence of a higher order rule. Hence, these results suggest

that from the outset of learning the search for relationships

between context and action may occur at multiple levels of

abstraction simultaneously and that this process differentially

relies on systematically more rostral portions of frontal cortex

for the discovery of more abstract relationships.

A key question motivated by this work, concerns what

neural mechanisms support this higher order rule discovery?

Here, we first consider whether an existing neural model of

corticostriatal circuits in reinforcement learning and working

memory (Frank 2005; O’Reilly and Frank 2006) provides

a plausible set of mechanisms, when they are modified to

accommodate hierarchical structure. In this model, the

striatum modulates the selection of frontal cortical actions,

including motor actions and working memory updating. It does

so by gating the inputs to be maintained in frontal cortex (input

gating) and gating which of these maintained representations

has an influence on action selection (output gating). The

learning of which actions are adaptive given a particular state is

accomplished via dopaminergic reinforcement learning mech-

anisms. The basic properties of this model (and of related

models) have been extensively investigated elsewhere (Frank

2005; O’Reilly and Frank 2006; Hazy et al. 2007; Reynolds and

O’Reilly 2009). Here, in order to support learning of hierarchi-

cal structure within the context of the Badre et al. (2010) task,

we modified the model such that anterior regions of prefrontal

cortex (PFC) contextualize striatal gating of more posterior

frontal regions. More specifically, as with previous models

(O’Reilly & Frank 2006; Frank and Claus 2006; Reynolds and
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O’Reilly 2009), working memory representations maintained in

the ‘‘posterior’’ PFC layer of the model constrain motor output

decisions. Unique to the present model, working memory

representations maintained in additional ‘‘anterior’’ PFC layers

constrain which of the working memory representations

maintained in posterior PFC should be ‘‘output-gated’’ to

influence attention and ultimately response selection. We

show that this model can improve performance in tasks

requiring acquisition of a hierarchical structure relative to

a model that has no such functionality and that it does so by

learning an abstract gating policy.

We then derive a more abstract Bayesian-reinforcement

learning (RL) mixture of experts (MoE) model intended to

correspond to key computational features of the neural model.

We use this model to estimate latent states, that is, hypotheses

about the relationships between context and action that are

most likely being tested, in individual human learners given their

trial-by-trial sequences of choices and rewards. We also in-

vestigate the relationship between these probabilistic estimates

and the mechanisms that govern hypothesis testing and learning

in the generative neural circuit model, treating the latter model

as a participant and fitting its choices with the MoE. We find that

the fits to the neural model are similar to those to human

participants, despite the fact that the neural model stochastically

gates a subset of features in individual trials (i.e., it operates

according to one hypothesis or another), whereas the MoE

model assumes a probabilistic mixture of hypotheses on all trials.

We further report that the degree of learning, and the MoE

estimate of attention to hierarchical structure, is correlated with

a measure of gating policy abstraction in the learned weights of

the neural model. The combined set of analyses provides the

theoretical basis for the multiple model predictions tested with

functional imaging analysis in the companion paper.

Corticostriatal Mechanisms of Action Selection and
Hierarchical Reinforcement Learning

Several corticostriatal models take as their starting point the

general notion that the basal ganglia (BG) act as a ‘‘gate’’ to

facilitate particular action plans in frontal cortex while suppress-

ing other less adaptive plans (e.g., Mink 1996; Gurney et al. 2001a;

Brown et al. 2004; Frank 2005). Motivation for such an

architecture comes partly from evidence for parallel frontal

corticostriatal loops (Alexander et al. 1986). In the motor domain,

based on sensory information, the premotor cortex first selects

candidate motor responses and then the motor BG selectively

amplifies representations of one these candidates (Frank 2005).

In the cognitive domain, the BG select which candidate stimuli to

selectively update and subsequently maintain in PFC (Frank et al.

2001; Houk 2005; O’Reilly and Frank 2006; Gruber et al. 2006).

Computational trade-offs indicate that it is adaptive to have

separate systems implement gating and maintenance (Hochreiter

and Schmidhuber 1997) and that the functional BG circuitry is

well suited to selectively gate particular working memory

representations while allowing others to continue to be

maintained. In turn, maintained PFC representations project to

the motor BG such that motor response selection is sensitive to

the combination of both input and PFC states (Frank et al. 2001).

In both motor and cognitive domains, the selection of which

actions to facilitate, and which to suppress, is learned via

a common dopaminergic reward prediction error signal that

modulates activity in ‘‘Go’’ and ‘‘NoGo’’ striatal neuronal

populations expressing D1 and D2 dopamine receptors,

respectively (Frank 2005; O’Reilly and Frank 2006; Shen et al.

2008). Multiple lines of evidence support this role of the BG

and dopamine in selection and learning across both motor and

cognitive domains, including effects of BG and PFC brain

damage (Baier et al. 2010; Voytek and Knight 2010), correlates

in functional imaging (McNab and Klingberg 2008; Cools et al.

2008), pharmacological manipulations in patients with Parkin-

son’s disease (Frank et al. 2004; Cools et al. 2001, 2006;

Moustafa et al. 2008; Dagher and Robbins 2009; Palminteri et al.

2009), the combination of pharmacology and/or Parkinson’s

patients with neuroimaging (Pessiglione et al. 2006; Siessmeier

et al. 2006; Cools, Lewis, et al. 2007; Cools, Sheridan, et al. 2007;

Cools et al. 2009; Schonberg et al. 2010; Voon et al. 2010), and

finally, pharmacology and genetics of striatal dopamine

function in young healthy individuals (Frank and O’Reilly

2006; Stollstorff et al. 2010; Frank and Fossella 2011).

In cognitive tasks, it may be necessary to update and

maintain multiple task-relevant items in working memory. In

the corticostriatal network models, stimuli are selectively

‘‘input-gated’’ into segregated PFC memory ‘‘stripes’’ (structures

of interconnected neurons that are isolated from other

adjacent stripes; Pucak et al. 1996; Frank et al. 2001). In this

manner, motor response selection can then be contextualized

by multiple potential working memory representations. How-

ever, in some scenarios only a limited subset of currently

maintained PFC representations may be relevant for influencing

the current motor decision (e.g., in tasks with multiple goals

and subgoals, only some maintained representations are

relevant for processing during intermediate stages). In such

cases, the system can benefit from an additional ‘‘output-gating’’

mechanism, whereby an independent set of striatal units select

which, among multiple currently maintained PFC memory

representations, should influence the current motor response

selection (Fig. 2) (Hochreiter and Schmidhuber 1997; Brown

et al. 2004; Hazy et al. 2007). (Output-gating relies on the very

same mechanisms as those supporting gating of motor actions,

whereby striatal units disinhibit thalamic units that interact

bidirectionally with deep (layer 5) PFC units which in turn

send descending projections to subcortical regions, (e.g., the

motor BG) and to posterior cortex (to bias attention). In

contrast, striatal input gating units modulate the maintenance

of superficial PFC representations (layers 2/3).)

Note that the decision of which of the current PFC memory

representations should be output-gated may be contingent on

the identity of some other PFC representation (Hochreiter and

Schmidhuber 1997). (In the language of Hochreiter and

Schmidhuber (1997), ‘‘an output gate may use inputs from

other memory cells to decide whether to access certain

information in its memory cell’’ (p. 1744).) We posit that this

higher level contextual information would be represented in

more anterior PFC regions (Fuster 1997; Botvinick 2007; Badre

2008; Reynolds and O’Reilly 2009). Just as a PFC working

memory representations influence the output gating of BG

motor responses, more anterior PFC representations can

influence the BG output gating units of the posterior PFC

representations (Figure 2, right). Such a hierarchical organiza-

tion of corticostriatal circuits may facilitate adaptive cognitive

and motor behavior over multiple timescales and levels of

cognitive complexity (see Discussion).

A critical question is how to determine (without prior

instruction) which motor responses to select, which stimulus
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dimensions are relevant for directly constraining motor

responses, and which dimensions should be considered ‘‘higher

order’’ contexts? A large body of literature suggests that the

corticostriatal decisions of whether or not to gate particular

actions is contingent on the reward-predictive properties of

these actions. In particular, midbrain dopamine neurons signal

when rewards are better or worse than expected (Montague

et al. 1997; Schultz et al. 1997), and these phasic signals drive

learning in Go and NoGo gating units via dopaminergic

modulation of synaptic plasticity (Reynolds and Wickens

2002; Frank 2005; Shen et al. 2008). For reviews of the

evidence for these mechanisms across species and methodol-

ogies, see Frank and Fossella (2011; Surmeier et al. 2010).

In the neural circuit model used here, adapted from O’Reilly

and Frank (2006), relatively anterior corticostriatal circuits

learn via dopaminergic signals which stimuli are predictive of

reward when considered as ‘‘contextual.’’ When gated into

anterior PFC, these stimuli serve to constrain the decision of

which of the other stimulus dimensions to attend in more

posterior circuits: anterior PFC neurons project to striatal units

that perform output-gating of posterior PFC. Supporting this

functionality, recent anatomical evidence shows a substantial

degree of convergence between corticostriatal circuits (Haber

2004; Calzavara et al. 2007; Draganski et al. 2008), and in

particular, evidence for a rostrocaudal organization from

premotor/PFC to corresponding regions of striatum (Inase

et al. 1999; Lehericy, Ducros, Krainik, et al. 2004; Lehericy,

Ducros, Vande Moortele, et al. 2004; Postuma and Dagher 2006;

Draganski et al. 2008). Moreover, the general notion that

multiple corticostriatal loops are involved in different sorts of

belief states and action values is largely consistent with that

proposed in a recent review (Samejima and Doya 2007). In

particular, those authors proposed that the lateral prefrontal-

anterior striatal circuit is involved in context-based value

estimation.

Materials and Methods

We implemented computational models at 2 levels of description. The

first builds on existing neural models of corticostriatal circuits in

reinforcement learning and working memory and extends this

framework to accommodate hierarchical structure. This model

attempts to provide a mechanistic understanding of how such circuitry

is recruited to facilitate the discovery of hierarchical structure in the

environment. The second model develops a higher level abstract

analysis of the processes engaged during the learning of a specific

hierarchical task but where some of the model assumptions are

motivated by the core computations in the neural model. This model

attempts to provide an account of individual learners and its free

parameters are varied to maximize fit to trial-by-trial sequences of

choices, allowing us to infer whether learners are most likely to be

testing hierarchical (or other) hypotheses about task structure. In the

companion paper, we utilize the higher level model to derive

regressors to examine functional neuroimaging data and interpret

these data in the context of the mechanisms specified by the neural

model.

We sought to apply both models to simulate behavior and neural

dynamics from a recently reported hierarchical reinforcement learning

task (Badre et al. 2010). During fMRI scanning, participants were

required to learn 2 sets of rules, in separate epochs, that linked each of

18 different stimulus conjunctions uniquely and deterministically to

one of 3 button press responses (Fig. 1). For each rule set, an individual

stimulus conjunction consisted of one of 3 shapes, at one of 3

orientations, inside a box that was one of 2 colors, for a total of 18

unique stimuli (3 shapes 3 orientations 3 2 colors). Participants were

instructed to learn the correct response for each stimulus based on

auditory reinforcement feedback (they were also paid in proportion to

the number of correct responses). For one of the 2 rule sets (Flat set),

each of the 18 rules had to be learned individually as one-to-one

mappings between a conjunction of color, shape, and orientation and

a response. In the other set (Hierarchical set), stimulus display

parameters and instructions were identical to the Flat set. And, indeed,

the Hierarchical set could also be learned as 18 first-order rules.

However, the arrangement of response mappings was such that

a second-order relationship could be learned instead. In the context

of one colored box, only the shape dimension was relevant to the

response, with each of the 3 unique shapes mapping to one of the 3

button responses regardless of orientation. Conversely, in the context

of the other colored box, only the orientation dimension was relevant

to the response. Thus, the Hierarchical rule set permitted learning of

a more abstract conditional rule that specified how one dimension

(color) determined which of the other dimensions (shape or

orientation) would provide a context for selecting a response. Again,

all instructions, stimulus presentation parameters, and between-subject

stimulus orderings were identical between the 2 rule sets. The Flat and

Figure 1. Badre et al. (2010) hierarchical reinforcement learning task. A schematic
depiction of trial events along with example stimulus-to-response mappings for
hierarchical and flat rule sets. (a) Trials began with presentation of a stimulus
followed by a green fixation cross. Participants could respond with a button press at
any time while the stimulus or green fixation cross was present. After a variable delay
following the response, participants received auditory feedback indicating whether
the response they had chosen was correct given the presented stimulus. Trials were
separated by a variable null interval. (b) Example stimulus-to-response mappings for
the Flat set. The arrangement of mappings for the Flat set was such that no higher
order relationship was present; thus, each rule had to be learned individually. (c)
Example stimulus-to-response mappings for the Hierarchical set. Response mappings
in this example are grouped such that in the presence of a red square, only shape
determines the response, while in the presence of a blue square, only orientation
determines the response.
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Hierarchical rule sets only differed in that the organization of mappings

in the Hierarchical set permitted learning of a more abstract rule.

Hence, these 2 sets contrast a learning context in which abstract rules

can be discovered with an analogous context in which no such rules

can be learned. Thus, this design provides a means of studying the

neural mechanisms of abstract rule learning.

Corticostriatal Neural Circuit Model
The focus of this paper is not on the neural model itself, which has

been investigated elsewhere (Frank 2005; O’Reilly and Frank 2006). For

the sake of brevity and focus on the primary algorithmic model

description, we report all neural model methods, equations for

individual neuron activation dynamics, reinforcement learning rules

in the BG, and prefrontal working memory mechanisms in the

Supplementary Material. Here, we provide a high level summary of its

application in this context.

A schematic of the neural model structure is presented in Figure 2.

The 3 stimulus dimensions were represented as simple localist units (3

units each for shape and orientation and 2 units for color) and provided

as input to the network. We included 2 separate frontal layers

(corresponding to PMd and prePMd). Each layer had 3 ‘‘stripes’’ which

had the capacity to represent each of the stimulus dimensions. This

implementation is consistent with the notion that each part of

a multifeatural object is represented in a separate slot in visual working

memory (Xu 2002; Sakai and Inui 2002). This structure was duplicated

in maintenance layers (which maintain information over delays) and

output layers (which convey output-gated information to the response

selection network). The central addition to the model used here is that

it includes multiple circuits, whereby the more anterior (prePMd)

frontal layer also provides contextual input to the striatal output-gating

layers of the more posterior (PMd) region. Thus, the decision of

whether or not to attend to a particular stimulus dimension in PMd, and

ultimately whether that dimension is used for motor response

selection, is contextualized by information maintained in prePMd.

Dopaminergic signals convey reward prediction errors that modulate

synaptic plasticity and hence learning in all striatal units, such that

increases in dopamine promote Go learning and decreases in dopamine

promote NoGo learning. These mechanisms allow networks to discover

which stimulus dimensions are predictive of reward if gated into PMd

or prePMd, while simultaneously learning the specific stimulus–

response mappings. In particular, networks should learn that in the

hierarchical condition, color should be gated into prePMD, and the

striatal gating units in the PMd circuit should learn to contextualize

which of the other dimensions to output-gate depending on the

prePMD representation.

For each frontal stripe, the corresponding striatal gating layers

consisted of 28 distributed units (14 Go and 14 NoGo) which learn

the probability of obtaining a reward if the stimulus in question (e.g.,

a particular shape) is gated into, or out of, its respective working memory

stripe. In each module, an SNr/Thal (substantia nigra/thalamus) unit

implements a gating signal and is activated when relatively more striatal

Go than NoGo units are active (subject to inhibitory competition from

other SNr/Thal units that modulate gating of neighboring stripes

(O’Reilly and Frank 2006). Thus, the SNr/Thal units summarize the

contributions of multiple interacting layers that implement gating among

the substantia nigra, globus pallidus, subthalamic nucleus, and thalamus as

simulated in more detailed networks of a single BG circuit (Frank 2006),

in these larger-scale networks we abstract away from these details. For

input-gating circuits, SNr/Thal activation induces maintenance of

activation states in the corresponding frontal maintenance layer (Frank

et al. 2001; O’Reilly and Frank 2006). For output-gating circuits, the SNr/

Thal activation results in information flow from the frontal maintenance

layer to the frontal output layer. This output layer projects to the

decision circuit, such that only output-gated representations influence

response selection (see Fig. 2).

To simulate the Badre et al. task, the model was trained with the

same stimulus–response contingencies administered to the subjects, in

pseudorandom order for 400 trials in each condition (hierarchical and

flat). Each trial consisted of stimulus presentation, during which stimuli

could be gated into corresponding PFC areas, followed by another

phase in which all input stimuli were removed and the network had to

rely on maintained PFC representations in order to respond. (This

working memory aspect was included to capture a design feature

employed in fMRI in which stimuli were presented for a brief period

and were then removed from the display before participants responded

in order to equate visual presentation time independent of response

time.) The frontal stripes for each of the stimulus dimensions could

independently maintain representations of these stimulus dimensions

in PMdMaint, subject to gating signals from the BG. Initially, a ‘‘Go bias’’

encourages exploratory updating (and subsequent maintenance) due

to novelty; these gating signals are then reinforced to the extent that

the frontal representations come to be predictive of reward (O’Reilly

and Frank 2006). However, not all maintained PMd representations

influence decision in the response circuitry – only those that are also

represented in PMDOut due to output gating signals. Thus, in a given

trial, shape and orientation of the current stimulus may be represented

in PMDMaint but depending on output gating, for example, only the

shape will be represented in PMDOut and thereby influence the motor

decisions. To facilitate the discovery of hierarchical structure, we

included projections from the more anterior prePMd layer to the

striatal output gating units of PMd. Dopaminergic reinforcement signals

operate at all these levels, supporting gating of information that will be

most useful for constraining response selection. Thus, the input-gating

units to prePMd should learn to gate in the color dimension to prePMd,

which can then act to contextualize the output-gating decision of PMd

and ultimately response selection. Critically, this scheme prevents the

motor response selection network from having to learn multiple

conjunctive stimulus–response associations and prevents interference

between similar stimuli with opposing motor actions. For example,

shape stimuli are only considered for response selection for one of the

contexts and do not interfere with response associations when the

other context is present. For further details on these simulations, please

see the Supplementary Material.

Bayesian-RL MoE Model
We now develop a more abstract computational-level account of the

learning process, intended to capture key computational features of

the neural model but suitable for analysis of individual learners.

Whereas the neural model focuses on a plausible implementation in

interacting networks of neurons across multiple brain areas and can

produce qualitative fits to the data, it is not appropriate for fitting

trial-to-trial sequence of choices in any given subject and it is not

clear which parameters would be allowed to vary freely (for similar

arguments and methods comparing neural and abstract RL and

Bayesian learning models, see Doll et al. (2009)). We aimed to develop

a model which could estimate the hypotheses that a subject might be

testing in a given trial—that is, their ‘‘latent states’’—which we could

estimate only by observing the sequence of stimuli, responses, and

rewards that the subject experienced and then maximizing the

likelihood of their observed choices under the model given these

observations. These simulations involved few free parameters, which

correspond to intuitive ways in which participants might differ, for

example, the prior likelihood of attending to shape versus orientation

versus color.

We modeled individual learners using an MoE architecture (see

Fig. 3). We adopt a hybrid Bayesian-RL formulation here (see below

section on model fitting for discussion of motivation for use of

a Bayesian learning rule in updating attentional weights to account for

prior biases). Each expert focuses on a particular stimulus dimension or

combination of dimensions and learns the probability of obtaining

a reward for each motor response given the features present in their

domain of expertise. For example, the orientation expert would learn

PðRewjResponse;OrientÞ, and so forth for other experts.

As the outcomes were binomial, for each expert, we modeled

participants’ belief about reward probability for each of the 3 responses

as a beta distribution Betaða; bÞ (see Supplementary Material) which

was updated as a function of experience via Bayes’ Rule, that is, the

posterior distribution about reward probability for each response was

updated as a function of its prior distribution and the likelihood that

the particular sequence of rewards would be observed given this prior.

For the orientation expert, this update is given by:
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where hR,O reflects the parameters governing the belief distribution

about rewards given the presence of orientation O and the choice of

response R, and r1. . . rn are the rewards observed thus far (in the n

trials in which this R was chosen). We then calculated the probability of

selecting each of the 3 responses by comparing the expected means l
of their reward distributions via the commonly used softmax logistic

function. Thus, the probability of selecting Ri on trial t according to

orientation expert O was

PO
Ri
ðt Þ= e

lO
Ri

�
t

�
j

+
j
e

lO
Rj

�
t

�
j

;

where j is a noise/exploration–exploitation parameter governing

choice stochasticity and was estimated as a free parameter. The same

computations were performed in parallel for each expert e, including

a shape expert, a color expert, an expert for each of the 2-way

conjunctions (shape-orientation, shape-color, and color-orientation),

Figure 2. Schematic of hierarchical corticostriatal circuit. In the standard response selection circuit, motor areas of the striatum interact with motor cortex to facilitate response
selection based on the learned probability of reward given the current stimulus state. The PMDMaint layer represents possible stimuli to be actively maintained so as to constrain motor
selection processes. Its corresponding striatal region learns which stimulus dimensions should be gated into PMd based on the learned probability that their maintenance is predictive
of reward. The PMDOut layer represents the deep lamina (e.g., layers 5/6) of PMd in which only a subset of currently maintained PMd stimuli influences response selection, by
projecting to the motor striatum. Its corresponding striatal area learns which of the maintained PMd stimuli should be output-gated depending on context. The most anterior prePMd
layer maintains stimulus features that act as context, by sending their axons to striatal output-gating areas of PMd. Its corresponding striatal gating layer learns whether the
maintenance of particular stimuli as higher order context in prePMd is predictive of reward. Bottom: example network state when presented with color 2, shape 3, and orientation 2.
Arrows reflect direct projections, circles reflect BG gating circuitry, and dashed red lines reflect hierarchical flow of control. S3 and O2 are maintained in PMd, and C2 in prePMd. Due
to influences of C2 in prePMd, only the shape and not orientation is output-gated. The number of stimulus–response associations is reduced by focusing on PMDOut states.
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and a full 3-way conjunctive expert which separately learns reward

statistics for each response given the specific combination of all 3

stimulus dimensions. In this manner, if any of the stimulus dimensions

(or their combination) is reliably indicative of a reinforcing response,

then, given sufficient experience, the associated expert will detect this

statistical regularity and assign that response a high probability.

Note that the full (3-way) conjunctive expert will eventually learn

the optimal response for each combination of stimulus dimensions.

However, this learning is inefficient: it depends on having relevant

experience for each possible combination of orientation, shape, and

color (thus requiring many trials and a high memory capacity) and has

no mechanism to generalize learning from any one combination of cues

to any other. In contrast, a unidimensional (e.g., orientation) expert,

after observing a reward for a given response, will generalize its

learning to other instances: when the same orientation appears again in

the context of some other shape and/or color, it will immediately

assign a greater probability of selecting the same response. Of course,

depending on the task structure this may or may not be adaptive. Thus,

a key issue is how to allocate attention to each expert in any given trial.

Learning the Reliability of Individual Experts
To maximize positive outcomes, the multiple expert scheme should be

able to learn the reliability of each expert’s response–reward

predictions across trials and to differentially weight (attend to) their

assigned response probabilities based on this reliability. In some cases,

it is further useful to dynamically gate attention to the experts

depending on the current stimulus context, rather than simply

according to past overall success (e.g., Jacobs et al. 1991; Kruschke

2001).

We considered various approaches for learning the attentional

weights that should be allocated to each expert. From a Bayesian

optimality perspective, the attentional weights for each expert can be

computed by computing the posterior probability that each expert

encompasses the best account of the data:

Pðejr Þ= Pðr jeÞPðeÞ
+

i
Pðr jeÞPðei Þ

:

Thus, the evidence for each expert under this scheme is computed

by considering its prior evidence and the likelihood that the observed

(positive or negative) reward r would have been observed under the

expert’s model, relative to all other experts. (The likelihood Pðr jeÞ is
simply the learned reward probability of the selected response under

the expert, as described above.) For example, if there was a low reward

probability for the selected response under a given expert, and

a negative outcome is observed, then the likelihood of the observation

occurring given the expert’s model is high. Once the posterior

evidence for each expert is computed, one can then apply Bayesian

model averaging to allocate attentional weights to each expert in

proportion to their log evidence.

Although this scheme for selecting among experts is optimal, in light

of the neural model (and others in this domain), we considered an

alternative approximation heuristic based on reinforcement learning

that may be more related to corticostriatal mechanisms. Here, we

represent participants’ belief that each expert is predictive of reward

with a Beta distribution, in a similar manner as that described for

individual responses under each expert, and apply Bayes’ rule to learn

the probability that its predictions are correct as whole. We make use

of a credit assignment mechanism that rewards/punishes experts only

if they contributed to the observed outcomes. (See Discussion for

posited neural mechanism of this credit assignment). Using the

orientation expert as an example, following each outcome we update

the posterior distribution as follows:

P
�
hO

��r #1 . . . r #n�}P�r #1 . . . r #n��hO�P�hO�;
where r# are the credit assignment–filtered rewards indicating whether

the expert contributed to the positive (negative) outcome and should

therefore receive credit (blame). Specifically, if Ri is the selected

response, rewards are delivered to the expert as follows:

r #=
r if lRi

>lRj
;"j 6¼ i

1 – r otherwise
:

�

In words, experts were rewarded only when an actual reward was

received (r = 1) and that expert assigned the largest probability to the

executed response (i.e., the expert contributed to the choice). If the

expert predicted that an alternative (unselected) response had a higher

likelihood of being rewarded that expert was punished (r# = 0) because

it did not contribute to the reward. Conversely, if a reward was not

received (r = 0), then the expert is punished (r# = 0) if it contributed to

Figure 3. Mixture of experts model. Each flat expert learns reward probabilities for each response given their expert dimension(s) (O, orientation; S, shape; C, color). Responses are
selected by each expert using the softmax logistic function. An overall Flat expert learns via a reinforcement credit assignment to allocate attention among the experts in proportion to
their reliability. Each hierarchical expert learns to dynamically gate attention to one of 2 dimensions depending on a candidate higher order dimension. The leftmost expert learns to
attend to orientation for red contexts and to shape for blue contexts. The overall Hierarchical expert learns which of the hierarchical experts is most reliable, and the overall motor
response is selected as a mixture between the two top level experts(representing whether the task structure is likely to be hierarchicalor flat), again in proportion to their reliabilities.
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the negative outcome and was optimistically rewarded (r# = 1)

otherwise (i.e., positive credit is given to an expert that did not

contribute to the negative outcome because the response it had

assigned the highest reward probability was not selected in that trial).

This credit assignment scheme operated at all levels—to the individual

flat and hierarchical experts and to the 2 higher level Hierarchical and

Flat experts. The rationale is related to the neural model, in which

reward prediction errors differentially reinforce striatal Go/NoGo

neurons coding for the action/representation that had been gated

(e.g., color as higher level context in prePMD) compared with those for

other representations that were not gated.

Finally, we also considered (and simulated) more graded credit

assignment mechanisms, in which experts are rewarded in proportion

to their relative assigned probability that a response is correct (rather

than all or none), to estimate a ‘‘responsibility signal’’ in the multiple

model-based reinforcement learning (MMRBL) algorithm (Doya et al.

2002). (This framework also allows the learning in each expert to occur

in proportion to the attentional weight currently assigned to it). We

considered 2 forms of this algorithm (with and without memory decay;

see Supplementary Material for full equations). The general results of

these simulations were similar to that described above, but they

produced weaker fits to the behavioral data than this discrete credit

assignment mechanism (which also matches more closely to the

mechanism posited in the neural models for credit assignment; see

Discussion). In general, our strategy was to find the model that

provided the best overall fit to behavior, which would then permit an

analysis of the neural correlates of its computations with fMRI data,

which is most interpretable when it corresponds to a well-fit model.

Arbitration
We can now differentially weight the contributions of the different

experts in proportion to their learned probability of having contributed

to rewarding outcomes. To do so, we make use of the same softmax

function as that used to arbitrate between responses for a given expert

to generate attentional weights for each expert relative to all others.

Returning to the orientation expert as an example, the attentional

weight wO in trial t is computed as a function of its assigned expected

reward probability lO relative to that of all experts:

wOðt Þ=
e

lO ðt Þ
f

+
E
e

lE ðt Þ
f

;

where f is a gain parameter discriminating between the different

experts, akin to the exploitation parameter at the response selection

level. (In the Bayesian model averaging scheme, the means of the

expected reward probabilities are replaced by the posterior evidence

for each expert. Although strictly speaking Bayesian model averaging

would involve a linear combination of posterior evidences for each

expert rather than the nonlinear softmax function which increases

discriminability between experts if one is deemed more likely to be

correct. Nevertheless, we estimate free parameter f, which effectively

determines the degree to which differentiation between experts is

nonlinear.) An overall probability of generating response Ri can then be

computed by simply mixing the experts E additively (a product of

experts can also be employed but does not produce substantially

different results) in proportion to their attentional weights:

P
f
Ri
ðt Þ=+

E

wEP
E
Ri

�
t

�
;

where P
f refers to the probability of generating responses for an overall

‘‘flat expert’’ combining all of the subordinate experts described thus

far. Given any task structure mapping stimuli to responses and rewards,

this MoE will eventually learn to produce the probabilistically optimal

responses. (If the structure is arbitrary and no particular dimension is

more predictive than any other, the full conjunctive expert would

eventually learn the appropriate mappings for each case and would

attain the highest attentional weight.) Note, however, that by itself this

scheme does not have the capability to detect any possible hierarchical

or branching structure to the task. We thus refer to the weighted

combination of these experts as a ‘‘flat’’ expert.

Hierarchical Experts
To learn about possible hierarchical structure in the Badre et al. (2010)

task, we introduce hierarchical experts that learn statistics about 2 of

the stimulus dimensions conditional on the identity of a third candidate

higher order feature (Fig. 3). Because the learner does not know

a priori which, if any, feature is the higher order feature, we allow for

multiple possible hierarchical experts. For example, the ultimately

‘‘correct’’ hierarchical expert hOSjC learns response–reward probabili-

ties for both shape and orientation separately for each (higher level)

color C. To do so, it makes use of 2 subordinate experts that learn the

probability of reward for selecting each response and orientation O (or

shape S) given color C:

P
�
hR ;OjC

��r1. . . rn�}P�r1. . . rn��hR;OjC
�
P
�
hR;OjC

�
;

P
�
hR;SjC

��r1. . . rn�}P�r1. . . rn��hR;SjC�P�hR;SjC�:
Credit assignment operates as above, but now across subordinate

experts within the hierarchical expert, allowing this expert to attend to

orientation or shape depending on their reliability of predicting reward

for each color. Specifically, the hierarchical expert hO;SjC dynamically

assigns attentional weights to shape or orientation contingent on the

color:

wOjC ðt Þ=
e

lOjC ðt Þ
f

e
lOjC ðt Þ

f + e
lSjC ðt Þ

f

;

where wOjC
�
t
�
is the relative attentional weight to the orientation

expert relative to the shape expert when color C is present. The

probability of selecting response Ri for this hierarchical expert hOSjC is

then simply mixed according to these weights on each trial:

P
hOS jC
Ri

�
t

�
=wOjCP

OjC
Ri

�
t

�
+wS jCP

S jC
Ri

�
t

�
:

We similarly included 2 other hierarchical experts hS;C jO and hO;C jS ,
for which orientation and shape are the higher order features. The

credit assignment mechanism is applied to determine, within an overall

hierarchical scheme, the probability that each of the 3 hierarchical

experts contributes to reward. An overall hierarchical expert assigns

attentional weights to these possible hierarchical structures, much like

the overall flat expert:

Ph
Ri

�
t

�
=wOSjCP

OS jC
Ri

�
t

�
+wOC jSP

OC jS
Ri

�
t

�
+wCS jOP

CS jO
Ri

�
t

�
:

Finally, a second-level attentional selection process was implemented

to arbitrate between the overall hierarchical expert and overall flat

expert (each of which constituted a weighted combination of

subordinate experts)—again based on the learned probability of reward

given that these experts contributed to choice. Thus,

wHðt Þ=
e

lH ðt Þ
n

e
lH ðt Þ

n + e
lF ðt Þ
n

;

where n determines the gain with which one discriminates between

hierarchical and flat structure. The net response selected is then, finally,

as follows:

PRi

�
t

�
=wHP

H
Ri

�
t

�
+WFP

F
Ri

�
t

�
:

Note that each of the hierarchical experts correspond better to

a classical ‘‘mixture of experts’’ architecture (e.g., Jacobs et al. 1991;

Kruschke 2001) because they dynamically gate the outputs of a given

expert conditioned on a context; whereas the overall scheme for

combining experts is closer to Bayesian ‘‘model averaging’’ (where we

average across individual flat experts and hierarchical MoE).

Quantitative Fits to Human and Neural Circuit Choices
We set out to investigate whether the MoE high level approximation to

corticostriatal RL can provide a reasonable fit to individual human

participant choices in the Badre et al. task, and similarly, to individual

corticostriatal neural networks. A further goal was to use the model-

derived attentional weights as a means to investigate neural
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computations associated with hierarchical learning in the functional

imaging data (see companion paper).

The above goals require inferring the extent to which individuals

attend to hierarchical structure, that is, the attentional weights to

hierarchical experts in the MoE. By observing each participant’s

sequences of choices and reward outcomes, we can infer the attentional

weights for each expert and how these evolve across the learning phase

in hierarchical and flat conditions. Specifically, the attentional weights are

found by maximizing the likelihood of each participant’s trial-by-trial

sequence of choices across all 720 trials, with free parameters adjusted to

estimate individual differences and to maximize this likelihood. We

describe the nature of these free parameters next.

Although the full MoE structure could, in principle, be considered by

each individual (i.e., if all attentional weight distributions are initialized to

be uniform), we assumed that participants vary in the extent to which

they considered particular hypotheses from the outset and that any

particular individual might only consider a subset of the possible structure

(e.g., pruning; Daw et al. 2005). We modeled this variation by allowing the

prior attentional weights for the different experts to be free. The Bayesian

formulation for attentional weights allows us to estimate low priors to

certain experts of individuals who are not well characterized as initially

attending to these experts such that these priors could be overcome only

by overwhelming evidence in their favor (in which case a nonlinear

increase in attention could be observed, as is often the case for the

hierarchical expert). In contrast, standard reinforcement learning models

would have more difficulty capturing these phenomena: low prior values

would be rapidly updated as a function of a series of prediction errors.

Thus, although formally the Bayesian interpretation, with a low prior for

attentional weights, assumes that individuals accrue evidence about

experts to which they are not ‘‘attending’’ for a prolonged period, it may

simply capture the tendency to initially not attend to a particular feature

and then to randomly gate this feature into PFC at some point and only

begin learning about it then without any bias.

A critical prior determined the initial likelihood of the participant

considering overall hierarchical versus flat structure. Those with high

values would be better fit by a model in which they are testing

hierarchical structure early on during learning, whereas a very low

prior would suggest that they are unlikely to be testing hierarchical

structure. Intermediate values would suggest that with sufficient

evidence for hierarchy, they may attend to such structure. Of course,

individual differences exist in other attentional factors as well. Thus, we

included separate free parameters estimating the prior tendencies to

attend to unidimensional experts for color, orientation, and shape. We

further included a prior for attending to 2-way conjunctions and to the

3-way conjunctive expert. To minimize the number of free parameters,

rather than including a separate prior for each 2-way conjunction, we

instead estimated a single b hyperparameter for 2-way conjunctions

across all 3 of these experts (with high values reflecting a low prior to

attend to conjunctions). We then initialized the a hyperparameter for

each 2-way expert to reflect the mean prior of the 2 constituent

dimensions (with higher values reflecting a tendency to attend to this

specific conjunction). (For example, the orientation–shape conjunctive

expert would have its prior a set to the mean of the a parameters for

the orientation and shape unidimensional experts.)

We also allowed individuals to vary in the softmax gain with which

they discriminate between different responses (j) and between

different subordinate experts within overall flat and hierarchical

experts (f) and between flat and hierarchical experts (n). These

parameters model the extent to which individuals deterministically

choose the responses or experts associated with the current highest

predictive reliability, and in principle capture variations in selection

functions between distinct corticostriatal circuits (from motor to PMd

to prePMd). (Separate parameters allow us to estimate the extent to

which individuals attend to hierarchical structure separately from their

response selection process within a flat expert.)

A final free parameter is used to model the decay of the hyper-

parameters characterizing the attentional weights between the 2 blocks

(from flat to hierarchical or vice versa). This parameter would be

maximum (1.0) if participants assume that what they had learned about

attentional weights to different experts in the first block should transfer

to the second block (e.g., if shape was deemed relevant in block 1 it

would begin with a high attentional weight in block 2, even though the

specific shape features would be new). Conversely, this parameter would

be near zero if participants assumed that the structure had completely

changed (such that the learning process in the second block would

proceed according to the same initial priors from the first block).

Model fits were evaluated using log-likelihood of choices under the

model, L=logðPt Pi� ;t Þ, where t is trial number and i�; t denotes the

subject’s choice on trial t. For each subject, the best-fit parameters are

those associated with the maximum L value and are, by definition, the

most predictive of the subject’s sequence of responses across all trials.

We calculated the pseudo-R2 values, defined as ðL–r Þ=r , where r is the

log-likelihood of the data under a model of purely random choices (P =
0.333 for all trials) (Camerer and Ho 1999; Daw et al. 2006; Frank et al.

2007), and the Akaike’s information criterion (AIC) (Akaike 1974),

which penalizes model fits with increasing numbers of free parameters

so as to favor the most parsimonious model that best fits the data. We

also applied a recently described Bayesian model selection method,

which evaluates the exceedance probability that a given model is more

likely than the others given the full set of AIC’s for each model and

participant (Stephan et al. 2009). This method is more robust to outliers

than a simple comparison of mean AIC fit across the group.

Results

Corticostriatal Circuit Model

We simulated the Badre et al. (2010) hierarchical RL task in the

corticostriatal neural circuit model (see Materials and Methods

and Supplementary Material). In the hierarchical condition,

networks with hierarchical corticostriatal structure—that is, in

which prePMd provides contextual input to the output gating

units of the PMd—show robust learning curves in the same

range as those of human participants. We ran control

simulations to demonstrate the potential benefit of hierarchical

structure in the network model. First, we disconnected the

prePMd convergent inputs to PMd output-gating units while

leaving all other parts of the network intact. This simulation

allows us to investigate whether the influence of more anterior

regions (prePMd) on output-gating of posterior regions (PMd)

is adaptive when there is hierarchical structure in the

environment. Second, we tested an alternative hierarchical

hypothesis in which prePMd units projected to the BG input

gating units of PMd, similar to the recent proposal of Reynolds

and O’Reilly (2009) in hierarchical working memory tasks.

Hierarchical Structure Improves Learning

Indeed, networks with hierarchical structure perform better

than networks without such structure (Fig. 4a). No such benefit

of hierarchical structure was found in the flat condition (data

not shown) (Networks performed above chance but overall

worse in the flat condition [as there are multiple competing

stimulus–response mappings to be learned], but the degree of

learning was not at all influenced by hierarchical structure.)

This result suggests that the hierarchical PFC structure

facilitated the transformation of a complex task into a much

simpler one but that no advantage of this scheme is found when

such a transformation is not possible. Indeed, the qualitative

difference in performance between networks with and without

hierarchical structure resembles the behavioral difference in

performance between the hierarchical and flat conditions.

Dopaminergic Reinforcement of Striatal Gating Is Critical

To demonstrate the impact of dopamine-modulating reinforce-

ment learning in the network, we also ran a batch of networks

in which all layers and their connectivity remained intact but
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we removed the ability of phasic dopaminergic signals to

modulate plasticity in the BG gating units (while preserving

learning at the level of motor responses). Thus, the BG can still

gate stimuli into the different frontal layers, but gating policies

are not adaptively tuned to increase gating of reward-predictive

information. In these simulations, frontal representations are

not likely to be useful in constraining decisions made at the

response level, and indeed, networks exhibited dramatically

impaired performance (Fig. 4a). In contrast, intact DA-mediated

RL in the gating layers allows the intact network to adaptively

gate color dimensional information into the prePMd layer,

which then acts as contextual input to the striatal output-

gating units for PMd. This output-gating system can then learn

which (shape or orientation) dimension is accessed to

constrain the motor decision, effectively reducing the number

of stimulus–response mappings that the motor system has to

learn, thereby making the learning more efficient.

Dynamics of prePMD Activation in Flat and Hierarchical

Conditions Matches fMRI Data

Given the finding that hierarchical networks performed best in

the hierarchical condition, we then analyzed the activation

level in the prePMd layer of the model. Recall that Badre et al.

reported that prePMd activation was elevated at the outset of

both flat and hierarchical conditions but that the difference

between these conditions was reflected by a decrease in

prePMd across trials in the flat condition. To examine a possible

mechanism for this effect, we plotted the normalized firing rate

of the active units in the model prePMd layer as a function of

training trials in flat and hierarchical conditions (Fig. 4b). The

main difference between the conditions is a decrease in

prePMd activity in the flat condition, beginning at approxi-

mately trial 50, matching the qualitative pattern found with

fMRI (Badre et al. 2010). According to the model, the reason

activity declines in this condition is that when no hierarchical

structure exists, there is no context (color or otherwise) that

reliably predicts when the network should constrain attention

to a particular stimulus feature. As such, the prePMd influence

can actually hinder performance because it will force the

model to focus on a subset of dimensions when it should

instead learn about the conjunction of all stimulus features on

each trial. Thus, any pattern of prePMd activity elicits a negative

reward prediction error, and the resulting ‘‘NoGo’’ learning in

the associated BG layer eventually allows it to reduce the

probability that stimuli will be gated into (or out of) that layer.

As a result, model prePMd activity levels decline with

increasing trials in the flat condition. By contrast, in the

hierarchical condition, BG gating units are positively reinforced

when color is represented in prePMd so that activity is

maintained across trials. We confirm this key prediction in

the reanalysis of the fMRI data in the companion paper.

Corticostriatal Weights Support Gating Policy Abstraction

To further analyze the mechanisms that support improved

performance under hierarchical conditions, we derived an

index of gating policy abstraction. Specifically, we computed

the summed synaptic connection strengths from the prePMD

units representing red (or blue) to the Go and NoGo output

gating units in the PMD stripes corresponding to shape (or

orientation):

hier�index =+
h
wC :GOSjO

i
+
–

h
wC :NOGOSjO

i
+
;

where C indicates the relevant presynaptic color unit in

prePMD, S jO indicates that weights are computed into post-

synaptic striatal units that output gate either shape or

orientation (contingent on color identity, according to the

hierarchical rule), and ½�+ indicates that only weights greater

than a threshold of 0.5 are included (lower weights do not tend

to contribute to unit activations so are discarded, but this

thresholding is not critical). Thus the hierarchical index

assesses the degree to which the corticostriatal weights

support gating (more Go than NoGo) of the correct hierarchi-

cal rule (red:shape and blue:orientation). We also compute the

analogous index for the opposite rule that is not supported by

the task structure (red:orientation and blue:shape) to ensure

that the index is specific to correct hierarchical abstraction and

not just increased nondiscriminate propensity for Go gating

weights. If the network learns to use hierarchical structure, the

weights should evolve to support output gating of the correct

dimension and not the other one. Note that this index is

a measure of both the tendency for the model to represent

color in prePMD (because otherwise these weights from these

color units would not evolve) and to correctly map these to the

appropriate output gating strategy. These weights also reflect

an abstract gating policy because they map onto an entire

stripe of shape or orientation, despite the fact that output

gating units could also learn to increase weights from the

individual instances of each feature (e.g., it could learn specific

associations for output gating shape1 vs. shape2).

Figure 4. (a) Corticostriatal circuit network performance in Badre et al. hierarchical learning task, as a function of trials. Learning is enhanced in hierarchical networks relative to
networks with no hierarchical structure (no modulation of PMd circuit by prePMd, ‘‘nohier’’) and relative to networks with hierarchical structure but no dopamine modulation of
learning in striatal gating units (hier_noDAmod). (b) Activity levels in model prePMd in hierarchical and flat conditions. Results in both panels are averaged across 25 different
networks with random initial synaptic weights. Error bars reflect standard error of the mean.
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We found that indeed, with more training the weights

evolved to support this abstract output-gating policy, with Go–

NoGo gating weights for the hierarchical rule increasing and

those for the opposite rule decreasing as learning evolved in the

hierarchical block (Fig. 5a). Notably, network accuracy after

360 trials was strongly correlated with this hierarchical index

(r = 0.86, P < 0.0001; Fig. 5b). The opposite correlation was

seen with Go–NoGo weights to the opposite (incorrect) rule

(r = –0.58, P = 0.003), and accuracy was also significantly

correlated with relative difference in gating weights between

these rules (r = 0.84, P < 0.0001). Similarly, terminal accuracy is

correlated with the extent to which the hierarchical index

increases from the beginning to the end of the block (r = 0.75, P

< 0.0001), demonstrating that this gating policy is learned and

not just reflective of random initial weights that happened to

support the correct rule in some networks.

Thus, these simulations show that the network learns

hierarchical structure. This structure is abstract as it is not

tied to any given feature but rather the general tendency for

the higher order dimension (color) to increase propensity for

gating the lower level dimension (shape/orientation). Thus,

once these weights are learned, it is not clear that the ‘‘color’’

units in prePMD should be labeled as such because they now

represent which of the other dimensions is relevant (e.g.,

Figure 5. (a, b) Left: striatal output-gating units from a nonhierarchical network have to learn to output-gate each individual shape feature by assigning strong weights from each
the PMd shape units to distinct patterns of Go units. Right: In the hierarchical network, output-gating units of the shape stripe can learn strong Go gating associations whenever
the red color unit is active in prePMd. This allows the network to generalize across shapes without learning about each one. (c) An index of this hierarchical gating policy
abstraction was computed as a function of the weights from prePMd to striatal output gating units in the PMd circuit that support gating of the hierarchical rule (see text). As
networks learned in the hierarchical block, the striatum developed an abstract gating policy (e.g., that gates all shapes for a given color, regardless of the particular shape
feature), whereas gating weights for the opposite rule decline. (d) Across 25 hierarchical networks, the degree of gating policy abstraction at the end of the block was tightly
correlated with terminal accuracy.
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a prePMD unit, although activated in response to the red input

feature, can be said to represent shape). This conclusion

extends that of Rougier et al. (2005), who reported that

simulated prefrontal units come to represent abstract dimen-

sions (e.g., color) by virtue of maintaining the same activity

state over the course of a block in which that dimension was

task relevant. Our findings extend this notion such that

corticostriatal weights develop to support an abstract hierar-

chical gating policy that serves to contextualize lower level

decisions by higher order features (e.g., units may initially

represent color but then come to signal shape). Similarly,

a given shape feature unit in PMD initially represents that

feature, but with learning comes to signify the appropriate

motor response (via its weights to the motor circuit).

In summary, the neural model supports the notion that

multiple BG–PFC circuits interact using standard reinforce-

ment learning principles, modulated by dopaminergic pre-

diction errors, to solve hierarchical tasks. Application of this

model to a range of other hierarchical (RL and non-RL) tasks is

outside the scope of the current study but is currently being

investigated. Next, we present results from the abstract model

of these processes in individual learners.

MoE Model

As described in the methods, we present results from the best-

fitting model to behavior based on Bayesian model selection for

group studies. This analysis confirmed that the main MoE

model described in the methods is the best-fitting model to the

human participant data from the Badre et al. (2010) study

(mean pseudo-R2 = 0.34 and 0.19 for hierarchical and flat

blocks, respectively; note these measures apply across all trials

including early on when performance and model fit are

expected to be at chance levels). Binning the model

predictions into bins of width 0.1 from 0 to 1 shows a strong

correspondence between predicted probability of a given

response and the actual observed allocation of responses for

each bin (Fig. 6). Thus, the MoE model provides a reasonable fit

to participant choices. Model fits were better when allowing

for different softmax parameters for selecting between experts

and between motor responses compared with a model

assuming a single softmax parameter (exceedance probability

P = 0.73). Model fits were also better when including

a parameter allowing the attentional priors at beginning of

the second block of trials to decay as a function of the

posteriors at the end of the first block (exceedance probability

P = 0.72). This result suggests participants are more likely than

not to test the same structure that they thought described the

task in the first block (despite new stimuli). As alluded to in the

methods, model fits for our discrete credit assignment

mechanism were also greater than that using MMBRL, graded

credit assignment, or Bayesian model averaging (exceedance

probability for discrete credit assignment P = 0.98). See

Supplementary Table for model fit measures.

Attentional Weights

Given these fits to choice data, we next investigated the

attentional weights. The attentional weights for a representative

participant are plotted in Figure 7 in hierarchical and flat

conditions. The bottom of this figure shows attentional weights

to the overall hierarchical expert for all participants, showing that

individuals differ greatly in the extent to which they appear to

attend to hierarchical structure. Some individuals have a relatively

high prior to attend to a particular unidimensional expert (e.g.,

shape for subject 118), but eventually the reinforcement statistics

support a more complex structure (whether hierarchical or not).

The attentional weights for the correct hierarchical expert wOS jC ,
relative to all other potential hierarchical structures, increase with

experience in the hierarchical block, given the reinforcement

statistics. However, individuals differ in the extent to which they

attend to the overall hierarchical relative to flat structure (wH).

Some individuals have very low attention to hierarchical structure.

To the extent that they perform relatively well in the hierarchical

block, these individuals tended to be best characterized by highest

attentional weight to the full-conjunctive expert (see supplemen-

tary fig. (S109)). Note that even if attention to the conjunctive

expert, which can eventually solve the task, is maximal, the

learning curve may nevertheless proceed gradually as participants

still have to learn the specific stimulus–response mappings for

each possible conjunction (and poor memory may can be

captured by a low softmax gain selecting among motor responses).

Similarly, even in participants who show rapid increases in

attention to hierarchical structure, performance may still take

longer to reach asymptotic levels as participants still have to

learn specific response weights for individual orientation or

shapes. Furthermore, some subjects who eventually show

strong attention to hierarchical structure may carry over that

belief into the flat block (if it appeared second, as in the

example subject in the figure), and this may actually hinder

performance given that no hierarchical structure exists in that

block. Indeed, across the 10 subjects who performed the

hierarchical block first, there was a strong negative correlation

between the attentional weights to hierarchical structure (wH,

averaged across the last 50 trials of the hierarchical block) and

learning performance in the subsequent flat block (r = –0.74,

P = 0.015). This impairment was also observable in just the first

Figure 6. MoE model fits to behavior in Hierarchical and Flat conditions. Graph
indicates the relationship between the model’s predicted probability that any given
response is selected in a given trial (in bins of width 0.1), and the actual proportion of
trials in which the associated response was selected by participants in each bin.
Results shown across all participants, where each participant’s model was optimized
by maximizing the likelihood of their trial-by-trial sequence of responses. There was
a strong correlation between model predictions and actual choices in both
Hierarchical and Flat conditions (r 5 0.99 in both cases). Numerically reduced
proportion of actual choices in highest bin in Flat condition was associated with
a small number of samples for which model predictions were[0.9.
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50 trials of the flat block (r = –0.67, P = 0.03), suggesting that it

reflects negative transfer. This is a rare example in which

participants with ‘‘good’’ learning in one context exhibit poorer

learning in another.

Fitting the MoE to the Neural Circuit Model

Overall, the MoE model provides a mechanism by which to

infer latent hypotheses tested by individual learners, and its

internal variables (e.g., attentional weights) can be used to

interrogate neuroimaging data, as we do in the companion

paper. Here, we validate the notion that the MoE can infer most

likely hypotheses being tested and address its relation to the

corticostriatal neural model. To this end, we treated the neural

model as a participant, recording its sequence of observations,

choices, and rewards and fit the MoE model to these data. The

quantitative trial-to-trial fit of choices generated by the neural

model was in the same range of that to human data (mean

pseudo-R2 = 0.32, correlations between binned predicted and

observed values as in Fig. 6: r > 0.99). Thus, in terms of

correspondence between observed and predicted data, the

MoE model captures the behavioral choices of the neural

model to roughly the same degree as it does to human data

(despite the fact that clearly the networks, and likely the

humans, are not performing exact Bayesian inference).

This exercise allowed us to validate 2 of the assumptions.

First, we tested the notion that the MoE model can be used to

infer the most likely hypothesis being tested. Because this is

a latent (hidden) state, for human participants this is difficult to

validate (but see imaging analysis in the companion paper). In

contrast, in the neural model, we can directly manipulate

whether a particular hypothesis can be tested and then

evaluate whether the quantitative fit by the MoE model yields

the correct interpretation in terms of its assigned attentional

weights. To do so, we ran a batch of networks which were

prevented from testing hypotheses associated with an arbitrary

stimulus dimension (shape; by disconnecting the shape input

units from the frontal areas). We then compared the assigned

attentional weights fit by the MoE model to these networks

compared with those of the intact networks and found that as

expected, attentional weights to the shape expert (WS) were

substantially reduced (near-zero), whereas those to the other

experts were unchanged. This analysis confirms that when

specific hypotheses are generated to guide action selection, the

MoE model can appropriately assign attentional weights to

these hypotheses (and that it can do so with the assumptions

about the mechanisms of hypothesis testing embedded in the

neural model). Second, this same approach allowed us to test

the ability of the MoE to infer the likelihood of testing

hierarchical structure. We fit behavioral choices of networks

with and without hierarchical structure (i.e., by including or

excluding projections from prePMd to the striatal output-

gating units of PMd). These additional simulations were

conducted without working memory demands. That is, stimuli

were not removed from the input during the delay period,

Figure 7. Top: Example attentional weights in a single participant in the hierarchical and flat conditions, as estimated by best fitting model parameters to their trial-by-trial
sequences of choices. Within the hierarchical expert, evidence for the correct HierðO; SjCÞ expert increases relatively early on, but the overall attention to Hierarchy relative to Flat
(dashed red line, WH) does not substantially increase until after trial 200. This participant performed the flat condition second and begins with a prior to attend to hierarchy, but
when the evidence does not support it, the weight to hierarchy decreases while the eventual winning full conjunctive expert (black asterisk) increases. Green ‘‘lcurve’’ lines reflect
smoothed behavioral learning curves as estimated from a Bayesian state space model, which gives probabilistic estimates about the probability of a correct response at each trial
(Smith et al. 2004). Bottom: attentional weights to overall hierarchical versus flat expert for all participants. Some participants show rapid increases in attention to hierarchy,
whereas others show delayed and/or mixed attention to hierarchy.
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allowing networks to potentially solve the task by forming

conjunctive associations because all stimulus dimensional

information is available on each trial. This allows us to

investigate the impact of corticostriatal hierarchical structure

on hierarchical attentional weights while ensuring that net-

works could potentially solve the task with conjunctive

mechanisms. Indeed, in these simulations, differences in

hierarchical attentional weights emerged at about 150 trials,

but a performance advantage in terms of accuracy was not

reliably observed until about 300 trials. Both groups of

networks showed relatively speeded acquisition under these

conditions, performing at approximately 70% accuracy rates by

trial 300. Hierarchical networks exhibited another 10%

improvement in the last 100 trials, whereas nonhierarchical

networks did not. We found that in the hierarchical task

condition, the attentional weight assigned to testing hierarchi-

cal hypotheses (wH) was significantly greater in networks with

hierarchical structure (Fig. 8). Notably, within hierarchical

networks, the estimated wH was related to the index of gating

policy abstraction (see above) in the corticostriatal weights

from prePMD to striatal output gating units (r = 0.47, P < 0.02)

during the first half of the block. A similar but nonsignificant

trend was observed in the second half of the block (P = 0.1).

Thus, gating policy abstraction supported the rapid develop-

ment of hierarchical structure that was revealed in the MoE

quantitative fits to network choices. These simulations show

that differences in hierarchical strategies can be detected even

in the presence of minimal changes in performance accuracy

and in advance of such changes.

Note that despite the fact that networks begin the task by

gating representations in prePMd, and therefore have the

immediate capacity to test hierarchical structure, the atten-

tional weights to such structure as estimated by the MoE often

start with low values at the outset of the block. This occurs

because 1) the weights from prePMd to striatal output gating

units are randomly initialized and it takes experience for these

to be tuned such that the output gating policy is reliably

influenced by representations in prePMd and 2) networks also

have immediate abilities to respond based on unidimensional

strategies (e.g., if one or more dimensions is maintained and

output-gated from the outset). Thus, the inferred attentional

weights to the hierarchical (or any other) expert reflects the

tendency to preferentially use this information for guiding

responses. Please see the companion paper for more discussion

of this issue as it relates to fMRI data in prePMd.

Discussion

We have provided a novel model of hierarchical reinforcement

learning in corticostriatal circuits. Existing theories of hierar-

chical cognitive control suggest a cascade network by which

rostral PFC modulates processing in posterior PFC (Koechlin

and Summerfield 2007; Badre and D’Esposito 2007; Badre et al.

2009). The mechanisms underlying these asymmetric interac-

tions remain underspecified, and prior work has focused

primarily on corticocortical influences in conceptualizing this

rostral-to-caudal cascade (Koechlin et al. 2003; Badre and

D#Esposito 2007). Our model builds on these prior notions by

suggesting that—at least when rules have to be learned—the

influence of anterior PFC on posterior PFC may be indirect

(rather than directly corticocortical) such that action selection

at one corticostriatal level is constrained by inputs from more

anterior levels. In other words, hierarchical control may emerge,

in part, from multiple nested frontostriatal loops. Reinforcement

learning operates at each level such that the system adaptively

learns to represent and maintain higher order contextual

information in rostral regions (e.g., prePMd), which serve to

conditionalize attentional selection in more caudal regions (e.g.,

PMd), ultimately influencing response selection in motor cortex.

The probabilistic MoE model provides an abstract expression

of the key computations of this circuitry and makes quantita-

tive estimates of individual subject’s attentional allocation to

different features and hypotheses. Together, the models pro-

vide key predictions for fMRI data to be tested in the

companion paper. Specifically, we test whether estimates of

individual differences in attention to hierarchical structure and

the modulation by reward prediction errors are associated with

differential activations in the corticostriatal circuits associated

with second level hierarchical control. We also test whether

Figure 8. (a) Example attentional weights estimated by the MoE fits to trial-by-trial sequence of choices generated by a BG–PFC network in the hierarchical condition. Smoothed
learning curve of this network is plotted on the same scale (dotted green line). This network appeared to begin responding primarily relying on unidimensional strategies
(particularly orientation; black triangles), which then decrease with experience due to their inconsistent reward associations. The weights to the full 3-way conjunctive expert
(black asterisks) increase incrementally as performance improves. Within the hierarchical expert (blue curves), evidence for the correct HierðO; SjCÞ expert (blue circles) increases
relatively early on, but the overall attention to Hierarchy relative to Flat (wH, dashed red line) does not substantially increase until after trial 200. See Figure 7 for full legend
indicating the identity of each expert. (b) Mean (̆standard error) attentional weights to hierarchical versus flat expert (wH) estimated across all 25 networks with (red) and without
(black) hierarchical structure (projections from prePMD to output gating units of PMd).
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the neural model prediction that the decline in prePMD activity

in the flat condition is associated with reward prediction error

signaling in the striatum, allowing it to learn not to gate

information into (or out of prePMD) when it is not useful.

Relationship between Levels of Modeling

Although modeled at quite a different level of analysis, the

development of the computational-level MoE model was

motivated by many of the principles embedded within the

biologically inspired neural circuit model of corticostriatal

interactions. Most obviously, both models learn as a function of

positive and negative reward outcomes, which are used to adjust

the likelihood of selecting particular actions. In the neural

model, the nature of the actions varies from gating of motor

responses to the input and output gating of stimulus dimensions

for response selection in PMd and finally to the gating of

contextual stimuli in prePMd. We represented the different

actions in the MoE model by including different levels within the

experts, with the lowest level learning about responses and

higher levels reflecting attentional weights to different stimulus

dimensions. The mechanism for discovering hierarchical struc-

ture is similarly related across models. In the neural model, the

prePMd provides contextual information to constrain which of

the other stimulus dimensions to output gate in order to

influence response selection. In the MoE, hierarchical experts

dynamically gate attention to one stimulus dimension contingent

on the identity of a higher order feature. We showed explicitly

that when the MoE is fit to the generative neural model, the

estimated attentional weight to the hierarchical expert is

proportional to the degree to which the neural model learns

an abstract gating policy.

Various neural models of BG show that the corticostriatal

circuit adaptively gates one (or a subset) of available alternative

actions (Houk and Wise 1995; Gurney, Prescott, and Redgrave

2001; Frank 2006; Humphries et al. 2006; O’Reilly and Frank

2006). In the MoE model, we implemented this selection across

all levels of actions with the softmax function, commonly used

in algorithmic models of this circuitry (Samejima et al. 2005;

Daw et al. 2006; Frank et al. 2007; Doll et al. 2009). Thus,

although the models apparently differ in that for any given trial,

the neural model stochastically gates stimuli in prePMD and

PMD to constrain response selection, whereas the MoE

assumes that attentional weights are mixed in each trial.

However, this difference is less profound than it appears as the

softmax mixture function provides a probabilistic estimate of

which response is likely to be selected, rather than a literal

mixture of multiple responses. The same applies here in terms

of attentional weights to experts. Thus, the main difference

here is simply that the neural model is used as a generative

model (in which it stochastically gates discrete actions),

whereas the MoE is used as a probabilistic estimate of which

experts are gated. Simulations validate this claim, showing that

the MoE provides a reasonable fit to the neural model’s choices.

Finally, in both models, the action-values across all levels are

learned via a common reinforcement signal. Moreover, the

discrete credit assignment mechanism applied in the MoE to

determine which of the experts most reliably contributes to

rewards was directly motivated by that applied in the neural

models (Frank 2005; O’Reilly and Frank 2006). Specifically,

a common issue in neural models is how the system ‘‘knows’’

which of the active neurons to assign credit when a reward

occurs. One solution to this problem that substantially

improves performance is to allow those striatal Go neurons

which actually contributed to the selection of the recently

executed action to boost the DA signal that projects back to

these same group of neurons. This mechanism is plausible,

given that Go cells which inhibit the substantia nigra reticulata

would disinhibit a population of DA cells in the substantia nigra

compacta, due to inhibitory projections from SNr to SNc (Joel

and Weiner 2000; O’Reilly and Frank 2006). In this way, the

system can learn to preferentially increase action values of

those cells which contributed to the action. Evidence for

action-specific prediction error signals in striatum supporting

this credit assignment mechanism was recently reported in

a human functional imaging study (Gershman et al. 2009).

Despite our attempts to constrain model development and

analysis according to principles at the other level of analysis,

some differences exist. For example, the models differ in their

assumptions about the dynamics of hypothesis testing. In the

absence of prior learning, the neural model has a tendency to

gate novel stimuli into corresponding PFC regions, allowing it to

learn the values associated with these subsequent PFC states and

to then reinforce gating signals appropriately (O’Reilly and Frank

2006; Hazy et al. 2010). Here this mechanism also applies to the

most anterior prePMd layer such that the model has a bias to

gate a stimulus as context and therefore a bias for the prePMd to

influence output gating at the level of PMd. In other words, the

neural model has a bias to represent hierarchical structure. If

such structure is not present in the environment, prePMd

activity will not be predictive of reward and the resulting

development of anterior striatal NoGo representations prevents

further gating. In contrast, while the MoE estimates prior

tendencies to attend to hierarchical structure wH, for many

subjects this prior is estimated to be low; the MoE allows these

individuals to nevertheless eventually discover hierarchical

structure if the data support such structure. Despite this

apparent difference, quantitative fits with the MoE treating the

neural circuit model as a subject revealed that prior attention to

hierarchical structure is also estimated to be low in the neural

model, despite the fact that we know that prePMd activity is high

at the outset of learning in both blocks (as in the fMRI data;

Badre et al. 2010). Thus, while prePMd activity supports the

representation of higher order features, it does not directly lead

to a hierarchical gating policy. Rather, our simulations showed

that the more proximal neural index of such a policy is the

learned synaptic weights from prePMd to (posterior) striatum.

Clearly, prePMD activity is necessary for these weights to

develop (according to Hebbian principles), and as such we

interpret the prePMD activity as an enabling condition. Of

course, it is also possible that the MoE model’s estimates of

hierarchical attention are overly tied to the reinforcement

contingencies associated with attending to such structure and

cannot rule out the possibility that other models in which

attention is not governed by RL principles may be able to

estimate attentional weights that more closely parallel prePMd

activity. However, such a model is unlikely to predict the

modulation of prePMd and striatal activity by attentional weights

and reward prediction error, as seen in the companion paper.

Relation to Other Models

Collectively, these findings support the general notion that

multiple controllers can exist in parallel, each subject to
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reinforcement learning (e.g., Doya et al. 2002; Holroyd and Coles

2002). In the MMBRL framework, each controller learns as

a function of reinforcement, subject to ‘‘responsibility signals’’

that determine which ones were more likely to have contributed

to the outcome (Doya et al. 2002). Our models share some of

these core features (and indeed, we implemented the MMBRL

credit assignment mechanism in an alternative model) but also

differ in both conception and implementation. For example, the

credit assignment mechanism we adopt relies on discrete output

signals indicating whether a given expert contributed to the

response in a given trial. This is intended to reflect the

hypothesized mechanism in which dopaminergic prediction

error signals are selectively amplified in striatal cells that

generated the preceding action (Frank 2005; O’Reilly and Frank

2006) and is consistent with recent functional imaging data

(Gershman et al. 2009). While this discrete credit assignment

mechanism provided a significantly better fit to the behavioral

data in this study, further experiments are needed to properly

contrast graded versus discrete credit assignment theories.

Our neural model is most closely related to that of Reynolds

and O’Reilly (2009); indeed it inherits the same corticostriatal

learning and working memory mechanisms as that of its

predecessors which did not focus on hierarchical control per

se (Frank 2005; O’Reilly and Frank 2006). There are 2 main

differences. First, the hierarchical architecture in our model was

beneficial for learning of hierarchical structure, whereas that in

the Reynolds and O’Reilly model did not improve learning.

Second, whereas their model focuses on a role for anterior PFC

in contextualizing posterior input gating signals, our model

shows that the anterior region (prePMd in this case) is most

effective for contextualizing output gating of attentional signals

to posterior PFC (PMd), much in the same way that PFC working

memory representations are thought to constrain the output

gating of motor responses (Frank et al. 2001). However, in other

contexts, hierarchical control over both input and output gating

functions may be adaptive.

The task simulated here has only minimal working memory

demands and is inherently a problem of attentional feature

selection in the service of reducing dimensionality of the

stimulus–response mappings. Future work will investigate the

roles of these features in a broader range of tasks. For example,

tasks involving goal–subgoal structure, such as multiple stage

arithmetic problems, may benefit from the capacity to maintain

overall goals, to constrain attention to the relevant stage of

processing, and to update working memory representations as

a function of intermediate processing. Consider a task in which

participants have to maintain multiple digits in working memory

and then perform subsequent computations based on a new

instruction (e.g., compute the sum of every odd digit). This

example illustrates the need for output-gating: whereas all digits

have to be maintained (one does not know until later which will

be relevant), only the odd ones should influence decisions.

Furthermore, assuming one cannot compute the sum of all odd

digits in one step, they might instead consider each digit in

memory at a time, decide if it is odd, and if so, add it to the

running sum. Thus, the instruction acts as a contextual marker

constraining which PFC representations should be output-gated

for subsequent operations. (In our example, the contextual

information would include not only the constraint that only odd

digits should be considered but also whether or not a particular

digit had already been added to the sum; this latter constraint

may involve yet another layer of hierarchical control.)

How does the model relate to other notions of hierarchical

RL? In a recent review, Botvinick et al. (2009) discussed the

options framework developed in machine learning as an

extension to classical actor-critic RL algorithms. This frame-

work makes a distinction between standard ‘‘primitive’’ actions

and hierarchical ‘‘options’’ comprising a string of primitive

actions. The top-level state-action policy consists of selecting

between primitive actions and options, which have their own

policies. Given pretraining of option policies to reach a subgoal,

this algorithm is more efficient than standard RL at learning

more complex tasks which require obtaining these subgoals in

the service of an end goal. On the surface, this domain appears

to be quite different than that to which we focus here, where

hierarchical policies across the state space are employed on

each trial to constrain the selection of a single response.

However, we suggest that similar neural mechanisms as

explored here may support hierarchical polices across sequen-

ces of actions. Consider the case of playing a song on a piano,

where the 2 verses involve similar but not identical sequences

of keys. We propose that the same architecture could support

maintenance of which verse of the song should be played,

where in this case the prePMd representation provides the

context to the more posterior striatum to output-gate the

appropriate sequence of keys. Moreover, once the first verse

has been played (i.e., the subgoal has been achieved), the

prePMd representation itself has to be updated to set the stage

for the next verse and the gating of prePMd may be itself

contextualized based on higher order control structures (e.g.,

DLPFC). Future work will examine this possibility that the

maintenance of a longer term goal in more anterior PFC regions

across a block of trials can be used to contextualize the output

gating of currently relevant subgoals in more posterior regions,

which in turn can constrain the selection of primitive actions.

Finally, we note that just because sequential action plans can be

described hierarchically, this type of hierarchical control need

not always be recruited to support them. Indeed, with repeated

practice sequential behaviors can be ‘‘chunked’’ into procedu-

ralized action repertoires in the BG (Graybiel 1995). Neverthe-

less, hierarchical control may be required for branching points

in which decisions about alternative action plans need to be

contextualized by current plans.

Beyond the models’ specific contributions to the domain of

learning second-order hierarchical policies, the approach also

suggests that computational models can be used to infer latent

states in individual learners, by estimating the most likely

hypothesis being tested given trial-by-trial observable variables

including stimuli, responses, and rewards. The neuroimaging

results in the companion paper provide neural evidence for

these inferred states by directly interrogating the fMRI data using

the quantitative predictions available from the model. Further-

more, we validated the assumption that the MoE model can

estimate latent hypotheses by fitting it to choices generated by

neural models in which we manipulated their tendency to test

specific hypotheses. However, future endeavors using pattern

classifiers can be used to test information about the content of

distributed neural representations during learning. For example,

classifiers can be used to index which dimensions individuals are

likely attending to as predicted by the model on a trial-to-trial

basis. These and other methods will provide further insight into

the neural and cognitive computations associated with hypoth-

esis testing in environments with hierarchical structure and

reinforcement learning more generally.
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Although our model suggests that the selection between

experts occurs via striatal selection mechanisms (including input

and output gating) across multiple levels of the hierarchy, it is

also possible that the arbitration relies on other cortical

mechanisms not included in the model. For example, the medial

PFC may act as a monitor to evaluate the success of different

experts and to select between them (Samejima and Doya 2007),

similar to that proposed by other accounts of medial PFC

(Holroyd and Coles 2002). Relatedly, a recent study showed that

explicit motivational incentives to perform well at different

levels of hierarchical control (contextual vs. episodic) may be

mediated by influences of medial PFC (Kouneiher et al. 2009).

However, when the task rules have to be learned by trial and

error reinforcement, the striatal dopaminergic signals may

become relevant. As in other aspects of reinforcement learning,

the BG may be important for integrating action-value probabil-

ities over the long run, whereas the medial PFC may monitor

rapid changes in reinforcement contingencies and facilitate

switching between different strategies on a trial-to-trial basis.

Such a dissociation between mediofrontal cortex and striatum in

behavioral adaptation in response to changing outcomes on

different time scales is consistent with existing theorizing and

empirical data (Rushworth et al. 2002; Rushworth et al. 2003;

Crone et al. 2006; Frank and Claus 2006; Hampton et al. 2006;

Frank et al. 2007; Cavanagh et al. 2010).

In summary, we presented neural and algorithmic models of

hierarchical reinforcement learning that provide quantitative fits

to human learning and hypothesis testing and the neural

mechanisms thereof. We test some of these mechanisms in the

companion paper.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/.
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