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Abstract

The twenty-first century has brought forth a deluge of theories and data
shedding light on the neural mechanisms of motivated behavior. Much of
this progress has focused on dopaminergic dynamics, including their signal-
ing properties (how do they vary with expectations and outcomes?) and their
downstream impacts in target regions (how do they affect learning and be-
havior?). In parallel, the basal ganglia have been elevated from their original
implication in motoric function to a canonical circuit facilitating the initia-
tion, invigoration, and selection of actions across levels of abstraction, from
motor to cognitive operations.This review considers how striatal D1 andD2
opponency allows animals to perform cost-benefit calculations across mul-
tiple scales: locally, whether to select a given action, and globally, whether to
engage a particular corticostriatal circuit for guiding behavior. An emerging
understanding of such functions reconciles seemingly conflicting data and
has implications for neuroscience, psychology, behavioral economics, and
artificial intelligence.
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INTRODUCTION

Mammalian behaviors are incredibly adaptive to changes in the environment and fluctuating mo-
tivational drives.When fending for survival, the costs and benefits of alternative actions are quite
different from those in a comfortable environment. Risky decisions can be adaptive if their poten-
tial benefits (relative to those of safer choices) outweigh the costs. Similarly, when opportunities
for advancement present themselves, it may sometimes be worth the effort of working exception-
ally hard for those gains, but sometimes it may be more productive to minimize (cognitive or
physical) work and focus on leisure (Kool & Botvinick 2014). In this review I highlight decades
of progress in theory and experimental data suggesting that the frontal cortex and basal ganglia
(BG) interact to consider plausible actions for any given scenario, and to facilitate behaviors that
differentially maximize benefits or minimize costs depending on the agent’s motivational state and
environmental context. This computation is fueled by heterogeneous dopamine (DA) dynamics
across time scales and across corticostriatal circuits at multiple levels of abstraction, allowing an-
imals to adaptively learn which circuits to engage and which actions to execute. Indeed, a long
history of research implicates DA in the optimization of motivated behavior.While recent studies
suggest heterogeneity in DA signals, I suggest that diverse DA dynamics embedded within stri-
atal circuitry act in concert, supporting adaptive flexibility and motivated behavior tuned to task
demands (Hamid et al. 2021, Jaskir & Frank 2023). This framework accords with a wide range
of data that may have otherwise presented challenges for earlier ideas. I also review various open
questions.

PHASIC DOPAMINE: REWARD PREDICTION ERRORS AND BEYOND

Arguably one of the greatest contributions of computational neurosciencewas elucidating theways
in which dopaminergic signals correspond to reward prediction errors (RPEs), which are used in
reinforcement learning (RL) (Montague et al. 1996, Schultz et al. 1997). Many experiments have
supported the key predictions of these models, reviewed elsewhere (Watabe-Uchida et al. 2017).
In brief, DA neurons respond in bursts to unpredicted rewards, and the magnitude of DA bursts is
correlated with the magnitude of positive RPEs.When rewards are expected but not received,DA
neurons exhibit transient dips in their activity, and the duration of the pause correlates with the
magnitude of the negative prediction error (Bayer et al. 2007). Several causal manipulations across
species have shown that these DA signals can induce RL in accordance with formal learning theory
(Hamid et al. 2015, Stauffer et al. 2016, Steinberg et al. 2013), mediated by changes at the synaptic
and intracellular levels in striatum (Lee et al. 2020, Scott & Frank 2023, Yagishita et al. 2014).
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More recently, various findings have suggested heterogeneity in DA neuronal signaling, but
where the combined population output still reflects RPE (Lee et al. 2024) or a distribution over
RPEs (Dabney et al. 2020). Some studies show that DA signals surprising events even in the ab-
sence of any explicit reward value, allowing animals to learn arbitrary sensory-sensory associations
(Sharpe et al. 2017). Yet, there remains an enormous amount of evidence that DA signals are va-
lenced (i.e., rising when events are better than expected but decreasing when they are worse than
expected). These opponent and symmetrical deflections are particularly prevalent in the striatum
(Hart et al. 2014), albeit with some heterogeneity across subregions: As reviewed in the final sec-
tion, valenced RPE signals are commonly observed across all major striatal subregions but are
tailored to the computational functions of that region (Hamid et al. 2021, Mohebi et al. 2024,
Parker et al. 2016, Tsutsui-Kimura et al. 2020). Moreover, as reviewed below, causal manipula-
tions of DA and its downstream targets across striatum consistently implicate opponent effects
on motivated behavior, with few exceptions. In contrast, DA signals in other target regions [e.g.,
amygdala (Lutas et al. 2019), medial shell of accumbens (de Jong et al. 2019), and prefrontal cor-
tex (Abe et al. 2024)] show unvalenced signals of surprise, which may enhance associative learning
about neutral and emotional memories.

BEYOND PHASIC TRANSIENTS: DOPAMINE RAMPS

DA concentrations also exhibit slower dynamics distinct from transient events.Whereas transient
RPEs guide RL, I argue below that these slower signals relate to immediate motivational impacts
of DA on behavior. Various studies have reported that DA slowly ramps over time as an animal
makes progress toward a goal (Collins et al. 2016; Farrell et al. 2022; Goedhoop et al. 2023; Hamid
et al. 2015, 2021; Howe et al. 2013; Syed et al. 2015). Such DA ramps are modulated by recent
reward history (Hamid et al. 2015, Mohebi et al. 2019) and/or uncertainty (Mikhael et al. 2022)
and are particularly apparent when the animal has agency to affect its outcomes (Collins et al.
2016, Goedhoop et al. 2023, Hamid et al. 2021, Syed et al. 2015). Many of these studies included
direct measurements of striatal DA release, which can be locally controlled and can be dissociated
from activity at midbrain cell bodies (Berke 2018, Mohebi et al. 2019).

Indeed, DA has long been implicated in motivated, reward-oriented behavior that is distinct
and separable from learning (Berridge 2006, Salamone & Correa 2024). When striatal DA levels
are elevated, humans and animals are increasingly likely to make choices that have higher risk, or
require higher amounts of effort, if the potential payout is sufficiently high (Pagnier et al. 2024,
Rutledge et al. 2015, Salamone & Correa 2024, St. Onge & Floresco 2009, Stopper et al. 2014,
Zalocusky et al. 2016). Thus, DA ramps may provide local modulation of cost-benefit decision
strategies as an animal makes progress toward a goal (just as one may engage in more effort toward
the end of a race). Below, I argue for an opponent circuit mechanism by which striatal DA is
sensitive to cost-benefit calculations that affect both learning and motivated decision making, and
that these functions are intertwined.

BASAL GANGLIA CONTRIBUTIONS TO DECISION MAKING

While some studies have suggested that the BG primarily serve to invigorate ongoing motor
output (Turner & Desmurget 2010), it is becoming increasingly clear that they can also causally
guide which action is executed.The discussion in this section applies primarily to dorsal striatum;1

1Indeed, ventral striatum is particularly important for phenomena such as Pavlovian-to-instrumental transfer,
whereby motor output is invigorated by a reward-predictive cue (Corbit & Balleine 2011).

Review in Advance. Changes may 
still occur before final publication.

www.annualreviews.org • Adaptive Cost-Benefit Control 3



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  B
ro

w
n 

U
ni

ve
rs

ity
 (

ar
-1

46
23

0)
 IP

:  
12

8.
14

8.
19

4.
18

 O
n:

 W
ed

, 2
2 

Ja
n 

20
25

 1
3:

40
:4

0

NE48_Art01_Frank ARjats.cls December 13, 2024 13:25

for application of this framework to various striatal subregions, see the section titled A Mosaic of
Cost-Benefit Control Across Corticostriatal Circuits.

Computational models of dynamic interactions can reconcile conflicting data in this regard.
In these models, the premotor cortex proposes a small number of options that are relevant in the
current sensory context [e.g., in proportion to their prior probabilities as seen empirically (Cisek
& Kalaska 2005, Glaser et al. 2018)], and the striatum then accumulates the evidence for and
against each one, ultimately disinhibiting thalamocortical activity associated with the best action
(Bogacz & Gurney 2007; Calderon et al. 2022; Dunovan et al. 2019; Frank 2005, 2006; Ratcliff &
Frank 2012). However, such disinhibition is only necessary for affecting choice when there is not
already a dominant winning action in cortex. If cortical action proposals are sufficiently strong,
they can reach threshold for execution without additional modulation by the BG and thalamus
(Ashby et al. 2007, Frank & Claus 2006, Ratcliff & Frank 2012). Thus, the BG are only needed
when there are conflicting sources of evidence for which action is best, requiring volitional drive
(see below for more detail). Accordingly, Parkinson’s patients show spared movements when they
are compelled by sensory input but not when they require volitional initiation (Brown &Marsden
1988).Various other data implicate BG/DA specifically inmotivated agency (Cockburn et al. 2014,
Leotti & Delgado 2011, Stolz et al. 2020).

In perceptual decision making, a common paradigm requires animals to decide whether a noisy
array of dots are moving primarily to the left or right (Roitman & Shadlen 2002). The amount of
evidence is manipulated by varying the coherence of the dot motion. A rich literature has studied
the neural basis for evidence accumulation in such paradigms, with vigorous debates about the
causal contributions of any given brain region or neural population to choice. Indeed, Yartsev
et al. (2018) articulated three characteristics necessary for a brain region to be causally involved
in decision making and found that, to date, the dorsal striatum was the only region to satisfy all
three criteria (striatal neurons reflected graded evidence accumulation, inactivating them impaired
choice, and perturbing their activity had causal effects on choice throughout the accumulation
process).

Critically, the striatal framework implies not only that decisions should reflect the evidence
(coherence) but that this evidence should be reweighted according to the benefits (potential reward
values) of each option. Indeed, when reward outcomes were manipulated in a random dot study,
striatal neurons showed properties of evidence accumulation that combined the raw coherence
with the reward values, ramping more steeply for those choices that have larger benefits (Doi
et al. 2020). This study also confirmed in monkeys that perturbing striatal neurons causally altered
decision making.

The above discussion suggests the BG are only needed for choice when there are conflicting
sources of evidence on which action is best, and especially when this evidence is noisy and needs
to be accumulated. But why should the BG then be involved in value-based choice without overt
noise? Even here, regardless of whether values are learned within the task or based on, for exam-
ple, food preferences, decision dynamics still conform to predictions from evidence accumulation
models (Gluth et al. 2018, Ratcliff & Frank 2012, Thomas et al. 2021), and are modulated by BG
activity (Frank et al. 2015, Pedersen & Frank 2020). According to the neural network models,
action proposals are noisy (facilitating exploration), wavering sequentially over time until one of
them is gated by BG-thalamocortical activity (Frank 2006, Ratcliff & Frank 2012; for video an-
imations, see also http://ski.clps.brown.edu/BGmodel_movies.html). Indeed, during decision
making, animals vacillate between covertly attending to the value of alternative choice options,
with orbitofrontal spike rates reflecting the momentary value of covertly attended options (Ferro
et al. 2024, Rich & Wallis 2016); decision vacillation is also observed in striatum (DePasquale
et al. 2024). In humans, choice values are often not static and require accumulation of momentary
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preferences—which can themselves vary with attention to different attributes (Busemeyer et al.
2019,Gluth et al. 2018,Thomas et al. 2021)—tomake self-consistent choices.Notably, when ben-
efits and costs of alternative choices were spatially presented to humans, participants sequentially
attended to these attributes, leading to time-varying impacts of benefits and costs on evidence
accumulation (Westbrook et al. 2020). Moreover, individual differences in, and manipulations of,
striatal DA shifted the impact of attention to benefits and costs on evidence accumulation (Pagnier
et al. 2024, Westbrook et al. 2020).

Striatal Opponency: From Go Versus No Go to Benefits Versus Costs

How do the BG differentially weight the benefits and costs of alternative actions? The noto-
riously intricate architecture of cortical-BG-thalamic circuits are most commonly described in
terms of the direct and indirect pathways (Albin et al. 1989). According to the classical model,
striatal medium spiny neurons (MSNs) in the direct pathway project to BG output and disin-
hibit thalamocortical populations related to the corresponding action. These neurons express D1
receptors and are excited by DA. Striatal MSNs in the indirect pathway project to the globus
pallidus, which prevents action. These neurons express D2 receptors and are inhibited by DA
(Gerfen & Surmeier 2011). Classical models thus suggest that DA promotes movement by acti-
vating the direct pathway and suppressing the indirect pathway (Albin et al. 1989). However, the
simplest version of such a model cannot explain findings such as those showing that both striatal
populations are coactivated during movement (Cui et al. 2013).

Dynamic neural network models of BG circuitry can resolve such discrepancies without es-
chewing opponency (Beeler et al. 2012, Calderon et al. 2022, Dunovan et al. 2019, Frank 2005,
Frank & Claus 2006, Franklin & Frank 2015, Wiecki & Frank 2013). In these models, corti-
cal action proposals are evaluated simultaneously by separate D1 and D2 populations coding for
each action. While D1 neurons accumulate evidence for a given action, D2 neurons accumulate
evidence against a particular action in part by suppressing its correspondingD1 population [via in-
hibitory collaterals from D2 to D1 neurons in the models and data (Beeler et al. 2012, Burke et al.
2017, Taverna et al. 2008)]. As such, activation of D2 neurons not only may suppress unwanted
actions but also can promote selection of alternative actions by effectively disinhibiting D1 neu-
rons associated with better actions. Such models thus show simultaneous activation of D1 and D2
neurons during action selection (Dunovan et al. 2019, Wiecki & Frank 2013) and where the bal-
ance is shifted to the D1 population coding for the to-be-selected action just prior to execution,
as recently described empirically (Tang et al. 2024).

Moreover, in these models,DA activity dynamically modulates the relative engagement of each
population, affecting both incremental RL and immediate motivated behavior. During outcomes,
transient DA deflections (e.g., RPEs) induce activity-dependent synaptic plasticity, with DA bursts
potentiatingD1 neurons andDAdips potentiatingD2 neurons (Beeler et al. 2012,Collins&Frank
2014, Dunovan et al. 2019, Frank 2005). Over the course of learning, D1 and D2 neurons come
to represent the benefits and costs of alternative actions. During action selection, DA can also
directly impact motivated choice behavior by modulating D1 versus D2 neuron activity levels and
thus the relative impact of benefits versus costs.

A large body of evidence provides support for these opponent effects on motivated choice and
learning across species. Regarding choice, we have already discussed the causal contribution of
striatum to evidence accumulation (Doi et al. 2020, Yartsev et al. 2018). More recent studies have
shown that D1 and D2 neurons contribute in opponent fashions: Silencing D1 cells impedes the
ability to accumulate evidence for the contralateral action, whereas silencing D2 cells impedes
the ability to accumulate evidence against that action (Bolkan et al. 2022). Critically, these striatal
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manipulations had no influence on decision making when choices could be made based on raw
immediate sensory information, or when animals were in a perseverative state insensitive to the
current-trial evidence. These findings again suggest that the BG do not contribute when choices
can be easily made based on immediate sensory input or when they are dictated by automated
behavior based on strong corticocortical associations. Yet the BG are increasingly involved in
modulating decision outputs during initial learning, when arbitrating between conflicting sources
of evidence, and when decisions depend on the animal’s internal (and potentially changing) mo-
tivational drives. Supporting the latter point, when deciding whether to ingest sugar, D1 and D2
MSNs compete to resolve a conflict between neural systems signaling gustatory/nutritive value
versus those signaling appetite suppression (Sandoval-Rodríguez et al. 2023). Similarly, D1 versus
D2 MSNs also control ingestion of cocaine (Lobo et al. 2010), biasing behavior in favor of its
rewarding versus aversive properties (Guzman & Ettenberg 2007, O’Neill et al. 2012).

Causal manipulations also provide support for opponent D1/D2 effects on learning. At the
synaptic level, stimulating DA bursts promotes growth in concurrently excited striatal D1 neu-
ron spines [mimicking reinforcement of corticostriatal inputs (Yagishita et al. (2014)]. Conversely,
causal suppression of DA activity (i.e., DA dips) induces spine growth in correspondingly acti-
vated D2 MSNs (Iino et al. 2020). Over the course of behavioral learning, positive and negative
DA deflections promote intracellular signaling and synaptic potentiation in D1 and D2 neurons,
respectively (Lee et al. 2020, Urakubo et al. 2021). Electrophysiologically, D1 neurons code for
reward outcomes, whereas D2 neurons code for no-reward outcomes (Nonomura et al. 2018). Af-
ter an animal executes a behavior, optogenetic activation of D1 neurons reinforces that behavior,
whereas D2 neuron activation suppresses it (Isett et al. 2023, Kravitz et al. 2012, LeBlanc et al.
2018, Nonomura et al. 2018). Conversely, silencing D1 or D2 neurons abolishes learning from
positive and negative outcomes, respectively (Hikida et al. 2010, Nishioka et al. 2023). While it
is difficult to isolate D1 from D2 neurons in primates, electrophysiological studies in monkeys
report equal prevalence of striatal neurons coding for positive and negative action-outcome val-
ues, with positive-coding neurons predictive of choice of the coded action, and negative-coding
neurons predictive of avoidance (Samejima et al. 2005).

One notable study directly pitted the classical motor activation/suppression (go/no go) ac-
count of D1/D2 neurons against the RL account (Yttri & Dudman 2016). The authors employed
a closed-loop stimulation protocol that would stimulate D1 or D2 neurons after actions that were
executed faster or slower than usual. The classical account would predict that striatal D1 acti-
vation would promote faster movements, and D2 activation would promote slower movements.
Instead, the authors found that whether the movements were fast or slow, D1 neuron activation
would reinforce that speed, and D2 neuron activation would punish that speed (i.e., animals would
move faster if D2 neurons were activated after slow movements). These findings provide strong
support for a motivational reinforcement impact of D1/D2 opponency rather than go/no go
function.

While it is relatively uncontroversial that the BG andDA contribute to reward-oriented behav-
ior, that D2 neurons can support avoidance of actions with the highest cost is more controversial
and is thus treated separately here.2 Importantly, the causal impact of striatal D2 neurons on avoid-
ing cost generalizes across multiple forms of cost. In rodents, activation of D2 neurons suppresses

2By avoidance, here I refer to passive avoidance—that is, D2 neurons suppress actions that would produce
costly outcomes. This is distinct from active avoidance, whereby animals learn to actively select new instru-
mental actions to prevent an expected aversive outcome. Indeed, in active avoidance, the lack of expected
aversive outcomes produces positive DA RPEs and D1-dependent learning to reinforce the associated actions
(Wenzel et al. 2018, Wietzikoski et al. 2011).
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the repetition of response errors when seeking reward as well as those that produce overtly aver-
sive outcomes (Danjo et al. 2014, Nishioka et al. 2023). Moreover, endogenous DA dips during
negative outcomes are associated with a subsequent increase in striatal D2 neuron activity, which
is necessary for the animal’s ability to then avoid the corresponding action (Danjo et al. 2014,
Nishioka et al. 2023, Nonomura et al. 2018). D2 neurons and their projections along the indirect
pathway to globus pallidus are also needed for decisions to avoid physical effort cost (Mingote et al.
2008, Salamone & Correa 2024); this projection is also causally implicated in learning from pun-
ishment (Isett et al. 2023). Pharmacological modulation of D2 neuron excitability bidirectionally
influences effort costs, with drugs that increase excitability enhancing effort costs and those that
suppress D2 neurons reducing effort cost (Farrar et al. 2010, Salamone&Correa 2024).These D2
manipulations specifically modulate the impact of effort costs and do not affect reward sensitivity
(Bailey et al. 2020). Striatal D2 neurons also code for the cost of risky decisions, activating when
an animal fails to obtain a reward after a risky choice (Zalocusky et al. 2016). Moreover, opto-
genetically activating these neurons during choices causes normally risk-seeking animals to avoid
risky choices and to actively select the safe choice (Zalocusky et al. 2016)—thereby not simply sup-
pressing motor actions writ large but preferentially those with the highest costs. Similar results
are obtained by inhibiting DA neurons to induce risk avoidance or by stimulating them to induce
risk preference (Stopper et al. 2014). Finally, pharmacological drugs that suppress or activate D2
neurons increase and decrease risk taking, respectively (St.Onge et al. 2010,Zalocusky et al. 2016).

In humans, although it is impossible to causally perturb D1 and D2 populations, many studies
have found analogous findings via pharmacological manipulations: Drugs that increase DA am-
plify the impact of benefits versus costs on learning, with corresponding changes in striatal RPE
correlates (Cools 2006; Frank et al. 2004, 2007; Jocham et al. 2011; McCoy et al. 2019; Smittenaar
et al. 2012; van der Schaaf et al. 2014; Voon et al. 2010). These RL studies are complemented by
very similar DAmanipulation effects in studies for which benefits and costs are made explicit with
financial gains versus effort costs [including both physical and cognitive effort (Chong et al. 2015,
Le Bouc et al. 2016, Pagnier et al. 2024, Westbrook et al. 2020)] and in risky decision making
(Rutledge et al. 2015). These effects are also clinically relevant and can account for the impact of
DA depletion (e.g., in Parkinson’s disease) or D2 blockade (as a treatment for schizophrenia) on
avoidance behaviors and, conversely, the impact of DA-promoting medications on risky decision
making (Beeler et al. 2012, Frank et al. 2007, Maia & Frank 2017, Voon et al. 2010). Moreover,
although they preclude causal interpretations, positron emission tomography (PET) studies mea-
suring striatal D1/D2 receptor availabilities and genetic polymorphism studies have consistently
shown that variation in D1 versus D2 function is differentially related to choices based on positive
versus negative outcomes (Cox et al. 2015, Doll et al. 2011, Frank 2011, Frank et al. 2007).

A RATIONALE FOR OPPONENCY: THE OPAL∗ MODEL OF STRIATAL
COST-BENEFIT CONTROL

As reviewed above, the evidence for opponent striatal D1/D2 control over cost-benefit learning
and decision making is extensive, but it is inconsistent with the simplest classical motor activation
versus suppression models. Nevertheless, these findings do not address the question of why the
brain might have evolved this opponent system in the first place. Indeed, in computer science,
RL models can effectively maximize their cumulative rewards without any notion of opponency.
A clue for what is missing in these models is that engineers typically optimize RL hyperpa-
rameters for any given application. We recently analyzed RL agent performance in a series of
simple learning problems with variable task contexts, including the number of available actions to
learn about and the overall reward richness of the environment (i.e., in some tasks rewards were
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plentiful, and in others they were sparse).We found that standard RL agents needed quite different
parameter settings to perform well across these task environments, and in general they performed
better in reward-rich than reward-sparse settings (Collins & Frank 2014, Jaskir & Frank 2023).
This task dependence is not an issue for industrial applications, where parameters can be opti-
mized, but we considered whether biological architectures might provide some robustness against
this issue, allowing animals to learn effectively across environments. Indeed, animals do not suf-
fer from worse accuracy in reward-sparse than rich settings of the type simulated (Hamid et al.
2015).

To address this question, let us examine a simplified model of the striatal system called the
opponent actor learning model (OpAL, pronounced opal, like the gemstone) (Collins & Frank
2014).OpAL extracts core principles from themore detailed neural networkmodels in algorithmic
form and is a biological variant of an actor-critic model, often used in RL. The critic learns the
expected values of the current state (or state-action pair) and generates RPEs that are used to
adjust these expectations. The actor selects an action and then uses the critic-generated RPEs
to adjust its policy, that is, its weights for preferring one action or another. The critic is thought to
involve regions that target and control midbrain DA,whereas the actor controls behavioral output
via its impacts on downstream thalamocortical and brainstem DA.

In OpAL, there are two actors (representing the D1 and D2 populations), which learn in oppo-
site directions from RPEs, and choices are made by combining and weighting them in opponent
fashion.Note that such opponency, on its own, is redundant—as theD1 actor increases its weights,
the D2 actor would decrease its weights, and vice versa, such that each actor equally discriminates
between actions with varying reward probabilities. This symmetry is broken, however, in the bio-
logical learning rules adopted byOpAL,which, over the course of learning, distorts what is learned
by each actor. In particular, synaptic learning in striatal neurons is activity dependent, influenced
jointly by DA and the postsynaptic excitability of the corresponding striatal neuron (Iino et al.
2020, Scott & Frank 2023, Shen et al. 2008, Yagishita et al. 2014). In the neural networks, this
activity-dependent learning rule allows learning to occur specifically for those neurons coding the
relevant sensory state and action. In OpAL, this Hebbian nonlinearity produces a recursive update
rule (i.e., 1D1 ∝ D1 × RPE), such that D1 actors increase their weights for actions that produce
many positive RPEs and, in turn, become more active and hence proportionally more eligible for
further learning.Conversely, when negative RPEs are more prevalent, the D2 actors increase their
weights and excitability and become more eligible for subsequent learning (1D2 ∝ D2 × −RPE).
As such, over the course of learning, the D1 and D2 actors come to differentially specialize in
discriminating between benefits versus costs of alternative actions (Figure 1b). By expanding the
recursive update rule, we showed that each weight update is a function of the entire history of
RPEs, amplifying actor weights for actions that had produced sequences of RPEs that are largely
consistent in sign ( Jaskir & Frank 2023) (in contrast to standard RL models in which weight
updates are only proportional to the most recent RPE). This produces convexity in the learned
weights that are nonredundant across actors; for example,D1 weights show greater differentiation
between actions that yield 90% versus 80% probabilities of reward than they do for 80% versus
70%, and they show little discrimination between small reward probabilities. In contrast,D2 actor
weights show strong discrimination between actions with sparse reward probabilities due to the
consistent prevalence of negative RPEs (Figure 1).

What is the implication of such convexity in D1 and D2 actors? Note that when actors are
equally weighted during choice (i.e., intermediate levels of DA), the convexity largely cancels
out and the agent is sensitive to differences in both high and low reward probability (Collins
& Frank 2014). Critically, however, dynamic DA adjustments can reweight which actor primarily
contributes to choice. When in a high-DA state, choices are determined largely by differences in
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the D1 actor weights (the benefits), but when in a low-DA state, choices are determined by the
D2 actor weights (the costs).

The original OpAL model accounted for many of the effects of exogenous DA manipulations
on cost-benefit learning and decision making reviewed above.We recently developed an upgrade
to OpAL, called OpAL∗, which allows the agent to dynamically modulate its own DA levels
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Figure 1 (Figure appears on preceding page)

The opponent actor learning model (OpAL∗) model of striatal cost-benefit control ( Jaskir & Frank 2023)
(a) D1 and D2 actors contribute to action selection and are subject to reinforcement learning. The critic
learns expected values and generates dopamine (DA) reward prediction errors (RPEs). DA bursts potentiate
D1 actor weights for the chosen action and depotentiate D2 actor weights. DA dips exert the opposite effect,
potentiating D2 actor weights. The meta-critic tracks environmental reward statistics and controls basal
striatal DA levels (distinctly from transient RPEs used for learning), differentially weighting D1 versus D2
actor contributions during choice. (b, top) Evolution of D1 (green) and D2 (orange) actor weights over trials
for various actions with different reward probabilities. Nonlinear Hebbian plasticity enables D1 actors to
specialize in discriminating between benefits of options (the difference between 90% and 80% is greater
than between 80% and 70%; i.e., actor weights are convex). The benefits of low reward options are
deemphasized. Conversely, D2 actors enhance their weights with frequent negative RPEs and come to
specialize in discriminating between the costs (here, sparse rewards). The net choice function is subject to
DA levels: When they are balanced, benefits and costs are equally weighed, but high/low DA increases
discrimination between benefits and costs, respectively. (b, bottom) The net decision output of the OpAL∗
actor is convex with respect to reward probability, depending on DA levels during choice. Black bars indicate
the difference in actor output for actions with two different reward probabilities under high (green),
intermediate (yellow), and low (orange) lines. For high DA, the actor increasingly emphasizes differences in
high-probability rewards but de-emphasizes differences at the low end, and vice versa for low DA.Without
nonlinear Hebbian plasticity, these curves are parallel, indicating redundancy in the two actors. Figure
adapted from Jaskir & Frank (2023) (CC BY 4.0).

(Figure 1a). Intriguingly, the history-dependence and convexity of such effects is reminiscent
of work showing that human subjects’ moods are sensitive to the momentum of previous RPEs
(Eldar et al. 2016). Indeed, recent evidence implies that, even endogenously, striatal DA levels vary
within an animal as a function of its environmental context: DA levels ramp up in reward-rich en-
vironments, and increasingly so as the frequency of recent rewards increases (Hamid et al. 2015,
Mohebi et al. 2019). Such ramps are also prolonged when task demands require instrumental ap-
proach actions compared to equivalent Pavlovian conditions, suggesting that DA levels can be
adaptively controlled (Goedhoop et al. 2023, Hamid et al. 2021, Lloyd & Dayan 2023, Syed et al.
2015).

We thus augmented OpAL∗ to include a meta-critic that keeps track of the reward history of
the environment and accordingly regulates striatal DA. [Mechanistically, this is thought to involve
prefrontal cortical regions that track task states and modulate striatal DA release via inputs to stri-
atal cholinergic neurons (Berke 2018, Mohebi et al. 2019, Stalnaker et al. 2016)]. As such, OpAL∗

dynamically reweights the contributions of its actors to suit the environmental task context, pri-
oritizing discrimination of either benefits or costs. Large-scale simulations across a wide range of
parameters showed that this scheme is useful. In particular, OpAL∗ was more robust to variations
across task environments than various standard RL models, which needed their parameters to be
tuned for each task, given different demands on exploration (including models designed to have
sophisticated exploration strategies). OpAL∗ performance advantages were particularly prevalent
in ecologically valid, reward-sparse environments with many choice alternatives ( Jaskir & Frank
2023). Moreover, these OpAL∗ advantages depended on three key biological properties for them
tomanifest: opponency (allowing changes in policies that can recruit one actor or another), nonlin-
ear Hebbian synaptic plasticity rules (allowing each actor to specialize via convexity), and dynamic
DA modulation (allowing the agent to reweight which actor is leveraged for choice according to
its specialization).

Aside from its normative advantage, OpAL∗ also accounted for a variety of new empirical data
ranging from optogenetics to pharmacological manipulations and behavioral economics ( Jaskir
& Frank 2023). For example, the model showed how it can adaptively modulate risk taking
for potential benefits and that this depends on dynamic DA; this mechanism was sufficient to
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account for gambling experiments in which humans taking levodopa (enhancing DA release) in-
crease risk taking in the context of potential gains but not losses (Rutledge et al. 2015). It also
accounted for impacts of striatal D2 neuron activity following unsuccessful risky choices in ro-
dents, whereby risk-seeking rodents can be causally impelled to make a safe choice if D2 neurons
are optogenetically stimulated during choice (Zalocusky et al. 2016).

Although it is biologically inspired, OpAL∗ also generated two key predictions that could be
compared against existing choice patterns even without DA manipulations. First, when given an
offer to make a risky gamble, given identical outcome payoffs, humans are more likely to gamble
if this offer is presented in the context of a rich history of gamble outcomes compared to a lean
distribution (Frydman & Jin 2022). Economists interpreted their effects by analogy to efficient
coding principles, where choices are sensitive to outcomes that are more frequently observed
in the environment. According to OpAL∗, these efficient coding mechanisms are imparted by
convexity specialization within opponent actors, with adaptive DA modulation across rich and
lean contexts—facilitating context-dependent reward optimization. The DA dependence of these
effects remains a key prediction of OpAL∗.

Second, because it eschews value learning within its actors and instead expediently optimizes a
policy, OpAL∗ is also consistent with findings that human choice preferences [and striatal activity
(Li & Daw 2011)] are aligned with policy rather than value learners (Palminteri et al. 2015). For
example, consider a gain context in which people have to learn to choose between an option that
is 75% rewarded and one that is only 25% rewarded, and otherwise produces nothing. In the loss
context, they choose between an option that yields a loss 75% of the time versus a loss-avoiding
option that still produces a loss 25% of the time (and otherwise nothing). As expected, participants
will choose the 75% rewarding option in the gain context and the 25% loss option in the loss
context. However, if they are later asked to make transitive preferences across options, they are
actually more likely to choose the 25% loss option over the 25% rewarding option, despite the fact
that the latter option has higher expected value (Gold et al. 2013, Palminteri et al. 2015). These
results were reproduced by OpAL∗, as it learns to optimize a policy based on RPEs that had been
encountered in corresponding contexts ( Jaskir & Frank 2023). This same OpAL∗ mechanism is
consistent with rodent findings whereby striatal DA deflections (whether naturally occurring or
causally stimulated) induce a change in policy rather than value learning (Coddington et al. 2023).
While these behaviors challenge the normative principle (participants should ultimately be able to
prefer options that have higher expected value), we consider these behaviors to reflect a byproduct
of a normative mechanism that expediently learns an optimized policy for a given context. From
this perspective, it would still be useful to learn expected values (as OpAL∗ does within its critic),
but simulations showed that it takes longer for such expected values to converge than for the
optimal OpAL∗ policy to stabilize.

OpAL∗ is not the only normative proposal for BG and DA contributions to choice. A recent
modeling study suggested that using novelty to boost DA signaling (rather than environmental re-
ward richness) can be useful to optimize the exploration/exploitation dilemma (Wang et al. 2024).
Thesemodels sharemany of the same core principles but lack theHebbian component and instead
have different nonlinearities that render the opponent actors nonredundant.3 Nevertheless, this
model is also able to account for some DA manipulation data, including impacts on risky choice.

3In this model, positive and negative RPEs are asymmetrically encoded in D1 versus D2 actors, but weight
updates are not additionally activity dependent. In principle the two nonlinearities can be combined at the cost
of a more complex model [indeed, they are both features of the neural network models described earlier; for a
discussion, see Collins & Frank (2014)]. Thus, we do not challenge asymmetries in sensitivities to positive and
negative RPEs; we simply highlight the additional role of activity dependence, which is sufficient for OpAL
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The value of computational modeling is being explicit in the formulations, leading to testable pre-
dictions that can discriminate between candidate models and ultimately improve upon them. In
this spirit, I articulate one key aspect that distinguishes OpAL from these and othermodels. In par-
ticular, recall that the Hebbian nonlinearity induces convexity in the learned actor weights. This
nonlinearity is adaptive, as noted above, but it is also needed to account for a wide variety of data
across species (Collins & Frank 2014, Jaskir & Frank 2023). For example, DA medications make
humans more sensitive to discriminating between reward-rich choice options (e.g., 80% versus
70% and 60% reward probability) but worse at discriminating between lean choice options (e.g.,
20% versus 30% and 40%). Conversely, low DA levels actually enhance discrimination between
low reward values or costs (Cockburn et al. 2014; Frank et al. 2004, 2007; McCoy et al. 2019).
These patterns (which have been replicated more than 10 times) are direct consequences of the
OpAL convexity and are observed even if DA manipulations are administered after learning—
suggesting that they are in part mediated by DA effects on motivated choice (reweighting of actor
contributions in OpAL∗) rather than only asymmetries in learning (Shiner et al. 2012, Smittenaar
et al. 2012). In contrast, actor weights in other opponency models are concave rather than convex
and thus predict the opposite pattern than that observed empirically (i.e., where high DA levels
favor discrimination between low instead of high reward probabilities, and vice versa) (Mikhael &
Bogacz 2016).

While the above studies focused on learning (and later expression thereof ), similar patterns
are seen in DA manipulation studies on cost-benefit choices about physical and cognitive effort.
Here the OpAL convexity predicts that higher DA levels should induce steeper effects on the
psychometric choice function when benefits outweigh the costs but blunted effects when costs
outweigh benefits (Figure 2). This pattern was observed in humans with higher levels of striatal
DA release (as assessed with 18F-DOPA PET imaging), and it was also causally induced in low-DA
subjects after taking a dose of the stimulant methylphenidate (Westbrook et al. 2020).This finding
is directly analogous to that seen in rodents reviewed above, where D1 and D2 inactivation impact
choices on opposite sides of the psychometric function (Bolkan et al. (2022) (Figure 2).Moreover,
while this study focused on decisions about cognitive effort—recasting the impact of stimulants
as impacting motivational cognitive factors rather than ability, per se—similar cost-benefit effects
of DA manipulations were recently observed in a physical effort in Parkinson’s disease (Pagnier
et al. 2024).

A particularly conspicuous set of studies suggestive of nonlinear Hebbian plasticity and con-
vexity come from rodents administered D2-blocking drugs. Despite the nonlinearity, in OpAL∗,
actor weights do not grow without bound, and stabilize due to adjustments in critic expectations,
leading to smaller RPEs (Collins & Frank 2014, Jaskir & Frank 2023). However, this stabilizing
effect should be disrupted under DA manipulations. Indeed, when D2-blocking drugs are admin-
istered in the same context over days, animals become progressively slower to move, but only in
the context in which theD2 blocker is applied.This context-dependent catalepsy sensitization was
modeled in one of our early neural network models, wherein D2 blockade enhances excitability
of D2 neurons, which then undergo Hebbian potentiation, making them yet more excitable and
in turn more eligible for further aberrant learning, and so on (Wiecki et al. 2009). Later work
confirmed that these drugs potentiate striatal D2 neurons and that this mechanism can similarly
induce progressive impairments in motor skill learning, which then persist after drug washout

to generate actors that specialize on benefits and costs. Moreover, while Wang et al. (2024) highlighted an
advantage of their model over OpAL∗ in some task contexts, our subsequent simulations revealed that this
was artifactual and that both models performed favorably, with OpAL∗ still showing some advantages ( J.T.
Hewson, A. Jaskir & M.J. Frank, unpublished manuscript).
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Figure 2

Cross-species evidence for opponent striatal DA modulation of benefit and cost decision making. (a) Mice
performing a decision-making task requiring them to accumulate the number of cues observed on
contralateral versus ipsilateral sides of space. When engaged, animals were highly sensitive to the number
of cues. Striatal D1 inactivation in this condition selectively reduced the impact of positive evidence for
contralateral cues, whereas D2 inactivation reduced the impact of negative evidence against contralateral
cues. Dashed lines reflect performance after inactivation. (b) Analogous findings in humans performing a
cognitive effort task for varying amounts of benefits and costs. Individual differences in striatal DA were
related to the increased slope of the psychometric function to the right of the indifference point (i.e., when
benefits outweigh costs) but render this curve more shallow on the left (when costs outweigh benefits).
These patterns were also induced by stimulants that increase striatal DA release and accorded with
simulations from the OpAL model (not shown). Abbreviations: DA, dopamine; MSN, medium spiny neuron;
OpAL, opponent actor learning model. Panel a adapted with permission from Bolkan et al. (2022), and panel
b adapted with permission from Westbrook et al. (2020).

(Beeler et al. 2012, Cheung et al. 2023). Again, these effects required the nonlinear Hebbian
plasticity rule for them to manifest in both the neural network and OpAL (Beeler et al. 2012,
Collins & Frank 2014). Moreover, these aberrant learning effects can be rescued by coadminis-
tering adenosine blockers that prevent long-term potentiation in D2 neurons (Beeler et al. 2012).
In sum, apparent costs of motor action become amplified over experience under DA denervation
or D2 blockade. While these are pathological effects (suggesting that some aspects of parkinson-
ism reflect an aberrant learning process), they can nevertheless be considered a by-product of a
normative process when DA levels are endogenously regulated in a healthy brain.

A MOSAIC OF COST-BENEFIT CONTROL ACROSS
CORTICOSTRIATAL CIRCUITS

The above discussion might make it seem as if there is a single corticostriatal circuit with two
knobs controlling the influences of benefits and costs for each action. However, while there is a
canonical circuit linking frontal cortex with the BG and thalamus, this motif is repeated across
virtually all of frontal cortex: from motor to premotor cortex to various subdivisions in prefrontal
cortex, each interconnected with its own BG-thalamic loop, which also interact hierarchically
(Badre & Frank 2012, Frank 2011, Graybiel 2008, Haber 2016, Westbrook et al. 2021). Indeed,
the cost-benefit framework articulated above can apply within any given corticostriatal circuit at
different levels of abstraction (e.g., What are the benefits and costs of going left versus right, of
going to one cafe or another, of performing one cognitive action or another, or of applying one
control strategy or another?). At a larger scale, this same cost-benefit mechanismmay occur across
circuits (e.g.,When should we employ hierarchical planning requiring nested coordination across
multiple corticostriatal loops versus lay low and let our more primitive motor RL system control
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behavior?). Models of this higher-level selection process adopt a mixture-of-experts scheme,
where the costs and benefits of computations at different levels of abstraction are compared and
dynamically recruited as needed, and can be implemented in hierarchically nested corticostriatal
circuits (Frank & Badre 2012). Supporting this scheme, when humans performed a task with a
hierarchical structure, RPEs detected in functional MRI (fMRI) were not globally uniform across
striatum but were amplified in caudate subregions interconnected with prefrontal regions at the
same rostrocaudal level tuned to hierarchical task structure (Badre & Frank 2012). Moreover,
when the task no longer required hierarchical processing, striatal negative RPEs were associated
with participants’ ability to inactivate that cortical region and learn via alternate strategies.

Of course, fMRI is an indirect measure of neural activity. Recent rodent studies have recorded
activity in dopaminergic axons or release withinmultiple striatal regions, often focusing on ventral,
dorsomedial, and dorsolateral striatum—functional subdivisions that have homologs in primates.
These studies have shown both consistency and heterogeneity inDA signals across regions (Hamid
et al. 2021,Mohebi et al. 2024, Parker et al. 2016, Tsutsui-Kimura et al. 2020), where all exhibited
RPE-like transients, but tailored to the computations of the underlying region. For example, DA
RPE signals in ventral striatum reflect deviations in stimulus-reward expectations, whereas those
in dorsomedial striatum (DMS) were tied to specific instrumental actions (Parker et al. 2016), con-
verging with coding of the underlying striatal neurons within these regions (Ito & Doya 2015).
Other studies indicate a gradient of DA RPE dynamics across these regions, with the slow dynam-
ics in ventral striatum sensitive to longer-term horizons of reward, and the faster dynamics within
dorsolateral striatum sensitive to more immediate rewards (Mohebi et al. 2024). Finally, DA neu-
rons themselves exhibit heterogeneity in their scaling of RPEs, resembling a distributional code
(Dabney et al. 2020), which could conceivably differentially impact distinct striatal subregions.

How can the brain learn the benefits and costs of using a given striatal region to control be-
havior? To address this question, we recently studied DA dynamics within subregions of dorsal
striatum (Hamid et al. 2021). Mice had to learn in separate instrumental and Pavlovian task con-
ditions, which were reversed across blocks of trials. In both conditions, they experienced a series
of sensory cues indicating progress to reward. In the instrumental condition, mice had to run on
a wheel for the cues to advance and to ultimately obtain reward. In the Pavlovian condition, the
cues advanced irrespective of the animal’s behavior. The amount of running needed (or the time
between cues) was drawn from a uniform distribution, requiring evidence accumulation across
cues to infer whether the animal was in control of the cues (and needed to run). Notably, DA
signals ramped as the animal progressed to reward, but these ramps were heterogeneous across
striatal subregions and task conditions. In the instrumental condition, increasing DA ramps were
observed in DMS, with focal subregions within DMS showing DA ramps tuned to different in-
strumental contingencies (distance to run). Moreover, in the Pavlovian condition, dorsomedial
DA ramps were actually negative (i.e., DA levels declined over the course of the trial), despite
the fact that mice continued to anticipate reward with each cue transition (as indicated by their
licking). These results were modeled with a hierarchical mixture-of-experts framework in which
subexperts within DMS represent action-outcome contingencies, and DMS as a whole accumu-
lates evidence that it is in control when actions are tied to state transitions—and more evidence
that is not in control in the Pavlovian condition.Thus,DA ramps in DMS seem to reflect the value
of its underlying computations. When DA levels rise, they presumably engage the local D1 neu-
ron subexperts to control behavior (subject to their own evidence accumulation as per the above
discussion), and when local DA levels decline, other regions take over.

A yet more striking result from this study was seen when mice obtained their reward. While
there was a massive increase in DA levels across the striatum, these levels were not globally syn-
chronous but instead propagated in spatiotemporal wave-like patterns. Reward-induced waves
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reached DMS first in the instrumental condition but last in the Pavlovian condition; these dy-
namics reversed when the task contingencies switched (Hamid et al. 2021). These wave-like DA
dynamics were predictive of the animal’s running more or less on subsequent trials—and were
themselves predicted by the preceding ramp dynamics signaling evidence of control. Thus, DA
ramps and wave dynamics may serve as a credit assignment mechanism to reinforce DMS when
the benefits of action outweigh the cost. Finally, this study also observed rapid DA transients
at each cue transition as the animal progressed through the trial. These transients exhibited
RPE-like properties that were separate from ramping signals, and they could be used to in-
fer agency of the underlying subregion. In sum, this study showed how disparate DA dynamics
(transients, ramps, and waves) could work in concert to support inference about agency and
credit assignment therein. Thus, the corticostriatal hierarchy may facilitate an iterative evalua-
tion of lower-level predictions to guide action selection and learning at the appropriate level of
abstraction.

Humans may show similar cost-benefit trade-offs for recruiting different corticostriatal cir-
cuits. When people switch between tasks that involve controllable or uncontrollable state
transitions, striatal and medial prefrontal prediction error signals distinguish between the cor-
responding actor and spectator models that govern these statistics (Ligneul et al. 2022) and thus
may be used for credit assignment. Striatal DA contributions to learning of benefits versus costs
are also enhanced by agency [free versus forced choices (Cockburn et al. 2014)]. Moreover, even
in simple instrumental learning tasks, participants adopt cognitive processing and recruit working
memory (Collins & Frank 2012). This too can be construed as a cost-benefit problem: Working
memory is rapid and flexible but computationally costly; indeed, people’s decisions about perform-
ing working memory operations are themselves subject to striatal DA modulation of benefits and
costs (Westbrook et al. 2021, 2020).When a learning task is too demanding on working memory,
participants show slowed acquisition of task contingencies but enhanced RPE signaling and neural
RL signals (Collins & Frank 2018), which are in turn predictive of better long-term retention of
stimulus-response associations (Rac-Lubashevsky et al. 2023). Finally, even within the domain of
working memory, one can adaptively switch between strategies that support precise storage and
recollection of individual items versus those that can chunk multiple items into a single merged
representation to improve memory efficiency at the cost of precision when the task is more dif-
ficult (Nassar et al. 2018). Such adaptive chunking can be learned via dopaminergic RL signals
that optimize the benefits and costs of alternative gating policies in corticostriatal network mod-
els (Soni & Frank 2024).Conversely, failures in adaptive gating can lead to deficits in meta-control
that may induce rumination and worry (Hitchcock & Frank 2024).

DISCUSSION AND OUTSTANDING ISSUES

The segregation of direct and indirect pathways has long been controversial. Most recently,
it has been pointed out that while D2 neurons project solely to globus pallidus (the classical
indirect pathway), D1 neurons project to both substantia nigra (classical direct pathway) and
globus pallidus (Lévesque & Parent 2005). While these anatomical data suggest some need
of revision, they do not necessarily demand wholesale reevaluation of opponent dichotomies,
especially given the large body of functional evidence. Indeed, because of the additional inhibitory
synapse and associated delay, such connectivity may simply imply that BG output is sensitive
to the temporal derivative of striatal D1 neuron activity rather than its raw activity, facilitating
rapid sequencing of actions (Frank 2006). Moreover, there are certainly functional studies that
do not conform naturally to the valenced opponency account articulated above, for example, in
accumbens (Zachry et al. 2024). While a mixture-of-experts framework might imply that other
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striatal subregions perform these computations depending on the task at hand, future theoretical
and empirical studies should incorporate and reconcile challenging as well as supportive data.

I have emphasized howmodulation of striatal DA signals can impact cost-benefit decisionmak-
ing, including about risk. It is notable thatDAneurons themselvesmay also provide a distributional
code of potential reward values (Dabney et al. 2020); such a code could feasibly be used for adaptive
risk taking, but it remains to be studied how it might interact with striatal D1/D2 opponency.

As noted at the outset, it is also controversial whether dopaminergic transients are themselves
always valenced or whether they serve as generalized prediction error signals.While I emphasized
that the answer may depend on the target region, even striatal DA transients might not always in-
duce opponent plasticity mechanisms. Indeed, plasticity is gated by additional factors beyond DA,
such as pauses in cholinergic signaling, which can adapt the rate of learning across striatal pop-
ulations (Franklin & Frank 2015). However, cholinergic signals may themselves gate DA release
and ramping (Berke 2018), and we are far from a unified model of these interactions. Even less is
known about the mechanisms that drive DA waves (Hamid et al. 2021).

A notable recent finding is that control over DA is itself subject to D1 and D2 opponency
within striosomal compartments of the striatum, complementing the direct and indirect pathways
for control of action (Lazaridis et al. 2024). This finding may imply a fractal structure, whereby
opponency shapes valuation and choice simultaneously, or perhaps via ascending spiraling loops
(Haber 2016). At the computational level, it has been argued that DA levels may be regulated
when Pavlovian tendencies interfere with instrumental goals (Lloyd & Dayan 2023), and it is
plausible that such opponency allows the costs and benefits of DA release to be evaluated in such
circumstances.

The striatum is not the only region of the brain involved in cost-benefit decision making.
Indeed, there is a parallel literature on limbic regions within prefrontal cortex, such as anterior cin-
gulate, ventromedial, and orbitofrontal cortex, that undoubtedly participate in such computations
(Klein-Flügge et al. 2016, Shenhav et al. 2013), and may provide that information to striatum for
adaptive behavior without requiring new learning.More broadly, amajor challenge to the field is to
define what constitutes a benefit and cost in the first place ( Juechems& Summerfield 2019),which
requires understanding across multiple scales frommechanism (e.g., inputs to DA signals) to com-
putation and even philosophy. In realistic scenarios, the benefits and costs of alternative choices
are multidimensional (Hall et al. 2024) (hence requiring integration), and more work is needed to
study how these computations converge into DA and striatal systems for learning and choice.
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