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What are the neural dynamics of choice processes during reinforcement learning? Two largely separate literatures have examined
dynamics of reinforcement learning (RL) as a function of experience but assuming a static choice process, or conversely, the dynamics of
choice processes in decision making but based on static decision values. Here we show that human choice processes during RL are well
described by a drift diffusion model (DDM) of decision making in which the learned trial-by-trial reward values are sequentially sampled,
with a choice made when the value signal crosses a decision threshold. Moreover, simultaneous fMRI and EEG recordings revealed that
this decision threshold is not fixed across trials but varies as a function of activity in the subthalamic nucleus (STN) and is further
modulated by trial-by-trial measures of decision conflict and activity in the dorsomedial frontal cortex (pre-SMA BOLD and mediofrontal
theta in EEG). These findings provide converging multimodal evidence for a model in which decision threshold in reward-based tasks is
adjusted as a function of communication from pre-SMA to STN when choices differ subtly in reward values, allowing more time to choose
the statistically more rewarding option.
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Introduction
The neural mechanisms of simple forms of reinforcement learning
(RL) and decision making (DM) have been well studied over the last
decades. Computational models formalize these processes and allow
one to quantitatively account for a large number of observations
with relatively few parameters. In the case of RL, models account for
sequences of choices across several trials with changing state action-
outcome contingencies (Samejima et al., 2005; Pessiglione et al.,
2006; Frank et al., 2007a). DM models on the other hand address
choices in which the evidence for one option or the other is typically
stationary across trials, but can predict not only choice proportions
but also the full response time distributions for each choice and
condition (Ratcliff and McKoon, 2008). These models assume that
individuals accumulate evidence in support of each decision option
across time, and that a choice is executed when the evidence for one
option reaches a critical decision threshold. A few recent studies have

applied DM models to reward-based decisions, where the rate of
evidence accumulation for one option over the other was propor-
tional to the relative differences in reward values of those options
(Krajbich et al., 2010; Cavanagh et al., 2011; Ratcliff and Frank, 2012;
Cavanagh and Frank, 2014).

At the neural level, the relative values among different options
needed to accumulate evidence is reflected by activity in the
VMPFC (Hare et al., 2011; Lim et al., 2011) and striatum (Jocham
et al., 2011). Moreover, scalp EEG, intracranial recordings, and
brain stimulation evidence indicates that the dorsal mediofrontal
cortex communicates with the STN to modulate the decision
threshold, particularly under conditions of choice conflict (Frank
et al., 2007b; Cavanagh et al., 2011; Zaghloul et al., 2012; Green et
al., 2013; Zavala et al., 2014). These results accord with compu-
tational models in which the STN raises the decision threshold by
making it more difficult for striatal reward representations to
gain control over behavior (Ratcliff and Frank, 2012; Wiecki and
Frank, 2013). However, different methodologies have been used
across the above studies, and it is unclear how EEG measures
relate to fMRI. For example, the relevant theta-band EEG signals
implicated in conflict modulation of decision threshold have
been recorded over mid-frontal electrodes, but their posited
source in dorsomedial frontal cortex has not been directly shown.
Moreover, while DM models provide a richer description of the
underlying choice process (by accounting for not only choice but
entire RT distributions of those choices), they have not been
applied to cases in which reward values change with experience
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(i.e., during reinforcement learning). Here we address both of
these lacunae by administering a reinforcement learning task us-
ing simultaneous fMRI and EEG measurements. We estimate
DM parameters allowing for reward values to change with expe-
rience, and assess whether decision threshold is modulated on a
trial-to-trial basis as a function of choice conflict, mediofrontal
theta, and BOLD signals from mediofrontal cortex and STN.

Materials and Methods
Subjects. Eighteen people participated in the experiment for payment. All
subjects gave informed consent. Data from three subjects were discarded
because of residual cardioballistic artifact in the EEG data, determined by
comparing mid-frontal EEG signals well studied in previous literature
(error-related negativity and theta power enhancement) to previously
reported data. Subjects were eliminated if the artifact was clearly present
in those data (and note that this signal is observed during feedback out-
come, and is thus independent of the data we analyze during the choice
period in this study). The SyncBox was not working for at least two of
these three subjects, which resulted in poor MRI artifact and cardiobal-
listic artifact.

Of the 15 subjects analyzed, there were 9 male and 6 female subjects
ranging from 18 to 28 years old. All subjects were right-handed, with
normal or corrected-to-normal vision, were native English speakers, and
were screened for the use of psychiatric and neurological medications
and conditions, as well as for contraindications for MRI.

Stimuli. Stimuli consisted of three pictures of easily nameable objects
(elephant, sunglasses, and a tomato) presented 40 times each. All pictures
were presented on a black background.

Procedure. The task design was taken from Haruno and Kawato
(2006). Subjects viewed the three pictures 120 times (40 times each). For
each picture, subjects had to select a response and learn which was more
likely to be correct. Reward probabilities differed for each picture, where
the statistically correct response was rewarded on 85% of trials for one
picture, and the other response would be rewarded on the remaining
15% of trials. The contingencies for the other pictures were 75:25 and
65:35, thereby inducing varying levels of reward probability/value
difference.

Trials included a variable duration (500 –3500 ms) green fixation (�)
followed by a picture. Each picture was presented for 1000 ms. Partici-
pant responses were made using an MRI-safe button box during scan-
ning. Using their index and pinky finger of their right hand, subjects
made a left or right button response. Responses made after display
offset were counted as nonresponse trials. Following their response,
subjects were given visual feedback indicating whether their decision
was “Correct” (positive) or “Incorrect” (negative). Feedback was pre-
sented for 500 ms.

We determined that the number of trials was sufficient because we
have found that 20 –30 trials per condition is sufficient for EEG and fMRI
in prior work, fitting with convention and prior estimates of adequate
signal-to-noise ratio (Luck, 2005), and we were able to replicate previous
mid-frontal theta results despite the need for artifact removal in combi-
nation with fMRI. Moreover, the hierarchical Bayesian parameter esti-
mation technique we used for the drift diffusion model (DDM) is
particularly suitable for increasing statistical strength when trial counts
are low by capitalizing on the extent to which different subjects are sim-
ilar to each other. We have previously shown that DDM parameters,
including those regressing effects of trial-to-trial variations of brain ac-
tivity on decision parameters, are reliably estimated with hierarchical
DDM (HDDM) for these trial counts, whereas other methods are noisier
(Wiecki et al., 2013).

The order of trials and duration of jittered intertrial intervals within a
block were determined by optimizing the efficiency of the design matrix
to permit estimation of the event-related MRI response (Dale, 1999).
Picture and response mappings paired with each reward probability con-
dition were counterbalanced across subjects. Counterbalancing was such
that each picture and left or right correct response was assigned (with
equal probability across subjects) to the 65, 75, and 85% conditions. For
example, for one subject, the elephant picture might be assigned to the

85% condition and the left response was correct, but this same picture
would be assigned to a different reward probability and/or correct button
press for another subject.

fMRI recording and preprocessing. Whole-brain images were collected
with a Siemens 3 T TIM Trio MRI system equipped with a 12-channel
head coil. A high-resolution T1-weighted 3D multi-echo MPRAGE im-
age was collected for anatomical visualization. fMRI data were acquired
in one run of 130 volume acquisitions using a gradient-echo, echo planar
pulse sequence (TR � 2 s, TE � 28 ms, 33 axial slices, 3 � 3 � 3 mm, flip
angle � 90). Padding around the head was used to restrict motion. Stim-
uli were projected onto a rear projection screen and made visible to the
participant via an angled mirror attached to the head coil.

fMRI was preprocessed using SPM8 (Wellcome Department of Cog-
nitive Neurology, London). Data quality was first inspected for move-
ment and artifacts. Functional data were corrected for slice acquisition
timing by resampling slices to match the first slice, motion-corrected
across all runs; functional and structural images were normalized to MNI
stereotaxic space using a 12 parameter affine transformation along with a
nonlinear transformation using a cosine basis set, and spatially smoothed
with an 8 mm full-width at half-maximum isotropic Gaussian kernel.

Extracting single-trial ROI BOLD activity. In this study, we aimed to
test the putative roles of the pre-SMA, STN, and caudate in the regulation
of decision parameters in reinforcement learning. As such we chose a
priori ROIs but allowed the boundaries of these to be constrained by the
univariate activity. To relate RL-DDM parameters to brain activity, ROIs
were defined and estimates of their hemodynamic response were ob-
tained. Definitions of the ROIs were unbiased with respect to subsequent
hypothesis tests and model fitting. The STN was defined using a proba-
bility map from Forstmann et al. (2012). All voxels with nonzero proba-
bility were used, resulting in a small mask around STN. The compiled
map from several studies can be found at http://www.nitrc.org/
projects/atag. The pre-SMA cortex was defined based on univariate ac-
tivity to stimulus onset, which yielded activations quite close to that
described in the literature related to conflict-induced slowing (Aron et
al., 2007). From each ROI, a mean time course was extracted using the
MarsBaR toolbox (Brett et al., 2002), and then linearly detrended. The
hemodynamic response function (HRF) used for the GLM was derived
from a finite impulse response (FIR) model of each ROI. Beginning with
pre-SMA, defined from activity during stimulus onset, we observed a
peak at around TR � 2 (4 s). Since the ROI was defined based on stimulus
onset, it was neutral with respect to our conditions of interest. Thus,
there is little risk of circularity in using this peak timing information to
test correlations with theta, etc. We then used the same peak measures for
other ROIs (STN and caudate). This information was used in two ways.
(1) ROI analysis: The data extracted for DDM model fitting (STN, cau-
date, and pre-SMA) was the percentage signal change 2 TRs after stimu-
lus onset for that ROI’s spatially averaged time course. (2) Whole-brain
analysis: In the whole-brain GLMs, we used the canonical function (mix-
ture of gamma functions) but with parameterization (i.e., a peak of 4 s)
informed by the FIR models.

EEG recording and preprocessing. EEG was recorded using a 64-channel
MRI-compatible Brain Vision system with a SyncBox (Brain Products).
EEG was recorded continuously with hardware filters set from 1 to 250
Hz, a sampling rate of 5000 Hz, and an on-line Cz reference. The SyncBox
synchronizes the clock output of the MR scanner with the EEG acquisi-
tion, which improves removal of MR gradient artifact from the EEG
signal. ECG was recorded with an electrode on the lower left back for
cardioballistic artifact removal. Individual sensors were adjusted until
impedances were �25 k�. Before further processing, MRI gradient arti-
fact and cardioballistic artifact were removed using the average artifact
subtraction method (Allen et al., 2000, 1998) implemented in the Brain
Vision Analyzer (Brain Products). MR gradient artifact was removed
using a moving average window of 15 intervals followed by downsam-
pling to 250 Hz, and then epoched around the cues (�1000 to 2000 ms).
Cardioballistic artifact was removed by first detecting R-peaks in the
ECG channel followed by a moving average window of 21 artifacts. Fol-
lowing MR gradient and cardioballistic artifact removal, EEG was further
preprocessed using EEGLAB (Delorme and Makeig, 2004). EEG data
were selected from the onset to the offset of the scanner run. Individual
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channels were replaced on a trial-by-trial basis with a spherical spline
algorithm (Srinivasan et al., 1996). EEG was measured with respect to a
vertex reference (Cz). Independent component analysis was used to re-
move residual MR and cardioballistic artifact, eye-blink, and eye-
movement artifact.

The EEG time course was transformed to current source density (CSD;
Kayser and Tenke, 2006). CSD computes the second spatial derivative of
voltage between nearby electrode sites, acting as a reference-free spatial
filter. The CSD transformation highlights local electrical activities at the
expense of diminishing the representation of distal activities (volume
conduction). The diminishment of volume conduction effects by CSD
transformation may reveal subtle local dynamics. Single-trial EEG power
was computed using the Hilbert transform on this CSD data filtered in
the theta frequency band from 4 to 8 Hz, for channel FCz. Each sample in
the EEG time course was z-scored and outliers (z � 4.5) were replaced
with the average EEG power. A small number of trials (4%) were re-
moved due to unusable EEG.

Time-frequency calculations were computed using custom-written
MATLAB routines (Cavanagh et al., 2013). For condition-specific activ-
ities, time-frequency measures were computed by multiplying the fast
FFT power spectrum of single-trial EEG data with the FFT power spec-
trum of a set of complex Morlet wavelets (defined as a Gaussian-
windowed complex sine wave: ei2�tfe�t2/2x�2

where t is time, f is frequency
(which increased from 1 to 50 Hz in 50 logarithmically spaced steps), and
it defines the width (or “cycles”) of each frequency band, set according to
4/(2�f ), and taking the inverse FFT. The end result of this process is
identical to time-domain signal convolution, and it resulted in estimates
of instantaneous power (the magnitude of the analytic signal), defined as
Z[t] (power time series: p(t) � real[z(t)] 2 � imag[z(t)] 2). Each epoch
was then cut in length (�500 to �1000 ms). Power was normalized by
conversion to a dB scale (10 * log10[power(t)/power(baseline)]), allowing
a direct comparison of effects across frequency bands. The baseline for
each frequency consisted of the average power from 300 to 200 ms before
the onset of the cues.

The stimulus-locked theta-band power burst over mid-frontal sites
(4 – 8 Hz, 300 –750 ms) was a priori hypothesized to be the ROI involved
in conflict and control.

Psychophysiological interaction methods. Psychophysiological interac-
tion (PPI) analysis usually refers to a method in which one explores how
a psychological variable (such as conflict) modulates the coactivity of two
brain regions as assessed by BOLD. Here we extend this analysis method
to include EEG as another physiological indicator to determine which
brain region as assessed by BOLD shows increased activity as a function
of EEG frontal theta and decision conflict. This would allow us to deter-
mine whether there are putative downstream areas that respond to fron-
tal theta signals when conflict increases. Previous electrophysiological
studies have shown that mid-frontal theta is granger causal of STN theta
during decision conflict (Zavala et al., 2014); this PPI allows us to test for
evidence of a similar modulation of STN BOLD during reinforcement
conflict. PPI analyses included the following regressors: conflict (stimu-
lus boxcar*conflict, where conflict is considered high as value differences
between choice options are small; conflict � �|valuediff|) regressor with
a duration of.5 s, EEG theta power regressor, and an interaction regressor
(conflict*theta power). All three regressors were convolved with an em-
pirically derived HRF in pre-SMA area (peak 4 s) and the theta regressors
were downsampled to the TR sampling rate (0.5 Hz). Six additional
head-movement regressors were modeled as nuisance regressors. Regres-
sors were created and convolved with HRF at 125 Hz sampling rate.
Subject-specific effects for all conditions were estimated using a fixed-
effect model, with low-frequency signal treated as confounds. Participant
effects were then submitted to a second-level group analysis, treating
participant as a random effect, using a one-sample t test against a contrast
value of zero at each voxel.

DDM. The DDM simulates two alternative forced choices as a noisy
process of evidence accumulation through time, where sensory informa-
tion arrives and the agent determines, based on task instructions and
internal factors such as memory and valuation, whether this information
provides evidence for one choice option or another. Evidence can vary
from time point to time point based on noise in the stimulus or noise in

neural representation, or in attention to different options and their attri-
butes. The rate of accumulation is determined by the drift rate parameter
v, which is affected by the quality of the stimulus information: higher
drift rates are related to faster and more accurate choices. A choice is
executed once evidence crosses a critical decision threshold a, also a free
parameter related to response caution: higher decision thresholds are asso-
ciated with slower but more accurate choices. A nondecision time parameter
(t), capturing time taken to process perceptual stimuli before evidence accu-
mulation and the time taken to execute a motor response after a choice is
made, is also estimated from these data.

Here we tested whether the DDM provides a good model of choices
and RT distributions during a reinforcement learning task in which the
evidence for one choice option over another evolves with learning
through trials. We further tested two critical assumptions. First, that in
this setting, the drift rate is proportional to the (evolving) value differ-
ence between the two choice options, as posited to be mediated by striatal
activity. Second, that the decision threshold can be adjusted as a function
of choice conflict, and that this threshold adjustment is related to com-
munication from dorsomedial frontal cortex to the STN.

We used hierarchical Bayesian estimation of DDM parameters, which
optimizes the tradeoff between random and fixed-effect models of indi-
vidual differences, such that fits to individual subjects are constrained by
the group distribution, but can vary from this distribution to the extent
that their data are sufficiently diagnostic (Wiecki et al., 2013). This pro-
cedure produces more accurate DDM parameter estimates for both in-
dividuals and groups than other methods, which assume that all
individuals are completely different (or that they are all the same), par-
ticularly given low trial numbers. It is also particularly effective when one
wants to estimate decision parameters that are allowed to vary from one
trial to the next as a function of trial-to-trial variance in physiological and
neural signals (i.e., via regressions within the hierarchical model). Esti-
mation of the HDDM was performed using recently developed software
(Wiecki et al., 2013). Bayesian estimation allowed quantification of pa-
rameter estimates and uncertainty in the form of the posterior distribu-
tion. Markov chain Monte Carlo sampling methods were used to
accurately approximate the posterior distributions of the estimated pa-
rameters. Each DDM parameter for each subject and condition was mod-
eled to be distributed according to a normal (for real valued parameters),
or a Gamma (for positive valued parameters), centered around the group
mean with group variance. Prior distributions for each parameter were
informed by a collection of 23 studies reporting best-fitting DDM pa-
rameters recovered on a range of decision-making tasks (Matzke and
Wagenmakers, 2009; Wiecki et al., 2013). Ten thousand samples were
drawn from the posterior to obtain smooth parameter estimates.

To test our hypotheses relating neural activity to model parameters, we
estimated regression coefficients within the same hierarchical generative
model as that used to estimate the parameters themselves (Fig. 3). That is,
we estimated posterior distributions not only for basic model parame-
ters, but the degree to which these parameters are altered by variations in
psychophysiological neural measures (EEG theta power, STN, caudate,
and pre-SMA BOLD activity). In these regressions the coefficient weights
the slope of parameter (drift rate v, threshold a) by the value of the neural
measure (and its interactions with value/conflict) on that trial, with an in-
tercept, for example: a(t) � �0 � �1STN(t) � �2theta(t) � �3STN(t) *
theta(t). The regression across trials allows us to infer the degree to which
threshold changes with neural activity; for example, if frontal theta is
related to increased threshold, one would observe that as frontal theta
increases, responses are likely to have a slower, more skewed RT distri-
bution and have a higher probability of choice of the optimal response.
This would be captured by a positive regression coefficient for theta onto
decision threshold. It would not be captured by drift rate (which would
require slower RTs to be accompanied by lower accuracies on average),
or nondecision time (which predicts a constant shift of the RT distribu-
tion rather than skewing, and no effect on accuracy).

To address potential collinearity among model parameters (especially
given noisy neural data affecting trial-wise parameters), we only esti-
mated the group level posterior for all of the regression coefficients,
which further regularizes parameter estimates, rather than assuming sep-
arate regression coefficients for each subject and neural variable, which
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would substantially increase the number of parameters/nodes in the
model (Cavanagh et al., 2011, 2014). Moreover, Bayesian parameter es-
timation inherently deals with collinearity in the sense that it estimates
not only the most likely parameter values, but the uncertainty about these
parameters, and it does so jointly across all parameters. Thus any col-
linearity in model parameters leads to wider uncertainty (for example, in
a given sample it might assign a high/low value to one parameter and a
high/low value to another, and the reverse in a different sample). The
marginal distributions of each posterior are thus more uncertain as a
result, and any significant finding (where the vast majority of the distri-
bution differs from zero) is found despite this collinearity issue
(Kruschke, 2011). Further, we iteratively added in modulators to test
whether successive additions of these modulators improved model fit.
We confirmed with model comparison that fits are better when the fron-
tal and STN modulators were used to affect threshold than when they are
used to affect drift.

Bayesian hypothesis testing was performed by analyzing the probabil-
ity mass of the parameter region in question (estimated by the number of
samples drawn from the posterior that fall in this region; for example,
percentage of posterior samples greater than zero). Statistical analysis
was performed on the group mean posteriors. The Deviance Information
Criterion (DIC) was used for model comparison, where lower DIC values
favor models with the highest likelihood and least degrees of freedom.
While alternative methods exist for assessing model fit, DIC is widely
used for model comparison of hierarchical models (Spiegelhalter et al.,

2002), a setting in which Bayes factors are not easily estimated (Wagen-
makers et al., 2010), and other measures (e.g., Akaike Information Cri-
terion and Bayesian Information Criterion) are not appropriate.

We quantified choice conflict as the absolute value of the difference in
expected values between each of the options on each trial, with smaller
differences signifying greater degree of conflict. The expected values were
updated as a function of each reinforcement outcome using Bayes’ rule,
such that the expected values represent the veridical expectations based
on an ideal observer (Fig. 1 B, C). (Similar results were obtained using
Q-values from a reinforcement learning model, but this requires an ad-
ditional free parameter to estimate the learning rate, whereas the learning
rate of the Bayesian observer depends only on the estimation uncertainty
about the reinforcement value, and hence the number of outcomes ob-
served thus far; Doll et al., 2009, 2011.)

We first verified the basic assumptions of the model without including
neural data. Specifically, we tested whether choices and response times
could be captured by the DDM in which the drift rate and/or threshold
varies as a function of the relative differences in expected values between
each option (while also allowing for overall trial-to-trial variability in
drift, estimated with parameter sv; Ratcliff and McKoon, 2008). After
evaluating the results of best-fitting models (see Results), we subse-
quently tested whether trial-to-trial variability in neural measures from
EEG and fMRI in regions of interest (pre-SMA, caudate, and STN from
fMRI; mid-frontal theta from EEG) influence decision parameters (see
Fig. 3 for graphical model). We quantified choice conflict as the differ-

Figure 1. Probabilistic reinforcement learning task. A, Task/trial structure. Participants learned to select one of two motor responses for three different stimuli with different reward contingencies
(85:15, 75:25, and 65:35% reward probabilities). B, Evolution of model-estimated action values as a function of experience, from an example subject and condition ( p(r�a) � 0.35 and 0.65). The
difference in values at each point in time was used as a regressor onto the drift rate in the DDM. Conflict is high on trials in which the values of the two choice options is similar. C, Mean evolution of
the difference in model-estimated action values for each condition across all subjects, based on each subject’s choice and reinforcement history. D, Mean behavioral learning curves in these
conditions across subjects.
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ence in expected values between each of the options on each trial, with
smaller differences signifying greater degree of conflict (Fig. 1B). We
tested whether threshold was modulated not only by decision conflict,
but by trial-to-trial variations in mediofrontal theta power from EEG,
STN BOLD, and their interactions:

a � theta � STN � conflict,

including each individual component of the interaction as well as the
three-way term. We further tested whether threshold was modulated by
pre-SMA activity and conflict, and whether value effects on drift rate
were modulated by caudate. The right caudate was used in this analysis
because it provided a better behavioral fit to the data than the left caudate
(DIC of 78 vs 81), and caudate was chosen because of its a priori role in
reinforcement learning and because it was bilaterally activated at stimu-
lus onset along with pre-SMA.

To account for outliers generated by processes other than the DDM
(e.g., lapses in attention) we estimated a mixture model where 5% of
trials are assumed to be distributed according to a uniform distribution
as opposed to the DDM likelihood. This is helpful for recovering true
generative parameters in the presence of such outliers (Wiecki et al.,
2013). Ten thousand samples were drawn to generate smooth posterior
distributions.

Behavior characterization and model fit. Application of the DDM to an
RL task implies that the model should capture not only the evolution of
choice probabilities with value but also the corresponding RT distribu-
tions. We first plot the overall RT distributions for each reward proba-
bility across the whole group, separately for each reward probability (Fig.
2A). This plot shows that the RL-DDM model captures choice propor-
tions and RT distributions simultaneously, including the observations
that choice proportions are more consistent, and RT distributions have
smaller tails, with increasing reward probabilities. To be more precise, we
also used a common tool for characterizing correspondence between
behavior and DDM predictions, called the quantile-probability plot

(Ratcliff and McKoon, 2008). This plot displays behavioral data in terms
of both choice proportions (on the x-axis) and RT distributions (quan-
tiles; on the y-axis), for various task conditions. Each task condition is
displayed twice: once for choices of the more rewarding “optimal”
option, and once for choices of the less rewarding “suboptimal” op-
tion. While the x-coordinate for these are redundant ( p(opt) � 1 �
p(subopt)), the RT distributions could potentially differ. A critical test
of a DDM model is thus that it can capture the full set of choice proba-
bilities and RT distributions for each of the task conditions. Although we
used model fit statistics to select the best-fitting model, the best-fitting
model could potentially not reproduce the key behavioral patterns it is
intended to capture. We thus performed a posterior predictive check in
which we generated data from the posterior distributions of model pa-
rameters, and plotted them alongside the behavioral data.

Note that for this plot, rather than showing the three categorical 65, 75,
and 85% stimulus conditions (which describe the asymptotic reward
values), we allow the model to be sensitive to the actual trial-by-trial
reward value differences as assessed by the RL model. Thus we plot per-
formance separately for tertiles of value differences (low, medium, and
high) taken from each subjects’ actual sequence of choices and out-
comes, so that e.g., a trial for a subject in the 75:25 condition might get
classified as “high value” rather than “medium value” if that subject
happened to get a large sequence of rewards for the high-valued op-
tion in that condition.

Results
Participants learned the reward contingencies across 120 trials,
with increasing consistency of selecting the more rewarded op-
tion for higher reward probabilities (Figs. 1D, 2A,B). We fit
choice behavior with a DDM model in which the rate of evidence
accumulation was modeled to be proportional to relative differ-
ence in reward values, as updated on a trial-by-trial basis as a

Quantile Probability Plot

high value diff

medium value diff

low value diff

choices of high value optionchoices of low value option

A B

Figure 2. Choice proportions and RT distributions are captured by RL-DDM. A, Behavioral RT distributions across the group are shown for each reward condition (red, smoothed with kernel density
estimation), together with posterior predictive simulations from the RL-DDM (blue). Distributions to the right correspond to choices of the high-valued option and those to the left represent choices
of the low-valued option. The relative area under each distribution defines the choice proportions (i.e., greater area to the right than left indicates higher proportion choices of the more rewarding
action). Accuracy is worse, and tails of the distribution are longer, with lower reward probability. B, Model fit to behavior can be more precisely viewed using a quantile-probability plot, showing
choices and quantiles of RT distributions. Choice probability is plotted along the x-axis separately for choices involving low, medium, and high differences in values (tertiles of value differences
assessed by the RL model). Values on the x-axis �0.5 indicate proportion of choices of the high-valued option, and those �0.5 indicate choice proportions of the low-valued option, each with their
corresponding RT quantiles on the y-axis. For example, when value differences were medium, subjects chose the high-valued option 	80% of the time, and the first RT quantile of that choice
occurred at 	475 ms. Empirical behavioral choices/RT quantiles are marked as X and simulated RTs from the posterior predictive of the RL-DDM as ellipses (capturing uncertainty). Quantiles are
computed for each subject separately and then averaged to yield group quantiles. Ellipse widths represent SD of the posterior predictive distribution from the model and indicate estimation
uncertainty.
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function of experience (Fig. 1B). We used hierarchical Bayesian
estimation of DDM parameters using HDDM, which optimizes
the tradeoff between random and fixed-effect models of individ-
ual differences, such that fits to individual subjects are con-
strained by the group distribution, but can vary from this
distribution to the extent that their data are sufficiently diagnos-
tic (Wiecki et al., 2013). This method is particularly useful for
estimating the impact of moderating variables (such as reward
value differences, brain activity, and their interactions) on model
parameters given a limited number of trials for each subject.

The model fits better when both drift rate and threshold var-
ied as a function of value differences (DIC � 81) compared with
just threshold (DIC � 219) or just drift rate (DIC � 142.6).
Moreover, allowing the drift rate to vary parametrically with dif-
ferences in expected value—involving a single parameter that
scales the impact of value on drift rate to explain all of the data
across trials and conditions—improved fit compared with a
model in which we simply estimate three separate drift rates for
each condition (65, 75, and 85% contingencies; DIC � 183.6).
This finding confirms that dynamically adjusting drift rates by
dynamically varying reward values improves model fit. (See be-
low for parameter estimates further supporting this assertion.)
The same conclusion was found with respect to threshold adjust-
ment, in terms of model selection (DIC � 108 for a model in
which threshold only varied as a function of condition instead of
dynamic changes in value conflict), and the resulting regression
coefficient. While there was a significant positive association be-

tween value difference and threshold, this effect was approxi-
mately five times smaller than that on drift. Below we describe
how the threshold effect is modulated by neural indices related to
conflict. Thus in sum, the best-fitting model allowed both thresh-
old and drift rate to change dynamically; allowing either one to
change only by categorical stimulus condition reduced the fit.

To evaluate whether choices and RT distributions are consis-
tent with that expected by the DDM, we generated posterior pre-
dictive simulations, showing expected RT distributions and
choice proportions based on fitted model parameters as a func-
tion of differences in reward values among options (Fig. 2). The
RL-DDM model captures the finding of relative increases in
choices for high-valued options as value differences increase, and
also captures the relative differences in RT distributions for these
conditions, including both RT distributions for choices of the
more rewarding optimal response and those of the less rewarding
suboptimal response. To further probe the combination of
choice proportions and RTs, we generated a quantile-probability
plot (Fig. 2B), showing the model predictions for choice propor-
tions and RTs based on value differences. For example, in the
“medium value difference” condition, participants chose the
high-value option 	80% of the time; the RT quantiles at which
they made these choices are plotted with Xs in the middle vertical
cluster on the right side of the graph. For the remaining 20% of
trials, they chose the low-value option (on the left side), with
corresponding RT quantiles. The ellipses show the predicted
quantiles and choice probabilities for the model in DDM for each

Figure 3. Graphical model showing hierarchical estimation of RL-DDM with trial-wise neural regressors. Round nodes represent continuous random variables, and double- bordered nodes
represent deterministic variables, defined in terms of other variables. Shaded nodes represent observed data, including trial-wise behavioral data (accuracy, RT) and neural measures (fMRI and EEG).
Open nodes represent unobserved latent parameters. Overall subject-wise parameters are estimated from individuals drawn from a group distribution with inferred mean � and variance �.
Trial-wise variations of decision threshold a and drift rate v (residuals from the subject-wise values) are determined by neural measures and latent RL value difference/conflict. Plates denote that
multiple random variables share the same parents and children (e.g., each subject-wise threshold parameter aS shares the same parents that define the group distribution). The outer plate is over
subjects S while the inner plate is over trials T. Inferred relationships of trial-wise regressors were estimated as fixed effect across the group, as regularization and to prevent parameter explosion.
sv � SD of drift rate across trials; t � time for encoding and response execution (“nondecision time”).
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of these conditions. The higher choice consistency for higher
valued options can be seen by the fact that choice probabilities are
higher (further to the right) on the plot as value differences in-
crease. In sum, these posterior predictive plots confirmed that the
DDM provided a reasonable fit to behavioral choices (proportion
of choices of high-value vs low-value option) and, simultane-
ously, the RT distributions for those choices.

Next, we tested the hypothesis that drift and threshold param-
eters would be modulated by neural data from EEG and fMRI in
the regions of interest (Fig. 3). These models allow us to estimate
the regression coefficients in HDDM models to determine the
relationship between across-trial variations in psychophysiolog-
ical neural measures from predefined ROIs (mid-frontal EEG

theta power, STN, caudate, and pre-SMA BOLD activity) and
model parameters (drift rate and decision threshold). In these
regressions the coefficient weights the slope of parameter (drift
rate and threshold) by the value of the neural measure (and its
interactions with value/conflict) on that specific trial (Figs. 3, 4).
Model fit established that the model including pre-SMA*conflict
and STN*theta*conflict (DIC � 77.8) as modulators of decision
threshold fit better than models that included only one of these
terms (DIC � 80 and 79).

As noted earlier, model fits confirmed that behavioral data
were better accounted for when drift rate varies according to
learned trial-wise reward dynamics, compared with a model in
which a single drift rate is estimated (or separate drifts per reward

Figure 4. Combining fMRI and EEG to estimate DM parameters. A, Trial-to-trial peak estimates of the BOLD signal from pre-SMA and STN ROIs (depicted on sagittal slices) along with trial-to-trial
theta power estimates from mid-frontal EEG, were entered in as regressors to DDM parameters. The upper response boundary represents choices of the high-valued option, whereas the lower
response boundary represents choices of the suboptimal option. Decision threshold reflects the distance between the boundaries, and the drift rate (speed of evidence accumulation) is proportional
to the value difference between options. B, Posterior distributions on model parameter estimates, showing estimated regression coefficients whereby drift rate was found to be proportional to value
differences and decision threshold proportional to various markers of neural activity and their interaction with decision conflict. Peak values of each distribution represent the best estimates of each
parameter, and the width of the distribution represents its uncertainty. Drift rate was significantly related to the (dynamically varying across trials) value difference between each option (posterior
distribution shifted far to the right of zero). Decision threshold was significantly related to STN BOLD; the interaction between pre-SMA BOLD and conflict; and the three-way interaction between
mid-frontal theta power, STN BOLD, and conflict.
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condition). Indeed, as expected, the regression coefficient esti-
mating the effect of reward value differences on drift rate was
positive, with the entire posterior distribution of this regression
coefficient shifted far from zero (Fig. 4B, left). Prominent theo-
ries of reinforcement learning predict the degree to which differ-
ences in expected value drive choice is related to striatal activity.
There was moderate evidence that the degree to which value dif-
ference impacted drift rate was modulated by variance in right
caudate activity (92.5% of posterior �0), and model fits to be-
havior were improved by including this caudate activity (see Ma-
terials and Methods).

Next we evaluated the primary hypothesis: whether the deci-
sion threshold is modulated by decision conflict (where here con-
flict is stronger as the values are closer together). More
specifically, we tested whether the degree to which this occurs is
related to activity in the mediofrontal cortex (using both fMRI
and EEG) and downstream STN (fMRI only). We found that the
decision threshold was influenced by both neural modalities, as
evidenced by model fits and parameter estimates. Specifically,
trial-to-trial modulations of STN BOLD signal were parametri-
cally related to larger decision thresholds (96% of posterior dif-
ferent from zero; Fig. 4B). This effect was further modulated by
trial-to-trial variations in mediofrontal theta EEG activity, par-
ticularly as decision conflict rises (theta*conflict*STN interac-
tion, 95% of posterior different from zero). (See Fig. 5 for the
average theta power increases over mid-frontal electrodes across
trials during the decision process.) Finally, there was also an in-
teraction between conflict and pre-SMA BOLD activity on deci-
sion threshold (98% of posterior �0). Other interactions were
nonsignificant.

The above findings indicate that the decision threshold during
learning is directly modulated by STN activity, but that influences
of dorsomedial PFC (from fMRI and EEG) activity on threshold
are dependent on conflict. To explore the relationship between
EEG and fMRI measures, a whole-brain analysis confirmed that
increases in mediofrontal theta were associated with increases in
SMA activity (Fig. 5A,B), with significant voxels in a region just
posterior to the pre-SMA (cluster corrected, 120 voxels, p � 0.04;
p � 0.001 uncorrected). This finding implies that pre-SMA
BOLD activity and mediofrontal theta share common underlying
neural networks related to choice, supporting the finding that
both measures are related to decision threshold adjustment as a
function of conflict.

Finally, while the above analysis relied on ROI extractions to
test our hypothesis that dorsomedial PFC interacts with STN to
adjust decision threshold as a function of conflict, we also inves-
tigated this hypothesis across the whole brain. Specifically, we
performed a PPI to investigate areas of the brain that would re-

spond parametrically as a function of the interaction of medio-
frontal theta and decision conflict. This whole-brain analysis
revealed an isolated cluster of voxels that strongly overlapped
with the a priori defined STN mask (Fig. 5C). Thus the PPI con-
firms that the STN responds to a greater degree when mid-frontal
theta and conflict rise together. This finding converges with the
previously reported three-way interaction in the DDM: while
STN activity was directly related to decision threshold, this be-
havioral effect was also modulated by conflict and mid-frontal
theta.

Discussion
Our findings contribute to a richer description of choice pro-
cesses during reinforcement learning. The combined RL-DDM
model accounts simultaneously for the incremental changes in
choice probability as a function of learning (as do typical RL
models), and the response time distributions of those choices (as
do typical DM models). Moreover, our analysis suggests that
single-trial EEG and fMRI signals can be used to investigate neu-
ral mechanisms of model parameters. In particular, we showed
that coactivity between dorsomedial PFC and the STN is related
to dynamic adjustment of decision threshold as a function of
conflict in reinforcement values. This finding converges with a
recent report showing that mid-frontal theta power is granger
causal of STN theta during traditional conflict tasks (Zavala et al.,
2014). The simultaneous fMRI and EEG method allowed us to
investigate the potential neural source of the mid-frontal theta
signals that have previously been attributed to cognitive control
and threshold adjustment (Cavanagh et al., 2011, 2013), with the
pre-SMA emerging as the likely generator. Together with neural
modeling of the impact of frontal cortical conflict signals on the
STN via the hyperdirect pathway (Frank, 2006; Wiecki and
Frank, 2013), and granger causality findings showing frontal
modulation of STN theta during conflict (Zavala et al., 2014), our
evidence supports the notion that the mechanism for implement-
ing such cognitive control is dependent on downstream STN
activity. Indeed, these findings are to our knowledge the first
direct evidence that trial-to-trial variation in STN activity relates
to variance in decision thresholds, a conjecture that is based on
computational modeling (Frank, 2006; Ratcliff and Frank, 2012)
thus far supported by empirical studies showing that disruption
of normal STN function (by deep brain stimulation) reverses the
impact of frontal theta and leads to reduced thresholds (Ca-
vanagh et al., 2011; Green et al., 2013).

The DDM is the most popular version of a more general class
of sequential sampling models and provides a good account of
response time distributions in this task, much like it does for
perceptual decision-making tasks in which noisy sensory evi-

Figure 5. EEG and fMRI correlates of decision conflict. A, Mid-frontal theta power from EEG locked to stimulus onset, showing a strong increase in theta power across all subjects and trials. B,
Trial-to-trial correlation between mid-frontal theta power from EEG and BOLD activity, showing strongest correlation in the SMA. Activation shown is thresholded at p � 0.001 uncorrected with a
clustering extent of 120 voxels (corrected p value of p � 0.046 FWE). C, PPI identifies brain regions that preferentially respond as both mPFC theta and conflict rise, showing an isolated cluster of
subcortical voxels overlapping with STN mask.
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dence needs to be integrated across time. While reinforcement
values also need to be integrated across trials, it is natural to ask
why evidence would need to be accumulated within a trial in this
case: Could the learner simply retrieve a single integrated value
estimate of each action in a single step? There are multiple poten-
tial resolutions to this issue. First, multilevel modeling exercises
show that the DDM also provides a good description of RT dis-
tribution for reward-based decisions made by a dynamic neural
network of corticostriatal circuitry (Ratcliff and Frank, 2012). In
that case, the premotor cortex first generates candidate actions,
but with noise leading to fluctuations across time in the degree to
which each action is available for execution, and with the down-
stream striatum reflecting the momentary action values propor-
tional to their cortical availability (“attention”) during that
instant. This scheme leads to accumulation of striatal value sig-
nals across time with variable rates across trials, until one of the
actions is gated by striato-thalamo-cortical activity. Our analysis
provides limited evidence for this notion in that the degree to
which drift rate was modulated by the difference between choice
option values was marginally related to striatal (caudate) activity.
Similarly, a recent study provided evidence that the degree of
value accumulation (drift rate) in this type of task is related to the
proportion of attention (visual fixation time) on each option,
whereas the threshold is related to conflict-induced changes in
pupil diameter, also thought to reflect downstream consequences
of mid-frontal theta (Cavanagh et al., 2014).

Alternatively, it is possible that during learning, participants
do not represent a single integrated value for each decision op-
tion, but instead repeatedly draw samples from individual past
experiences, and compute the average value based on this sample
(Erev and Barron, 2005; Stewart et al., 2006). Such a scheme
accounts for seemingly suboptimal behavior such as probability
matching in various choice situations. This framework is natural
to consider from the DDM in that each previous memory sample
would add or subtract evidence for that option depending on
whether the sample retrieved was a gain or a loss, and the decision
threshold would then dictate the number of samples needed to be
drawn before committing to a choice.

Our study has various limitations. One possibility is that the
neural measures we assess are related to value signals rather than
conflict. Indeed, for the purposes of this study, conflict is defined
by absolute differences in reinforcement value, i.e., we are study-
ing the conflict between RL values and how they affect decision
parameters. Moreover we can rule out a general effect of RL value
instead of value difference, because (1) the average value of each
stimulus pair on each trial is always the same (e.g., the mean of
0.85 and 0.15 is 0.5, similarly for other pairs) and (2) some studies
show neural signals coding the value of the chosen action specif-
ically (Jocham et al., 2011). This would correlate with value
difference when the optimal action is chosen but would anticor-
relate with it when the low-value option is chosen. We found that
value difference drives decision variables (drift and threshold),
i.e., that they affect the choice process itself, and these parameters
are only discernable across both choices of high- and low-value
options.

Next, although the methods allowed us to establish a link
between pre-SMA BOLD activity and mid-frontal theta power,
the conclusion that pre-SMA is the generator of mid-frontal theta
is moderated by two caveats. First, our model assumes that
changes in theta power are linearly related to changes in BOLD.
But, such a linear relationship is by no means established, and
some evidence supports differences in BOLD coupling across
oscillatory frequencies (Niessing et al., 2005; Goense and Logo-

thetis, 2008). Second, despite much evidence for mid-frontal
generator of theta power, (for review, see Cavanagh and Frank,
2014; Cavanagh and Shackman, 2014), and other evidence impli-
cating pre-SMA specifically in representation of conflict (Ull-
sperger and von Cramon, 2001; Isoda and Hikosaka, 2007;
Usami, 2013), our correlational results cannot establish a causal
link between these signals. Thus, it is conceivable that activation
in pre-SMA could reflect local changes in neural activity that are
simple correlates of theta generated elsewhere. Indeed, given
growing evidence for cross-frequency coupling (Voytek et al.,
2013), it is possible that pre-SMA BOLD reflects power changes
in the gamma band, which is nested under theta. In this context,
we note that the area most significantly related to EEG (mid-
frontal theta) in a whole-brain analysis was SMA proper, whereas
BOLD signal related to threshold adjustment as a function of
conflict arose from the adjacent pre-SMA ROI (selected based on
prior literature). Though this might reflect more complex cascad-
ing effects as described above, a strong functional distinction
between SMA/pre-SMA cannot be drawn from these data.

Third, it should be noted that the exact location of the STN
within each participant cannot be determined without higher
resolution imaging than was used here. Thus, though our use of
the probability map from Forstmann et al. (2012) gives us an
acceptable degree of confidence that each participant’s STN lies
within our STN mask at the group level, it is possible, due to the
resolution and smoothing, that signal outside of the STN was
included, as well.

At a computational level, although we investigated here the
neural correlates of decision threshold adjustment as a function
of reinforcement conflict, it is not always clear that one would
want to increase the threshold with conflict. Indeed, in the ex-
treme case where there is no evidence for one option over the
other— either they have the same known values, or they are both
completely unknown—it would be maladaptive to have a large
decision threshold. In such cases an “urgency signal” may be
recruited to reduce the threshold with time (Cisek et al., 2009).
Although this is typically considered an active process, which
builds up to reduce the threshold, it can also be implemented by
dissipation of an active process that raises the threshold. Indeed,
in neural circuit models, while STN activity rises initially to raise
thresholds, this activity subsides with time leading to a collapsing
decision threshold (Ratcliff and Frank, 2012; Wiecki and Frank,
2013). Future work is needed to assess the degree to which col-
lapsing thresholds can account for choice data during learning,
and to address the form of a dynamic threshold model that is
adaptive for different levels of conflict, to optimize the cost/ben-
efit tradeoff.
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