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By Carrot or by Stick: Cognitive
Reinforcement Learning

in Parkinsonism
Michael J. Frank,1* Lauren C. Seeberger,2 Randall C. O’Reilly1*

To what extent do we learn from the positive versus negative outcomes of
our decisions? The neuromodulator dopamine plays a key role in these
reinforcement learning processes. Patients with Parkinson’s disease, who have
depleted dopamine in the basal ganglia, are impaired in tasks that require
learning from trial and error. Here, we show, using two cognitive procedural
learning tasks, that Parkinson’s patients off medication are better at learning
to avoid choices that lead to negative outcomes than they are at learning
from positive outcomes. Dopamine medication reverses this bias, making
patients more sensitive to positive than negative outcomes. This pattern was
predicted by our biologically based computational model of basal ganglia–
dopamine interactions in cognition, which has separate pathways for ‘‘Go’’
and ‘‘NoGo’’ responses that are differentially modulated by positive and
negative reinforcement.

Should you shout at your dog for soiling the

carpet or praise him when he does his busi-

ness in the yard? Most dog trainers will tell

you that the answer is both. The proverbial

Bcarrot-and-stick[ motivational approach

refers to the use of a combination of positive

and negative reinforcement: One can per-

suade a donkey to move either by dangling a

carrot in front of it or by striking it with a

stick. Both carrots and sticks are important

for instilling appropriate behaviors in hu-

mans. For instance, when mulling over a de-

cision, one considers both pros and cons of

various options, which are implicitly influ-

enced by positive and negative outcomes of

similar decisions made in the past. Here, we

report that whether one learns more from

positive or negative outcomes varies with

alterations in dopamine levels caused by

Parkinson_s disease and the medications

used to treat it.

To better understand how healthy people

learn from their decisions (both good and

bad), it is instructive to examine under what

conditions this learning is degraded. Nota-

bly, patients with Parkinson_s disease are

impaired in cognitive tasks that require

learning from positive and negative feedback

(1–3). A likely source of these deficits is

depleted levels of the neuromodulator dopa-

mine in the basal ganglia of Parkinson_s
patients (4), because dopamine plays a key

role in reinforcement learning processes in

animals (5). A simple prediction of this

account is that cognitive performance should

improve when patients take medication that

elevates their dopamine levels. However, a

somewhat puzzling result is that dopamine

medication actually worsens performance in

some cognitive tasks, despite improving it in

others (6, 7).

Computational models of the basal

ganglia–dopamine system provide a unified

account that reconciles the above pattern of

results and makes explicit predictions about

the effects of medication on carrot-and-stick

learning (8, 9). These models simulate

transient changes in dopamine that occur

during positive and negative reinforcement

and their differential effects on two separate

pathways within the basal ganglia system.

Specifically, dopamine is excitatory on the

direct or BGo[ pathway, which helps facili-

tate responding, whereas it is inhibitory on

the indirect or BNoGo[ pathway, which sup-

presses responding (10–13). In animals,

phasic bursts of dopamine cell firing are

observed during positive reinforcement

(14, 15), which are thought to act as

Bteaching signals[ that lead to the learning

of rewarding behaviors (14, 16). Conversely,

choices that do not lead to reward Eand aversive

events, according to some studies (17)^ are

associated with dopamine dips that drop below

baseline (14, 18). Similar dopamine-dependent

processes have been inferred to occur in hu-

mans during positive and negative reinforce-

ment (19, 20). In our models, dopamine bursts

increase synaptic plasticity in the direct path-

way while decreasing it in the indirect pathway

(21, 22), supporting Go learning to reinforce

the good choice. Dips in dopamine have the

opposite effect, supporting NoGo learning to

avoid the bad choice (8, 9).

A central prediction of our models is that

nonmedicated Parkinson_s patients are im-

paired at learning from positive feedback

(bursts of dopamine; Bcarrots[), because of

reduced levels of dopamine. However, the
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models also make the counterintuitive pre-

diction that patients should display enhanced

learning from negative feedback (dips in

dopamine; Bsticks[), because of their low

dopamine levels that facilitate this kind of

learning. Conversely, we predict that patients

on medication have sufficient dopamine to

learn from positive feedback, but would be

relatively impaired at learning from negative

feedback because the medication blocks the

effects of normal dopamine dips. This pat-

tern of dopamine effects explains the ex-

isting puzzling results in the Parkinson_s
disease literature showing both cognitive

enhancements and impairments from medi-

cation (8).

This report presents a more direct test of

the model_s predictions. We used Bprocedural

learning[ (i.e., trial-and-error) tasks (23) with

30 Parkinson_s patients and 19 healthy

seniors matched for age, education, and an

estimate of verbal IQ Esee table S1 in (24) for

demographic details and the number of

subjects per task condition^. Two different

procedural learning tasks were used, one

probabilistic and one deterministic, with the

task selected at random for the first session.

A subset of participants returned for a second

session to perform the other task, and

Parkinson_s patients in this session abstained

from taking their regular dose of dopamine

medication for a mean of 18 hours before the

experiment (7, 24).

In the probabilistic selection task, three

different stimulus pairs (AB, CD, EF) are

presented in random order, and participants

have to learn to choose one of the two stimu-

li (Fig. 1A). Feedback follows the choice to

indicate whether it was correct or incorrect,

but this feedback is probabilistic. In AB

trials, a choice of stimulus A leads to correct

(positive) feedback in 80% of AB trials,

whereas a B choice leads to incorrect

(negative) feedback in these trials (and vice

versa for the remaining 20% of trials). CD

and EF pairs are less reliable: Stimulus C is

correct in 70% of CD trials, whereas E is

correct in 60% of EF trials. Over the course

of training, participants learn to choose

stimuli A, C, and E more often than B, D,

or F. Note that learning to choose A over B

could be accomplished either by learning

that choosing A leads to positive feedback,

or that choosing B leads to negative feed-

back (or both). To evaluate whether partic-

ipants learned more about positive or negative

outcomes of their decisions, we subsequently

tested them with novel combinations of

stimulus pairs involving either an A (AC,

AD, AE, AF) or a B (BC, BD, BE, BF); no

feedback was provided. We predict that

Parkinson_s patients on medication, compared

with those off medication, learn more from

positive than negative feedback and should,

therefore, reliably choose the best carrot

(stimulus A) in all novel test pairs in which

it is present. In contrast, those off medication

should learn more from negative than positive

feedback and, therefore, reliably avoid the

worst stick (stimulus B).

In the implicit transitive inference task

(25), the reinforcement for each stimulus

pair is deterministic, but stimulus pairs are

partially overlapping (Fig. 1A). Four pairs of

stimuli are presented: AþB–, BþC–, CþD–,

and DþE– where þ and – indicate positive

and negative feedback. A hierarchy (A 9 B 9
C 9 D 9 E) emerges in which stimuli near

the top of the hierarchy develop net positive

associative strengths, whereas those near the

bottom develop net negative associative

strengths (25–27). This explains why, when

presented with novel combination BD, par-

ticipants (and animals trained in similar

paradigms) often correctly choose stimulus

B, despite having no explicit awareness of

any hierarchical structure among the items

(25, 26, 28, 29). On the basis of this

associative account, we predicted that

Parkinson_s patients on medication, com-

pared with those off medication, would learn
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Fig. 1. (A) Example stimulus pairs (Hiragana characters) used in both cognitive procedural learning
tasks, designed to minimize verbal encoding. One pair is presented per trial, and the participant
makes a forced choice. In probabilistic selection, the frequency of positive feedback for each choice
is shown. In transitive inference, feedback is deterministic and indicated by the þ/j signs for each
stimulus. Any of 12 keys on the left side of the keyboard selects the stimulus on the left, and vice
versa for the right stimulus. The stimulus locations were randomized across trials, and assignment
of Hiragana character to stimulus label (A to F) was randomized across participants. In actuality,
different Hiragana characters were used across tasks. (B) Novel test-pair performance in the
probabilistic selection task, where choosing A depends on having learned from positive feedback,
whereas avoiding B depends on having learned from negative feedback. (C) Training pair
performance during the test phase in the transitive inference task. Stimuli at the top of the
hierarchy (A, B) have net positive associations, whereas those at the bottom (C, D) have net
negative associations (24–29). Thus, learning from positive feedback benefits performance on AB
and BC, while learning from negative feedback benefits CD and DE. Groups did not differ in novel
test pairs AE and BD [not shown in figure; see (24)] which could be solved either by choosing
stimuli with positive associations or avoiding those with negative associations. (D) The z scores
across both probabilistic selection and transitive inference tasks. Positive and negative conditions
correspond to A and B pairs in the probabilistic selection task, and AB/BC and CD/DE pairs in the
transitive inference task. Error bars reflect standard error.
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more about the positive associations at the

top of the hierarchy, resulting in better

performance on stimulus pairs AB and BC.

Conversely, those off medication should

learn more about the negative associations

at the bottom of the hierarchy, which would

result in better CD and DE performance.

Note that because the choice for the novel

BD pair could be made either by a positive B

association or a negative D association, we

did not predict a difference in BD perform-

ance between groups.

Results confirmed our predictions. De-

spite no main effect of medication, session,

or test condition, the critical interaction

between medication and test condition was

significant for both the probabilistic selec-

tion EF(1,26) 0 4.3, P G 0.05^ and transitive

inference EF(1,39) 0 5.5, P G 0.05^ tasks. In

the probabilistic selection task (Fig. 1B),

patients on medication tended to choose

stimulus A, which indicated that they had

found the best carrot in the bunch. In con-

trast, patients off medication had a greater

tendency to avoid stimulus B, which indicat-

ed that they had learned to avoid the harshest

stick. Age-matched controls did not differ in

performance between A and B pairs. In the

transitive inference task (Fig. 1C), patients

on medication performed better at choosing

positively associated stimuli at the upper end

of the hierarchy, whereas those off medica-

tion more reliably avoided negative stimuli

at the lower end. Finally, age-matched con-

trols did not differ between performance on

pairs at the high and low end of the stimulus

hierarchy. There was also no effect of medica-

tion on performance on novel pairs AE and BD

EF(1,39) 0 1.6, n.s.^.

To compare results across both tasks, we

converted accuracy measures for both posi-

tive and negative conditions to z scores (Fig.

1D). This analysis confirmed a significant

interaction between positive or negative con-

dition and Parkinson_s disease medication

group EF(1,68) 0 10.4, P 0 0.0019^. Planned

comparisons revealed that patients on medica-

tion chose positive stimuli more reliably than

they avoided negative stimuli EF(1,25) 0 4.98,

P G 0.05^ and chose them more reliably than

the other two groups EF(1,69) 0 4.8, P G 0.05^.
Conversely, patients off medication avoided

negative stimuli more reliably than they chose

positive stimuli EF(1,15) 0 5.42, P G 0.05^
and more reliably than the other two groups

EF(1,69) 0 7.6, P G 0.05^. This was also true

relative to healthy seniors alone EF(1,69) 0
4.6, P G 0.05^.

This last observation is a rare example of

enhanced cognitive performance associated

with neurological disease, as it suggests that

nonmedicated patients made better use of

negative feedback than either patients on

medication or healthy seniors. Trial-to-trial

analysis confirmed that a change of choice

behavior in the probabilistic selection task

(e.g., they chose C in a CD trial after having

chosen D in the previous CD trial) was more

often accounted for by negative feedback in

the previous trial in patients off medication

compared with those on medication EF(1,26) 0
5.62, P G 0.05^. Medicated patients switched

choices just as often during training but were

not as influenced by negative feedback to do

so. There was no difference between these

groups in the efficacy of positive feedback to

modify behavior on a trial-to-trial basis

EF(1,26) 0 0.42, not significant (n.s.)^.

Taken together, these findings provide a

mechanistic understanding of the nature of

the cognitive sequelae of Parkinson_s dis-

ease, which ties together a variety of other

observations across multiple levels of analy-

sis. First, we build on claims that learning

from error feedback is primarily affected in

Parkinson_s disease (3), by showing that the

direction of this effect interacts critically

with the valence of the feedback and the

medication status of the patient. Second,

these results are consistent with neuroimag-

ing studies showing that positive and nega-

tive feedback have differential effects on

basal ganglia activity (30, 31). Third, they

help clarify the basis for why medication

sometimes improves but sometimes impairs

cognitive deficits in Parkinson_s disease,

depending on the task (6–8). Specifically,

patients on medication displayed enhanced

positive-feedback learning beyond even that

of healthy participants, supporting the idea

that medication results in higher-than-normal

amounts of dopamine in ventral striatum,

which is relatively spared in early-stage

Parkinson_s disease (4, 6, 7). Finally, our

observation that nonmedicated patients dis-

play enhanced ability to avoid negative

stimuli may provide the fundamental basis

for reports of enhanced harm avoidance be-

havior in these patients (32, 33).

An equally important contribution of this

work is in its confirmation of very specific

predictions made by our computational model

of the basal ganglia system (8, 9, 34). Almost

all of the basic mechanisms of this model

have been postulated in various forms by

other researchers. Nevertheless, it represents

an integration of these mechanisms into a

Fig. 2. (A) The cortico-
striato-thalamo-cortical
loops, including the di-
rect (Go) and indirect
(NoGo) pathways of
the basal ganglia. The
Go cells disinhibit the
thalamus via the in-
ternal segment of glo-
bus pallidus (GPi) and
thereby facilitate the
execution of an action
represented in cortex.
The NoGo cells have
an opposing effect by
increasing inhibition of
the thalamus, which
suppresses actions and thereby keeps them from being executed.
Dopamine from the substantia nigra pars compacta (SNc) projects to
the dorsal striatum, causing excitation of Go cells via D1 receptors,
and inhibition of NoGo via D2 receptors. GPe: external segment of
globus pallidus; SNr: substantia nigra pars reticulata. (B) The Frank (in
press) neural network model of this circuit (squares represent units,
with height and color reflecting neural activity; yellow, most active;
red, less active; gray, not active). The premotor cortex selects an
output response via direct projections from the sensory input, and is
modulated by the basal ganglia projections from thalamus. Go units
are in the left half of the striatum layer; NoGo in the right half, with

separate columns for the two responses [R1 (left button), R2 (right
button)]. In the case shown, striatum Go is stronger than NoGo for R1,
inhibiting GPi, disinhibiting thalamus, and facilitating execution of the
response in cortex. A tonic level of dopamine is shown in SNc; a burst
or dip ensues in a subsequent error feedback phase (not shown in
figure), causing corresponding changes in Go/NoGo unit activations,
which drive learning. (C) Predictions from the model for the
probabilistic selection task, showing Go-NoGo associations for
stimulus A and NoGo-Go associations for stimulus B. Error bars reflect
standard error across 25 runs of the model with random initial
weights.
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coherent, mechanistically explicit system. At

the most general level, the basal ganglia in

our model modulates the selection of actions

being considered in frontal cortex (8, 34–36).

More specifically, two main projection path-

ways from the striatum go through different

basal ganglia output structures on the way to

thalamus and up to cortex (Fig. 2A). Activity

in the direct pathway sends a Go signal to

facilitate the execution of a response consid-

ered in cortex, whereas activity in the

indirect pathway sends a NoGo signal to

suppress competing responses. Transient

changes in dopamine levels that occur during

positive and negative feedback have opposite

effects on D1 and D2 (dopamine) receptors,

which are relatively segregated in the direct

and indirect pathways, respectively (10–13).

Thus, the net effects of dopamine bursts

during positive reinforcement are to activate

the Go pathway and to deactivate the NoGo

pathway, driving learning so that reinforced

responses are subsequently facilitated. Con-

versely, decreases in dopamine during nega-

tive reinforcement have the opposite effect,

driving NoGo learning so that incorrect

responses are subsequently suppressed or

avoided (8).

These dopamine modulation effects on

the Go and NoGo pathways lead directly to

the predictions that we confirmed in the

experiments reported earlier, as revealed in

computational simulations of these dynam-

ics (Fig. 2, B and C) (8). To simulate

Parkinson_s disease, we decreased tonic and

phasic dopamine levels in the substantia

nigra pars compacta layer of the network,

which reduced the ability to generate dopa-

mine bursts during positive feedback. There-

fore, the model was relatively impaired at

reinforcing Go firing to correct responses.

Furthermore, the low tonic dopamine levels

produced a persistent bias on the system in

favor of the NoGo pathway, which resulted

in a corresponding bias to learn NoGo in

response to negative feedback. Thus, in our

simulation of the probabilistic selection task

(Fig. 2C), the simulated Parkinson_s model

learned NoGo to B more often than Go to A.

In contrast, intact models learned an even

balance of Go to A and NoGo to B.

To simulate the effects of Parkinson_s
disease medication, we increased the do-

pamine levels (both tonic and phasic), but

we also decreased the size of the phasic

dopamine dips during negative feedback.

The latter effect is included because D2

agonist medications taken by the vast ma-

jority of our Parkinson_s patients (in addi-

tion to L-dopa) tonically bind to D2 receptors

irrespective of phasic changes in dopa-

mine firing, thereby Bfilling in[ the dips.

The net result is the opposite of our simu-

lated Parkinson_s model. The tonic elevation

in dopamine receptor activation produced a

Go bias in learning, whereas the diminished

phasic dip decreased the model_s ability to

learn NoGo from negative feedback. These

combined effects produced the clear crossover-

interaction pattern that we observed in our

studies (Fig. 2C). Similar results held for our

simulation of the transitive inference exper-

iment (24). Finally, reversal learning deficits

observed in Parkinson_s patients on medi-

cation (6, 7) were also accounted for by this

same model (8).

Nevertheless, the model does not capture

the overall better performance of Parkinson_s
patients in our study relative to healthy sen-

ior controls. This result is somewhat sur-

prising, given that patient impairments have

been observed in previous studies (1–3).

One potential reason for this discrepancy is

the relative simplicity of our task relative

to those used in previous studies. Further-

more, although our control group was matched

to the patients in all of our demographic

variables, other uncontrolled variables might

have led to differences in overall perform-

ance levels. For example, because we had ac-

cess to patient medical records, we may have

successfully excluded more patients than sen-

iors for other age-related neurological im-

pairments. Alternatively, Parkinson_s patients

may have had greater motivation to perform

well, given that they were aware that we

were studying cognitive sequelae of their

disease (the so-called Hawthorne effect).

Further, although abstract neural models

can make qualitative predictions (such as

the crossover interactions observed in this

study), the quantitative aspects of the pre-

dictions require more detailed knowledge of

specific parameters of the neural system,

along with the precise degree of dopamine

depletion and remediation by medication in

Parkinson_s disease; these data are not

available. Therefore, we argue that the most

meaningful comparisons are the on-versus-off

medication conditions, for which the model

and data are in close agreement. In addition,

the model accurately predicts that healthy

seniors did not differ in their tendency to

learn from positive versus negative feed-

back. Finally, we note that our model does

not explicitly consider the uneven levels of

dopamine depletion in ventral and dorsal

striatum of Parkinson_s patients (4), which

are also thought to play a role in cognitive

enhancements or impairments resulting from

medication (6–8).

In summary, we have presented evidence

for a mechanistic account of how the human

brain implicitly learns to make choices that

lead to good outcomes, while avoiding those

that lead to bad outcomes. The consistent

results across tasks (one probabilistic and

the other deterministic) and in both medi-

cated and nonmedicated Parkinson_s patients

provide substantial support for a dynamic

dopamine model of cognitive reinforcement

learning.
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