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Abstract Convergent evidence suggests that the basal ganglia support reinforcement learning

by adjusting action values according to reward prediction errors. However, adaptive behavior in

stochastic environments requires the consideration of uncertainty to dynamically adjust the learning

rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum

with such a mechanism in computational models spanning three Marr’s levels of analysis. In the

neural model, TANs modulate the excitability of spiny neurons, their population response to

reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to

spurious outcomes by increasing divergence in synaptic weights between neurons coding for

alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased

responsiveness to change-points in outcome contingencies. A feedback control system allowed

TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population,

allowing the system to self-tune and optimize performance across stochastic environments.

DOI: 10.7554/eLife.12029.001

Introduction
When tasked with taking an action in an unknown environment, there can be considerable uncer-

tainty about which actions will lead to the best outcomes. A principled way to resolve this uncer-

tainty is to use previous experience to guide behavior towards actions that have led to positive

outcomes in the past and away from actions that have led to negative outcomes. Convergent evi-

dence suggests that the basal ganglia can guide behavior by incorporating positive and negative

feedback in a reinforcement learning process (O’Doherty et al., 2003; Barnes et al., 2005;

Frank, 2005). However, learning can be complicated in a changing environment, as the validity of

past experiences and the relationship between actions and outcomes become uncertain as well.

Mathematical models suggest that it is optimal to take uncertainty into account in learning and deci-

sion making (Yu and Dayan, 2005; Behrens et al., 2007; Mathys et al., 2011), but it is unclear

whether the basal ganglia can directly consider uncertainty in feedback-based learning.

Basal ganglia-dependent learning is often described within the normative framework of reinforce-

ment learning (RL) following the observation that signaling from dopaminergic afferents matches the

pattern of a reward prediction error (RPE) (Montague et al., 1996; Bayer et al., 2007). An RPE is

the signed difference between the observed and expected outcomes and is often used in RL to gen-

erate point-estimates of action-values (Sutton and Barto, 1998). Phasic dopamine (DA) is thought

to provide an RPE signal to striatal medium spiny neurons (MSNs) and induce learning through

changes in corticostriatal plasticity (Montague et al., 1996; Reynolds and Wickens, 2002;

Calabresi et al., 2007), with opponent learning signals in the direct and indirect pathways

(Frank, 2005; Collins and Frank, 2014). Within these pathways, separate populations code for the

(positive and negative) values of distinct action plans (Samejima et al., 2005). Multiple lines of
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evidence in humans and animals support this model, including optogenetic manipulations

(Tsai et al., 2009; Kravitz et al., 2012), synaptic plasticity studies (Shen et al., 2008), functional

imaging (McClure et al., 2003; O’Doherty et al., 2003), genetics and pharmacology in combination

with imaging (Pessiglione et al., 2006; Frank et al., 2009; Jocham et al., 2011) and evidence from

medication manipulations in Parkinson’s patients (Frank et al., 2004).

Despite the substantial empirical support for RPE signals conveyed by dopamine, the simple RL

mechanisms used to model the basal ganglia are inflexible in the degree to which they learn in a

changing environment. RL models typically adopt a fixed learning rate, such that every RPE of similar

magnitude equally drives learning. However, a more adaptive strategy in a changing environment is

to adjust learning rates as a function of uncertainty, so that unexpected outcomes have greater influ-

ence when one is more uncertain of which action to take (e.g., initially before contingencies are well

known, or following a change-point), but less influence once the contingencies appear stable and

the task is well known (Yu and Dayan, 2005; Behrens et al., 2007; Nassar et al., 2010;

Mathys et al., 2011; Payzan-LeNestour et al., 2011). This Bayesian perspective presents the addi-

tional challenge for basal ganglia-dependent learning: in order to take advantage of its own uncer-

tainty over action selection, the basal ganglia would need a mechanism to translate its uncertainty

into a learning rate.

Cholinergic signaling within the striatum offers a potential solution to this challenge. With few

exceptions (Tan and Bullock, 2008; Ashby and Crossley, 2011), models of the basal ganglia typi-

cally do not incorporate striatal acetylcholine. Within the striatum, cholinergic interneurons are the

predominant source of acetylcholine (Woolf and Butcher, 1981). These interneurons, also known as

tonically active neurons (TANs) due to their intrinsic 2–10-Hz firing pattern, are giant, spanning large

eLife digest One of the keys to successful learning is being able to adjust behavior on the basis

of experience. In simple terms, it pays to repeat behaviors with positive outcomes and avoid those

with negative outcomes. A group of brain regions known collectively as the basal ganglia supports

this process by guiding behavior based on trial and error.

However, circumstances can and do change: a behavior that routinely produces a positive

outcome now will not necessarily always do so in the future. The outcome of a given behavior can

also vary from time to time purely by chance: even the most appropriate action can sometimes lead

to a negative outcome but should be repeated again. Exactly how the basal ganglia take into

account this uncertainty over behavioral outcomes to appropriately guide learning is unclear.

Franklin and Frank have now come up with a possible explanation by building on an existing

computational model of the basal ganglia. Whereas the old model assumes that the rate of learning

given an unexpected outcome always remains constant, in the new model learning occurs more

quickly when the outcome of a behavior is uncertain. This makes intuitive sense, in that rapid

learning is especially useful during the initial stages of learning a new task or following a sudden

change in circumstances.

The new model proposes that a group of cells called tonically active interneurons (TANs), which

release the chemical acetylcholine, enable the basal ganglia to take account of uncertainty. TANs

are found in a basal ganglia structure called the striatum and have a characteristic firing pattern

during important outcomes, consisting of a burst of activity followed by a pause lasting several

hundred milliseconds. The model suggests that when the outcome of a behavior is uncertain, the

length of this pause is increased. This boosts the activity of another group of neurons in the

striatum, known as spiny neurons, and this in turn increases the rate of learning.

Franklin and Frank found that by varying the length of the TAN pause, the basal ganglia can

adjust learning rates based on the degree of uncertainty over behavioral outcomes. Comparisons

show that the TAN computational model optimizes the accuracy and flexibility of learning across

different environments, while also accounting for findings which show that TAN lesions induce

insensitivity to changes in decision outcomes. The next step is to test some of the new predictions

about uncertainty experimentally.

DOI: 10.7554/eLife.12029.002

Franklin and Frank. eLife 2015;4:e12029. DOI: 10.7554/eLife.12029 2 of 29

Research article Computational and systems biology Neuroscience

http://dx.doi.org/10.7554/eLife.12029.002
http://dx.doi.org/10.7554/eLife.12029


areas of the striatum with dense axonal arborization and broad synaptic input (Goldberg and Rey-

nolds, 2011). TANs appear to be necessary to learning only when flexibility is required

(Ragozzino et al., 2009; Bradfield et al., 2013), suggesting that they might modulate the learning

rate as a function of changes in outcome statistics (i.e., uncertainty). Similar to dopaminergic neu-

rons, TANs show sensitivity to rewarding events and develop a learned phasic response to predictive

cues (Aosaki et al., 1994; Morris et al., 2004). This response consists of a phasic burst in TAN activ-

ity followed by a pause that lasts a few hundred milliseconds (Aosaki et al., 1995). While the tempo-

ral pattern of the burst–pause response is temporally concomitant to the dopamine response

(Morris et al., 2004), the unidirectional TAN response is not consistent with a bivalent RPE

(Joshua et al., 2008) but instead is thought to provide a permissive signal for dopaminergic plastic-

ity (Graybiel et al., 1994; Morris et al., 2004; Cragg, 2006).

But how would such a permissive signal be modulated by the network’s own uncertainty about

which action to select? Because TANs receive broad inhibitory synaptic input from local sources,

including MSNs and GABAergic interneurons (Bolam et al., 1986; Chuhma et al., 2011), we hypoth-

esized that the pause would be modulated by a global measure of uncertainty across the population

of spiny neurons. Given that MSN sub-populations code for distinct action values (Samejima et al.,

2005; Frank, 2005; Lau and Glimcher, 2008), co-activation of multiple populations can signal

enhanced uncertainty over action selection, which would translate into greater inhibition onto TANs.

The synchrony in the TAN response suggests a global signal (Graybiel et al., 1994), which can then

be modulated by inhibitory MSN collaterals across a large range of spiny inputs. The TAN pause

response is consistent with a signal of uncertainty that adjusts learning. First, it increases with the

unpredictability of a stochastic outcome (Apicella et al., 2009, 2011). Second, pharmacological

blockade or lesioning excitatory input to TANs impairs learning, specifically after a change in out-

come contingencies (Ragozzino et al., 2002; Bradfield et al., 2013). For an optimal learner, both

increases in stochasticity and changes in outcome contingencies results in an increase in uncertainty

(Yu and Dayan, 2005; Nassar et al., 2010).

Here, we augment a well-established computational model of the basal ganglia (BG) to include a

mechanism by which the effective learning rate is modulated by cholinergic signaling, and where this

signaling is, in turn, modulated by uncertainty in the MSN population code via reciprocal TAN–MSN

interactions. In the model, cholinergic signals dynamically modulate the efficacy of reinforcement

feedback, driving changes in the number of neurons available for synaptic plasticity during reinforce-

ment, hence the effective learning rate of the network as a whole. Thus, TANs allow the basal gan-

glia to tailor its learning rate to its environment, balancing the tradeoff between learning flexibility

and robustness to noise by adjusting learning as a function of policy uncertainty embedded in the

MSN population code. We show that this behavior is consistent with a normative account using an

approximately Bayesian model and that its main functionality can be simplified in algorithmic form

using a modified RL model, thus spanning Marr’s levels of implementation, algorithm, and computa-

tion. The model is consistent with several existing lines of evidence and makes falsifiable predictions.

Results
We extended a previously published neural network model of the basal ganglia to examine the

potential role for TANs in learning. Figure 1 shows a graphical representation of the model, which

has been adapted from Frank, 2006 to include TANs. The basic mechanics of the BG model without

TANs have been reviewed elsewhere (e.g., Maia and Frank, 2011; Ratcliff and Frank, 2012) but

are summarized here before articulating the TAN mechanisms. In the network, striatonigral and stria-

topallidal MSNs are simulated with separate populations of ‘Go’ and ‘NoGo’ units (rate-coded point

neurons), which act to facilitate or suppress selection of specific actions. These MSN units receive

excitatory input from a sensory input cortical layer and a motor cortical layer representing specific

candidate responses. A given response is executed when its motor cortical firing rate exceeds a

threshold.

The basal ganglia participate in action selection by selectively disinhibiting thalamocortical activity

for a given response while inhibiting thalamocortical activity for alternative responses, via MSN pro-

jections through different basal ganglia nuclei (Frank, 2006; Humphries et al., 2006). Activity in Go

units contributes evidence toward the selection of an action in the thalamus and ultimately the cor-

tex, while NoGo unit activity suppresses action selection and effectively provides evidence against
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particular responses. The difference in Go and NoGo unit activity for each candidate action effec-

tively provides a decision variable, each represented in distinct columns of cortico-BG-thalamic cir-

cuits. The greater the relative Go–NoGo activity difference for a particular response, the more likely

the corresponding column of thalamus will be disinhibited, and hence the corresponding action

selected. Initially, network choices are determined by random synaptic weights favoring one or the

other action and the additional intra-trial noise in unit activity favoring exploration of alternative

actions, but choices stabilize via dopamine-dependent learning, as described next.

Dopamine modulates excitability in the Go and NoGo pathways and has opposing effects on the

two populations. D1 receptor activity simulated in the Go units results in increased excitability while

D2 receptor activity simulated in NoGo units has the opposite effect. Consequently, an increase in

dopamine leads to increased Go activity relative to NoGo activity; this can influence both the choice

process through acute changes in excitability and the learning process through consequent changes

in synaptic efficacy during phasic changes in dopamine-related to positive and negative outcomes.

Several predictions of this model have been validated empirically across species, including effects

of pharmacological manipulations, genetic variants, and optogenetic manipulations (Collins and

Figure 1. Neural network model. (A) A simplified diagram of the neural network. Sensory input excites candidate motor actions and corresponding Go

(blue circles) and NoGo (red circles) MSN units in the striatum. Distinct columns of Go and NoGo units provide the thalamus with positive and negative

evidence for alternative motor responses, learned via DA reinforcement signals. Positive prediction errors result in increased DA during feedback and

an increase of Go excitability relative to NoGo units. TANs are endogenously active units that modulate MSN excitability during reinforcement

feedback, altering the efficacy of the reinforcement signal. (B) Stereotypical TAN response is temporally concomitant to reward-related phasic DA

increase (Adapted from Figure 7 part C, Morris et al., 2004). (C) Schematic representation of TAN–MSN signaling (see below). TAN firing inhibits

presynaptic glutamatergic signaling of D1 and D2 MSNs through M2 receptors, but also selectively excites D2 MSNs via M1 receptors. (D) Sensory

input provides excitatory signaling to preSMA (representing two candidate motor actions) and corresponding Go and NoGo MSN units in the striatum.

Each of (here, two) motor responses is coded by distinct columns of Go and NoGo units, representing positive and negative evidence for alternative

that responses, learned via reinforcement conveyed by DA signals in the SNc. The basal ganglia contribute to action selection by disinhibiting

thalamocortical activity for representing thatthe response having the largest Go–NoGo activation differential. Go units inhibit globus pallidus internal

segment (GPi) units, which otherwise tonically inhibit the thalamus. NoGo units have the opposite effect by inhibiting the external segment (GPe), which

in turn inhibits GPi. TANs are represented as a separate layer of endogenously active units that modulate MSN excitability during the dynamic burst–

pause pattern windowing the dopaminergic reward prediction error signals. This pause duration can be fixed, or sensitive to the population uncertainty

of MSNs (see below). Dotted black lines correspond to proposed feedback mechanism from MSNs to TANs. The STN modulates the threshold by

which actions are disinhibited by the BG, included here for consistency with prior work. DA, dopamine; MSN, medium spiny neuron; preSMA, pre-

suplementary motor cortex; SNc, substantia nigra pars compacta; STN, subthalamic nucleus.

DOI: 10.7554/eLife.12029.003
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Frank, 2014 for review and quantitative simulations) but as of yet, it has not explored the role of

TANs. Furthermore, while it can account for general effects of dopaminergic manipulation on proba-

bilistic reversal learning (Frank, 2005), it fails to appropriately modulate its learning as a function of

environmental noise and internal action uncertainty. Finally, while BG RL models depend on DA-

driven learning, they do not provide a mechanism that would allow striatal learning to occur selec-

tively during reward prediction errors as opposed to various other factors that could also change DA

levels (e.g., Howe et al., 2013). We investigated whether the TAN pause, by windowing dopaminer-

gic RPEs, can provide such a permissive signal on learning.

The stereotypical TAN burst–pause response modulates excitability and presynaptic corticostria-

tal signaling in both MSN populations (Gerfen and Surmeier, 2011). In our model, a TAN pause

was simulated at the onset of feedback to create a window around the dopaminergic reinforcement

signal (Morris et al., 2004); to isolate the effects solely attributable to learning, TAN activity levels

were constant during action selection itself (Figure 2, left; see Materials and methods). Cholinergic

Figure 2. Network activity in a probabilistic reversal learning task. Top left: Mean within-trial normalized firing rate across population of Go units

(simulated striatonigral MSNs) and TANs during action selection during the first epoch of training (’early’). Individual traces represent the mean

population activity in a single trial and are collapsed across response for Go units. In the examples shown, Go unit activity ultimately facilitates the

selected response (due to disinhibition of thalamus; not shown, see Frank, 2006). Bottom left: Mean within-trial firing rate during action selection in the

last epoch of training (’late’) prior to reversal. As a consequence of training, an increased differential in Go activity between the selected and non-

selected response results in low action-selection uncertainty. Center: Mean firing rate for Go and TAN units during reinforcement for both correct (top)

and incorrect (bottom) trials. TAN pauses occur for both types of feedback, providing a window during which the dopaminergic signals differentially

modulate Go unit activity and plasticity (long-term potentiation vs long-term depression). Top right: Entropy in population of Go units across training

trials. Population-level entropy declined over time prior to reversal (trial 200; dotted line) as the stochastic population of simulated neurons learned the

correct action. Following reversal, entropy rose briefly as the network starts to activate the alternative Go response while the learned one still remained

active for some time, after which entropy declines once more. This dynamic modulation of entropy is more pronounced in a network with simulated

TANs than a control network without TANs. MSNs, medium spiny neurons; TANs, tonically active neurons.

DOI: 10.7554/eLife.12029.004
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signaling within the striatum is extensive and complex, involving a diversity of cholinergic receptors.

For tractability, we mainly focused our investigation on the effects of TAN signaling on MSN excit-

ability, simulating the effects of M1- and M2-muscarinic acetylcholine receptors on MSNs and nico-

tinic receptors on GABAergic interneurons (we further explore the ACh effects on DA release in the

final section). Changes in muscarinic activity modulate MSN excitability during TAN pauses, allowing

the MSN population to be more or less excitable during reinforcement (see Materials and methods

for details of biophysics and implementation in our model). Longer (or deeper) TAN pauses increase

corticostriatal input and hence MSN activity in response to reinforcement, compared to shorter TAN

pauses.

We conducted a series of simulations in which this neural network was confronted with a

two alternative, forced choice reversal learning task. On each trial, one of two input stimuli was pre-

sented and the network had to select one of two responses. For the initial simulations, one response

was rewarded 80% of the trials and the other 20% of the trials. (Subsequent simulations described

later varied the stochasticity of the environment.) The network was trained on 20 epochs of 20 trials

for each stimulus, or 400 trials total. Performance was probed prior to the first training epoch as a

baseline and following the completion of each training epoch. The first 10 training epochs comprised

the ’acquisition’ phase in which the reward schedule remained constant. Adaptive behavior in this

context demands learning from unexpected outcomes during initial stages of the task but ignoring

spurious outcomes (i.e. the 20% of negative outcomes) once the contingencies are well known. The

reward contingencies were then reversed for the remaining 10 epochs (’reversal’ phase) such that

the response with the lower value during acquisition was now rewarded in 80% of trials. An adaptive

learner would show renewed sensitivity to unexpected outcomes when the contingencies change,

and then stabilize again asymptotically.

Because the TAN pause results in MSN disinhibition, it modulates their excitability during out-

come presentation (when phasic dopaminergic signals are presented) via modulation of M1 and M2

receptors (see Materials and methods). TAN pauses elicit greater activation of the most excitable

units, which then, due to activity-dependent plasticity, are most subject to dopaminergic learning. In

turn, the resultant synaptic weight changes affect the subsequent distribution of active MSNs during

action selection. This distribution can be quantified by the uncertainty in action selection across the

MSN population, which we define here as the Shannon’s entropy based on the firing rates y of units

associated with each action a across all time points t during action selection within a trial:

H ¼�
X

t

X

a

paðtÞlog2paðtÞ;

where pa(t) reflects the population’s probability assigned to selecting action a based on normalized

firings rates coding for that action (see Materials and methods). A population with low entropy has a

few strongly active units representing primarily the dominant motor response, whereas a population

with high entropy has many weakly active units representing multiple alternative responses. As the

network learns, entropy across Go units declines over time and the network becomes more likely to

strongly activate Go units associated with the correct response, and less likely to activate those for

the opposing response (Figure 2, top right). Following the reversal, the entropy of the Go units

increases as the network un-learns the previous correct response (making those units more weakly

active) while beginning to activate those associated with the alternative response. While this pattern

is evident in networks without TANs, it is more pronounced in TAN networks: the selective modula-

tion of excitability during outcomes amplifies the effect of dopamine on Go activity for the dominant

response, progressively differentiating from the less rewarded response and leading to low entropy

Go representations (Figure 2, top right).

The decline in MSN entropy translates into reduced stochasticity in action selection, as the MSN

population becomes dominated by a single strongly active population, providing stronger evidence

for the frequently rewarded action. Consequently, TAN networks exhibit higher accuracy when a sto-

chastic task is well learned than a network without TANs (Figure 3, left). However, this property

alone reduces the flexibility of the network to respond to change points, because a single strongly

active population is harder to unlearn, and the network will perseverate in selecting the previously

learned response. This tradeoff will become evident below, where we show that TAN pause dura-

tions can be dynamically modulated to optimize the tradeoff between flexibility and stability.
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To directly study the impact of TANs on learning, we first parametrically varied the duration of

the TAN pause exogenously (below we explore how this pause may be endogenously self-regulated

by the network). Varying pause duration across networks reveals a behavioral trade-off between

learning speed following probabilistic reversal and asymptotic accuracy (Figure 4, top row). During

acquisition, learning speed is similar across a range of TAN pause durations, but networks with long

pauses exhibit higher levels of asymptotic accuracy. Long pauses facilitate a disproportionate

increase in synaptic efficacy for the most frequently rewarded response despite the occasional spuri-

ous outcome (Figure 5, bottom right), driving MSNs to focus their activity to a single dominant

action (as quantified by MSN entropy; Figure 4, bottom). However, this same property makes such

networks slow to reverse. Conversely, networks with short TAN pause durations learn more quickly

following reversal but at a cost of asymptotic accuracy. Mechanistically, this occurs as short TAN

pauses elicit weaker activation of spiny units, and hence elicit less activity-dependent plasticity, lead-

ing to a smaller learned divergence in synaptic weights between alternative responses (Figure 5,

bottom right). This stunted divergence allows for continued co-activation of multiple response alter-

natives during subsequent action selection, and hence more stochastic choice, but this same prop-

erty supports the network’s ability to quickly reinforce alternative actions following change points.

Thus, although in these simulations the TAN pause modulates excitability only during window of the

phasic dopaminergic reinforcement signal, it influences which MSNs learn and hence the population

activity and action selection entropy thereof during subsequent choices.

The importance of this trade-off is most evident across different levels of predictable stochastic-

ity, which was manipulated by varying the reward schedule. In a probabilistic reversal learning task in

which the optimal action was rewarded with an 85% reward rate (suboptimal action rewarded 15%),

networks with a short TAN pause outperformed networks with a longer TAN pause (Figure 6, left).

Accuracy (percent choice of the optimal action) across all trials was 78% (SD=7%) for the shortest

pause compared with 70% (SD=5%) for the longest TAN pause [t(148) = 7.3, p<3x10–10, Cohen’s d

= 1.2]. In a more stochastic task with only 40% reward rates for the optimal action (10% for the sub-

optimal action), the pattern is reversed: long pause networks obtained an overall accuracy level of

Figure 3. Performance of the neural network on reversal learning task. Left: Accuracy during acquisition of probabilistic contingencies. During initial

acquisition, accuracy for networks simulated with TANs (black) is similar to accuracy in control networks that do not contain TANs (grey). Simulated M1

blockade (red) does not meaningfully impair performance during acquisition. Right: Accuracy following reversal. Networks with TANs (black) reach

higher asymptotic performance than control networks (grey). Networks with simulated M1 blockade (red) show pronounced performance

impairments. TANs, tonically active neurons.

DOI: 10.7554/eLife.12029.005
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53% (SD = 10%) compared to 65% (SD = 10%) for long pause networks [t(148) = 8.1, p<3x10–13,

Cohen’s d = 1.3] (Figure 6, center). In both environments, overall accuracy varies parametrically with

pause duration and degrades gracefully. These simulations show that, for each environment, the

optimal pause duration is dependent on the cost of sensitivity to noise and the need for flexible

behavior. The high MSN entropy generated by a short TAN pause allows for increased flexibility,

which is advantageous in a highly deterministic environment with a single reversal, where spurious

negative outcomes are less common, lowering the cost of sensitivity to noise. In contrast, the lower

entropy MSN representation generated by longer TAN pauses (due to divergent weights) is advan-

tageous when the task is highly stochastic. The ability to ignore spurious negative outcomes allows

the network to maintain a stable estimate of an action value, which can be more important than

behavioral flexibility. As a result, the performance of a network with fixed pause duration is depen-

dent on the environmental statistics.

Adaptive tuning of TAN pauses and learning rates using MSN
population entropy
A principled way to balance this trade-off is to use the learner’s uncertainty over its action values to

anneal the learning rate, similar to the gain in a Kalman filter (Yu and Dayan, 2005). For an ideal

observer, the proper measure of this uncertainty depends on the parameterization of the generative

processes of the task, which may require several levels of hierarchical representations

Figure 4. Network behavior as a function of TAN pause duration. (A, B): Accuracy of the neural network simulations over a range of fixed pause

durations (120–280 ms) during initial acquisition (A) and following reversal (B). Networks with short TAN pauses (red) learned more quickly following

reversal than networks with a long TAN pauses (blue) but did not achieve the same level of asymptotic accuracy during either acquisition or following

reversal. (C) Final MSN entropy after training for both acquisition and reversal, as a function of TAN pause duration. Longer pauses elicited lower

entropic MSN representations, facilitating asymptotic performance, whereas the higher entropy in short pause networks facilitated faster reversal. (D)

Action selection uncertainty across MSN population across all trials for both stimuli. Entropy in networks with a long TAN pause (black) declines over

time and reaches asymptotic level both prior to and following reversal. (E) Mean difference in corticostriatal Go weights (synaptic efficacy) coding for

the more rewarded versus less rewarded response (defined during acquisition) are shown across training trials for a single stimulus, in an 85:15% reward

environment. Greater accumulation in weight differences result in more deterministic choice but difficulty in unlearning. Data shown for networks

trained on with a long (270 ms) or short (150 ms) fixed duration TAN pause. Reversal at trial 200 denoted with dotted line. MSN, medium spiny

neurons; TANs, tonically active neurons.

DOI: 10.7554/eLife.12029.006
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(Behrens et al., 2007; Mathys et al., 2011) that may be unavailable in a local striatal network. How-

ever, as noted above, entropy over multiple MSN populations can be used as a proxy as it can be

interpreted as the uncertainty with which the network selects an action. Although we have thus far

described this entropy as an observable variable to provide an explanation for how TAN pauses

affect the trade-off between flexibility and stability because it can be read out from the distribution

of MSN firing rates, we hypothesized that this same measure may be used to reciprocally influence

TAN pauses and hence learning. In this way, the system could self-detect its own uncertainty in a

way that (unlike any given fixed pause duration) is not dependent on the parameterization of a par-

ticular task and is implicitly available in the population response.

Figure 5. Schematic Representation of MSN entropy and self-tuning mechanism. Top left: Action potentials

(horizontal lines) for a population of neurons with both high and low population entropy are shown across time. In

the example, both entropy conditions produce the same number of action potentials in the displayed time

window. In the population with high entropy, action potentials are distributed equally across the neurons thus

reflecting more competition across MSNs representing different behavioral actions, and hence uncertainty about

which action to select. In the population with low entropy, spike rates are concentrated in fewer neurons. Top

right: Homeostatic feedback mechanism. The population entropy across spiny neurons can influence the duration

of TAN pauses, which reciprocally influences the excitability of spiny neurons and hence entropy. This feedback

control system optimizes the TAN pause duration and allows the population to be dynamically sensitive to

unexpected outcomes. A high-entropy MSN population firing rate distribution (top, black line) leads to a longer

TAN pause (bottom, black line), increasing weight divergence and creating downward pressure on MSN entropy.

Low MSN entropy (top, dotted line) decreases TAN pause duration (bottom, dotted line) creating upward

pressure on MSN entropy. Bottom left: Feedback-mechanism self-regulates TAN pause duration (ms) as a function

of entropy across learning. Pauses become shorter for more deterministic environments as a function of learning,

preventing divergence in synaptic weights and over-learning, but then increase at change points. Reversal at trial

200 denoted with dotted line. Bottom right: Feedback mechanism adaptively regulates synaptic weights to

facilitate learning. Mean difference in corticostriatal Go weights (synaptic efficacy) coding for the more rewarded

versus less rewarded response (defined during acquisition) are shown across training trials, in an 85:15% reward

environment. Greater accumulation in weight differences result in more deterministic choice but difficulty in

unlearning. Data shown for networks trained on with a long (270 ms) or short (150 ms) fixed duration TAN pause,

as well as a network employing an entropy-driven feedback mechanism. Reversal at trial 200 denoted with dotted

line. MSNs, medium spiny neurons; TANs, tonically active neurons.
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Given their size and broad connectivity across large areas of striatum spanning many MSNs, it is

plausible that TANS are sensitive to population MSN entropy or a correlate thereof by summing

activity over multiple neurons coding for different actions. As noted earlier, TANs receive substantial

GABAergic innervation from medium spiny neurons (Bolam et al., 1986; Chuhma et al., 2011;

Gonzales et al., 2013). While the initiation of a TAN pause is dependent on thalamic and dopami-

nergic signaling (Aosaki et al., 1994; Ding et al., 2010), we propose that local signaling from MSNs

can modulate the response by elongating the duration of the pause (or simply further reducing the

firing rate during the pause) through direct inhibition. If TANs are sensitive to MSN entropy and can

modulate their pause durations accordingly, they may provide a mechanism to adjust to changes in

uncertainty.

To assess this potentially adaptive mechanism, we first conducted simulations in which the TAN

pause was dynamically modulated by an analytical computation of MSN entropy (see

Materials and methods); below, we will consider a more mechanistic implementation by which TANs

respond to local circuits that approximate entropy. These simulations confirmed that dynamic modu-

lations of TAN pause as a function of MSN mitigated the trade-off between flexible learning and

sensitivity to noise. When trained on an 85% reward schedule, the network with a variable duration

pause learned relatively quickly following reversal while still achieving a high level of asymptotic

accuracy (Figure 6, left). When trained on a 40% reward schedule, performance was comparable to

the best network trained with a long fixed duration pause (Figure 6, center). While in both the cases

it was possible to find a particular fixed duration pause that can perform as well as a variable pause

duration, networks with entropy-modulated pause durations performed better across both reward

schedules than any fixed pause network [Accuracy ~ N(�,Is);

E½k �variablek1 � max k �fixedk1� ¼ 5:76%; pðk�variablek1 � max k�fixedk1Þ = 1.03x10-3]. Thus, while a

fixed TAN pause may perform well in any one environment, any given fixed setting is suboptimal

when the environment is unknown. Varying TAN behavior with MSN entropy allows the network to

learn robustly over a wider range of environment statistics, thereby allowing learning rates to be sen-

sitive to the network’s own uncertainty.

This behavioral flexibility occurs as the feedback mechanism induces longer pauses during peri-

ods of higher uncertainty. In the 85% reward environment, the feedback mechanism results in

dynamic behavior: TAN pauses last greater than 250 ms both at the beginning of the task and fol-

lowing reversal, while pauses reach 200 ms immediately prior to reversal and at the end of the train-

ing session when less learning is required (Figure 5, bottom left). As such, the long TAN pause early

in acquisition results in increased synaptic efficacy for Go units associated with the dominant

response relative to the suboptimal response (Figure 5, bottom right). As the entropy and the pause

Figure 6. Learning in the neural network across multiple reward schedules. Left: Networks with fixed short TAN pauses across training (red) exhibited

higher performance in an environment with 85:15% reward contingencies for the optimal and suboptimal actions, compared with networks with long

TAN pauses (blue), due to increased learning speed following reversal. Center: Networks with long TAN pauses (blue) were able to acquire a task with

40:10% contingency, unlike networks with a short TAN pause (red). Networks with variable pause durations as a function of MSN entropy are shown in

black, with good performance in both environments. Right: Across both reward schedules, networks in which TAN pause duration was allowed to vary

with MSN entropy (black) made fewer errors than networks of any fixed duration. Reversal is denoted with dotted line in all panels. MSNs, medium

spiny neurons; TANs, tonically active neurons.
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duration decline, the rate of change in synaptic efficacy slows, resulting in faster reversal learning as

the network can unlearn the previous reward association more quickly. In contrast, uncertainty

remains elevated in the in the highly stochastic 40% reward environment and the TAN pause conse-

quently remains elevated throughout training (Figure 5, bottom left). As such, the feedback mecha-

nism results in changes in synaptic efficacy that are similar to changes induced by a long fixed

duration TAN pause.

Normative and algorithmic descriptions of TAN pause behavior
Before further analyzing biophysical mechanisms within the model—including a mechanism for com-

putation of entropy, the effects of M1 receptor manipulations, and additional roles of the post–

pause burst on DA release—we first develop higher level (computational and algorithmic) models

that summarize the key trade-off identified above in functional terms (Marr and Poggio,

1976). While the neural network model makes empirical predictions at the biophysical level, the

core computational and algorithmic problems solved by the network can be imbedded in simpler

formulations. To describe the computational and algorithmic problems solved by the network, we

compared the network’s behavior with two models: (1) an approximately Bayesian model that con-

siders the higher-level computational problem of learning under uncertainty, and (2) an algorithmic

model that more closely matches learning in the basal ganglia mechanistically, modified from

Collins and Frank (2014) to include the role of TANs.

The core computational problem solved by the addition of TANs in the network addresses how

to integrate noisy experiences in a changing environment. Behrens et al. (2007) noted that in a

changing environment, a hierarchical representation of volatility can be used to adjust the learning

rate in an optimal way. If rewards are distributed probabilistically with rate r and changes from trial

to trial, an optimal agent can estimate the volatility of r as well as their distrust in the trial-to-trial vol-

atility of the reward rate. It is unlikely that this hierarchical inference is implemented in the basal gan-

glia; thus, we consider here an approximation by which this computation need not be performed

explicitly but where the striatum has access to its own uncertainty and adjust its learning rate

accordingly.

In the tasks simulated, rewards were of equal value and delivered stochastically. In a stationary

task with binomial outcomes, the posterior distribution of the reward rate for an optimal learner is a

Beta distribution (Daw et al., 2005) parameterized by the counts of rewarded and non-rewarded tri-

als. Because reversal tasks are, by definition, non-stationary, the Beta distribution does not represent

the exact posterior distribution of expected values and is slow to adjust to a reversal: it becomes

too certain about reward contingencies. A Bayesian treatment allowing for the possibility that the

outcome statistics can change can be approximated using a mixture distribution combining the pos-

terior of expected values with a uniform distribution (Nassar et al., 2010). In this approximation, the

mixture component is the probability a change has occurred to some other unknown contingencies.

Instead, we use a multiplicative parameter g to decay the counts of the Beta hyper-parameters

towards the prior after each trial, an approximation that has been used previously to model rodent

and human behavior (Daw et al., 2005; Doll et al., 2009). Decaying the counts multiplicatively main-

tains the mode expected value for each action but increases the variance (uncertainty) of the distri-

bution. This effectively reduces the model’s confidence of the expected value without changing its

best estimate. Hence, a faster decay rate allows for greater effective learning rate, analogous to the

mechanism in the BG model, whereby MSN weights are prevented from overlearning.

We simulated the Bayesian model with both fixed values of g as well as a g that varied as a func-

tion of entropy in action selection. Models with fixed values of g are analogous to neural networks

with a fixed duration TAN pause, both constituting static strategies to balance asymptotic accuracy

and learning speed. Varying g as a function of action selection entropy is similar to the strategy

employed by the neural network, as MSN entropy corresponds to the decision uncertainty of the

network.

Over both manipulations, the Bayesian model shows the same qualitative pattern of behavior as

the neural network (Figure 7, right). For fixed values of g; we found the same tradeoff between

asymptotic accuracy and learning speed following reversal. Likewise, varying the decay rate with

uncertainty mitigated the effects of the trade-off, facilitating faster learning following reversal than

possible with a slow, fixed decay rate without the cost of asymptotic accuracy associated with high,

fixed decay (Figure 7, right, black line). Given that it is an idealized statistical model and not
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implementational, the Bayesian learner responds with an overall higher level of accuracy than the

neural network. Unlike the Bayesian learner, the neural network does not learn an estimate of each

action value directly but instead learns relative preferences for actions. Nevertheless, overall, the

Bayesian learner provides a normative description of the neural network as the effect of manipulat-

ing the decay parameter g is qualitatively similar to what we see when manipulating TAN duration,

suggesting that TAN duration affects the uncertainty of representations in MSNs.

The OpAL model proposed by Collins and Frank (2014) provides a more algorithmic summary of

the basal ganglia network, as an expansion of an actor–critic model to include opponent (D1/D2)

actor values. The OpAL model provides a normative advantage over traditional RL while quantita-

tively capturing a variety of data across species implicating opponent processes in both learning and

action selection, where dopamine manipulations affect the asymmetry with which humans and ani-

mals make decisions, in a model with few free parameters. In the OpAL model, reward prediction

errors are computed within a critic that evaluates the expected value of each state, and are used to

update these values and train the G and N actors, summarizing the population activity of Go and

NoGo units with point values (see Materials and methods). To simulate the effect of TANs in OpAL,

the G and N weights were decayed multiplicatively after each trial by either a constant rate (to simu-

late the effects of a fixed-duration TAN pause), or as a function of G and N entropy (to simulate the

effects of the proposed feedback mechanism). A fast rate of decay (closer to zero) simulated a short

TAN pause whereas a slow rate of decay (closer to one) simulated a long TAN pause.

Simulations over a range of fixed rates of decay shows a similar pattern as in the neural network

and Bayesian learner, as slow rates of decay showed high asymptotic accuracy but with a decreased

learning speed following reversal in a deterministic environment (Figure 8, left). Likewise, a faster

rate of decay showed a similar pattern to networks with short TAN pause durations and showed

increased flexibility after reversal at a cost of asymptotic accuracy. As in the neural network, the

trade-off between asymptotic accuracy and speeded learning after reversal was marked by a diver-

gence in the G weights (Figure 8, right). For models with a slow decay, the difference between G

weights for the initially rewarded response and the initially sub-optimal response was much more

Figure 7. Comparison of behavior between neural network and Bayesian learner collapsed across multiple reward schedules. The performance of the

Bayesian learner (i) is qualitatively similar to the performance of the neural network model (left). A slow decay rate in the Bayesian learner (right, blue)

has the same effect as a long TAN pause (left, blue) and results in higher asymptotic accuracy at a cost of slower learning following reversal. A fast

decay rate (right, red) has the same effect as a short TAN pause (left, red) and results in fasters learning following reversal with lower asymptotic

accuracy. Varying the decay rate and pause duration with entropy in the Bayesian learner and neural network, respectively, mitigates the trade-off.

Reversal is denoted with dotted line in both panels.
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pronounced than models with a faster decay. This divergence declined more rapidly in models with

a slow decay, allowing these models to unlearn the previously rewarded response more quickly.

Allowing the decay rate to vary as a function of uncertainty also showed the same pattern of

behavior found in the neural network, mitigating the trade-off and resulting in both high asymptotic

accuracy as well as speeded learning following reversal (Figure 8, left). Overall, varying decay with

entropy resulted in higher reward rate compared with the next best performing model with fixed

decay [t(198)=3.7, p<3x10–4, Cohen’s d = 0.5]. Varying decay with entropy also optimized the diver-

gence of G weights relative to fixed decay. The initial rate of divergence of the variable model is

similar to that of a slow decay model, improving asymptotic accuracy. This rate of divergence

declines as the model learns, preventing overlearning and facilitating faster learning following rever-

sal. This is the same pattern observed in the divergence of Go weights in the neural model (Figure 5,

bottom right), where varying pause duration with entropy optimized the divergence of weights rela-

tive to fixed duration pauses.

A local mechanism for entropy modulation of TAN duration
In the neural network simulations we proposed that TANs may have access to entropy over MSNs,

given that they span large regions of the striatum and receive inputs from many MSNs and GABAer-

gic interneurons. However, the biophysical details by which spiny neuron modulate TAN activity are

not fully understood. Direct transmission of entropy may not be trivial as population entropy is a

nonlinear function of the units’ activity. Here we consider a more explicit mechanism by which TANs

directly approximate MSN entropy through synaptic integration. First, consider the minimalist case

of just two MSNs coding for alternative actions. Here, the entropy is high when both are active or

inactive, but low when either of the two units alone is active. In terms of a Boolean function, the

entropy of the two MSNs is the logical opposite of an ’exclusive OR’, a non-linear problem that typi-

cally requires interneurons to detect (Rumelhart and McClelland, 1986). While one potential mecha-

nism for TANs to detect MSN entropy is by including interneurons, this non-linear detection is

linearly solvable if the problem is split into two separate detections: the detection of when both neu-

rons are active and the detection of when neither is active (Figure 8, top left). Consequently, a

Figure 8. Peformance of OpAL in an 85% reward environment. Left: Fast decay in synaptic weights (red lines) result in lower asymptotic accuracy but

speeded learning following reversal while slow weight decay (blue lines) result in the opposite pattern. A model that varies the decay rate with policy

uncertainty (black line) mitigates this trade-off. Right: Slow decay rates result in a large divergence between G weights for the two possible actions prior

to reversal (trial 200) that correlates with high asymptotic accuracy and slower learning speed following reversal, as this divergence must be unlearned.

An entropy modulated decay rate shows a high initial rate of divergence sufficient to improve accuracy but slows as the model learns the task,

facilitating reversal.
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potential approximation for MSN entropy would be the detection of coincident activity (or inactivity)

of pairs of MSNs. While an active readout of joint inactivity is implausible, this problem is solved by

the opponent nature of MSN pathways in the BG (Frank, 2005; Kravitz et al., 2012), where the

TANs could detect either coincident activity of two D1 MSNs signaling Go activity or two D2 MSNs

signaling NoGo activity.

This scheme would require a synaptic organization such that two MSNs associated with different

motor responses synapse close together on the dendrite of a TAN to facilitate coincidence detection

(Figure 9, top right). Coincidence detection between distinct signals is thought to be an important

mechanism both for cellular plasticity (Wang et al., 2000) as well as the coordination of sensory

input (Kapfer et al., 2002). If synaptic signaling from both MSNs is needed to propagate an action

potential to the cell body, then the pair of synapses can be thought of as a coincidence detector. In

logical terms, the synapse pairs perform Boolean ’AND’ detection (Figure 9, top left). Several pair

of D1 synapses located on the dendrites of a single TAN could result in the summation of these sig-

nals in the cell body of the TAN, approximating half of the entropy function signaling that there is

evidence for multiple motor responses. Similarly, multiple pairs of D2 synapses contributes to the

other half of the entropy function, signaling that there is evidence against multiple responses. Thus,

these two measures could effectively approximate decision uncertainty in the MSN population and

are detectable by a single TAN via direct synapses from MSNs. In principle, other mechanisms within

Figure 9. Approximations of MSN population uncertainty. (A) Shannon’s entropy for two MSNs can be expressed with Boolean logic. Low entropy

occurs when only one MSN is active (bottom left or top right box) and is the exclusive-OR function. High entropy is the logical opposite. (B) Spatially

organized synapses could allow the detection of activity in two MSNs associated with separate motor responses, indicating high entropy. Activity in

pairs of D1-MSNs signal high uncertainty given evidence for multiple responses, activity in pairs of D2-MSNs signal high uncertainty given evidence

against multiple responses. (C) Detection of ’AND’ pairs in Go population approximates Shannon’s entropy across time, whereas simple summation of

all Go unit activity does not. Dotted line denotes reversal at mid-point in training. (D) Neural network with AND detection performs well in both an 85%

reward (left) and 40% reward (right) environments as compared to networks with fixed TAN behavior. (E) Varying pause duration with Shannon’s entropy

(green line) or the detection of AND conjunctions (orange line) results in similar behavior. MSNs, medium spiny neurons; TANs, tonically active neurons.
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the striatum could transmit the population uncertainty (e.g., via further interactions between MSNs

and fast-spiking interneurons). Our exercise below thus presents but a single plausible mechanism.

We simulated the network varying the TAN pause with AND detection in the Go units (see

Materials and methods). In a network with a fixed duration TAN pause (180 ms) and trained on an

80% reward schedule, AND detection in Go units followed a similar temporal pattern to Shannon’s

entropy (Figure 9, center left). Both AND detection and entropy decline as the network learns the

task and rise following the reversal of the reward contingencies. Not all summary statistics of MSN

activity follow this pattern: for example, the simple summation of all activity in the Go population

gradually declines over training and consequently, is not suitable for an approximation of entropy

(Figure 9, center right). Notably, modulating TAN pause duration with the AND detection can also

mitigate the behavioral trade-off between flexibility and stability, similar to the patterns observed

using entropy (Figure 9, bottom right).

Simulated ablation of M1-receptors
In the neural network model, varying the duration of the TAN pause alters the degree to which

MSNs are disinhibited during reward feedback. Mechanistically, this depends solely on M2 recep-

tors, which are responsible for inhibition of the TANs in the model, and does not involve changes in

the activity of M1 receptors (see Materials and methods). However, previous empirical studies have

linked M1 receptors to learning after reversal. Both TAN ablations and muscarinic antagonists impair

reversal learning but do not affect acquisition in deterministic tasks (Ragozzino et al., 2002;

Witten et al., 2010), an effect that is specific to M1 receptors (McCool et al., 2008).

To investigate the effects of M1 receptors in the model, we simulated selective M1 receptor abla-

tions (see Materials and methods). In our simulations, the simulated ablation of M1 receptors only

modestly decreases performance during acquisition, resulting in similar asymptotic accuracy as a

control model that does not contain TANs (Figure 3, left). Following reversal, the effects are much

more pronounced as simulated M1 ablation results in severely degraded accuracy (Figure 3, right).

These results are qualitatively consistent with empirical findings showing impairment in reversal

learning following M1 antagonists. It is noteworthy that the impairment with simulated M1 ablations

only occur as a consequence of the disinhibitory effects of the TAN pause that drive MSN activity to

a lower entropic state: control networks simulated without TANs do not show the same degree of

impairment (Figure 3, right). Without this decrease in entropy or the increase in NoGo excitability,

the network is able to learn following the reversal. However, both effects combine to allow the net-

work to adapt more flexibly, perseverating in the correct action when it is rewarded but more sensi-

tive to negative feedback facilitating reorienting.

Simulations of post-pause TAN rebound burst
A phasic increase or rebound burst in TAN activity above tonic firing rates is commonly observed

immediately following the reward-related pause (Aosaki et al., 2010). The functional significance of

this burst is an open question but one likely function of the post-pause burst is to facilitate synaptic

plasticity through the release of dopamine during an important time window. Optogentic stimulation

of TAN neurons leads to the release of dopamine through the activity of the nicotinic receptors on

striatal dopamine terminals (Cachope et al., 2012; Threlfell et al., 2012). Dopamine release precipi-

tated by post-pause TAN activity would result in the delivery of dopamine immediately following a

period in which striatal spiny neurons were disinhibited. This timing has important plasticity conse-

quences as dopamine release following glutamatergic input promotes spine enlargement

(Yagishita et al., 2014). Consequently, we hypothesize the post-pause TAN burst promotes plastic-

ity by releasing dopamine during a sensitive time window following increased spiny neuron activity,

while concurrently suppressing potentially interfering activity with muscarinic inhibition. To investi-

gate the consequences of this hypothesis, we modeled the effects of a phasic increase in TAN activ-

ity following the feedback pause in the reversal learning task in an 85% reward environment. We

found higher post-pause TAN firing rates resulted in higher asymptotic accuracy following reversal

as compared to lower firing rates Figure 10. Interestingly, this effect was selective to reversal: there

was no additional effect of of post-pause TAN activity on learning speed, both prior to and following

reversal, and no effects on asymptotic performance prior to reversal. Together, the effects of TAN
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pause and rebound burst act to enhance the BG network’s ability to reverse and stabilize newly

learned contingencies.

Discussion
To act purposefully, a learner needs to ignore predictable irrelevant feedback driven by environmen-

tal stochasticity, while also flexibly adapting to a changing environment. This problem is general to

learning with several proposed solutions (Yu and Dayan, 2005; Behrens et al., 2007; Mathys et al.,

2011). Here, we proposed how the striatum may incorporate uncertainty to an adaptive process in

line with these general principals of learning with a model in which striatal cholinergic signaling pro-

motes encoding uncertainty in the MSN population. Across all simulations, incorporating TANs

increased asymptotic performance over the previously published BG model (Frank, 2005). Simulated

lesions of M1-AChRs revealed a qualitatively similar pattern of behavior as reported in rodent abla-

tion and optogenetic studies (McCool et al., 2008; Witten et al., 2010). Parametric manipulations

of TAN pauses revealed a trade-off between asymptotic accuracy and flexible learning driven by

changes in MSN entropy. As a result, a network with any fixed TAN behavior can perform well in

one task but may perform poorly in others. MSN entropy decreased over time in networks with

long, fixed duration TAN pauses, making them less sensitive to stochastic noise, and facilitating per-

formance in highly stochastic, sparsely rewarded environments. In contrast, networks with short,

fixed duration TAN pauses had relatively constant levels of MSN entropy, resulting in labile repre-

sentations sensitive to noise. As these networks are sensitive to negative feedback, they were able

to learn quickly following a reversal, particularly in more deterministic environments.

The behavioral trade-off seen in the network is a product of a fixed learning behavior in a stochas-

tic and non-stationary environment. Optimal behavior in such environments requires balancing the

need to create precise estimates of an action’s value with the flexibility to respond to sudden

changes (Yu and Dayan, 2005; Behrens et al., 2007; Nassar et al., 2010). These goals are counter-

posed, thus any fixed learning rule that treats each observation equally at the time of observation

will not be able to achieve both. If a learner is sensitive to recent events, she will be quick to detect

changes but sensitive to any noise in the observations. Conversely, if a learner considers a longer

time window to determine the best course of action, she will be slower to detect a change but be

able to ignore irrelevant outcomes. Computationally, this pattern can be described by decay rate in

the approximately Bayesian model as a fast decay rate considers recent events more strongly than a

slow decay rate, which considers a longer history of events.

Figure 10. Post-pause TAN burst. An increase in phasic TAN activity following the feedback-related pause

modulates asymptotic performance following reversal. Simulations shown with a fixed TAN pause of intermediate

duration (190 ms) in an 85% reward environment, post-pause TAN firing rates are presented in normalized units of

change relative over a baseline firing rate corresponding to the tonic firing rate. TAN, tonically active neuron.
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These findings suggest that TANs may provide an effective way of annealing the learning rate at

the population level by implicitly coding uncertainty in the spiny neuron population code and making

learning in the basal ganglia more (though not perfectly) Bayesian. Short TAN pauses are computa-

tionally similar to a high learning rate (fast decay in the Bayesian model) and long TAN pauses are

similar to a low learning rate (slow decay). These effects are driven by relative differences in disinhibi-

tion of MSNs during reinforcement, and are not dependent on temporal dynamics of the pause (the

same tradeoff between flexible and stable learning was seen when the magnitude of the pause

rather than duration was manipulated). During the TAN pause, the reduction in TAN activity lowers

the level of MSN inhibition, increasing the differential of activity between response selection and

feedback. The greater disinhibition associated with longer TAN pauses results in a higher differential

of activity and stronger reinforcement, driving the MSN population towards a lower entropy repre-

sentation. Conceptually, embedding uncertainty into the population code of spiny neurons is similar

to proposals that probabilistic population codes are used to maintain distributions for Bayesian infer-

ence (Ma et al., 2006). In both cases, the entropy of the population code can represent uncertainty,

but here we explore the implication of this notion for learning within the basal ganglia, rather than

inference in sensory cortex.

The reduction in MSN entropy with learning results in a lower population-level learning rate. This

happens because the reduction in entropy reflects a reduction in the number of units active during

reinforcement, such that the highly active units representing the dominant (most rewarded) action

will persist in the face of spurious outcomes. Highly active units require more reinforcement to

unlearn the association while inactive units are not available for reinforcement due to activity-depen-

dent plasticity. As a result, an MSN population with lower entropy learns more slowly. As previously

pointed out with the basal ganglia acetylcholine-based entropy (BABE) model, a reduction in MSN

entropy will also decrease stochastic exploration as a decrease in MSN entropy lowers noise in the

evidence for action (Stocco, 2012). In this work, we provide a single mechanism that affects learning

rate and exploration as a function of entropy, but we note that even the exploration effect is learned

and is collinear with the change in learning rate: we manipulated TAN pauses only during reinforce-

ment, the window in which pauses overlap with phasic dopamine responses (Morris et al., 2004).

Both changes arise as changes in synaptic weights alter the entropic representations in future trials,

allowing the network to anneal its learning rate and change its stochastic exploration adaptively with

its own uncertainty.

Given the size and extensive connectivity of TANs within the striatum, it is plausible that TANs

are responsive to MSN entropy or a correlate, such as the coincident detection of pairs of active Go

or NoGo neurons associated with separate motor responses. TANs receive substantial GABAergic

innervation from MSNs (Gonzales et al., 2013) and are regulated by the neuropeptides enkephalin

and substance P from MSN axons (Gonzales and Smith, 2015). This connectivity appears to be

involved in learning as Pavlovian learning has been associated with an increase of d-opioid receptor

expression in TANs in rodent accumbens (Bradfield et al., 2013; Laurent et al., 2014). We have

proposed, given this connectivity and the potential for MSNs to represent action selection uncer-

tainty within a population code, it is plausible that a measure of uncertainty could be approximated

directly with signaling from MSNs to TANs.

Differences in TAN pause duration have been reported in several cases that lead us to the

hypothesis that the TAN pause duration may be an important modulator of cellular activity. In a

behavioral context, differences in TAN pause duration have been reported to the motivational

valence of a stimuli (Ravel et al., 2003) and to the presence or omission of reward (Apicella et al.,

2009). In vitro, application of dopamine can elongate the TAN pause response (Deng et al., 2007)

and the duration of the pause has been linked to the magnitude of initial excitatory input

(Doig et al., 2014). These results suggest the duration of the TAN pause may be an important regu-

lator mechanism and we further hypothesize that the local collaterals from many spiny neurons

across the striatum onto a single giant TAN would allow the TAN to reciprocally modulate MSN

population activity.

However, an important caveat to this hypothesis is that while the MSN to TAN synaptic connec-

tions are established and influence inhibitory currents within TANs (Bolam et al., 1986;

Chuhma et al., 2011), we are not aware of direct in vivo evidence that TAN pauses are modulated

by MSN activity. This constitutes a core prediction of the model. We propose that coincident MSN

activity is largely involved in regulating the TAN pause that occurs during novel and/or rewarding
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events (forming a window around phasic dopaminergic signaling) and may be less relevant at other

periods of time. However, the exact influence of MSNs signaling on TAN activity and the mechanism

for its transduction remain open to questions.

An alternate hypothesis is that pause duration is not modulated by MSN activity at all and reflects

excitatory and dopamine input (Ding et al., 2010). In this case, we might still expect TAN activity to

reflect uncertainty signals relevant to learning, relayed from other brain areas. The source of an

uncertainty signal might originate through an explicit system that could signal a change-point in the

reward rate (Behrens et al., 2007; Nassar et al., 2010; Wilson et al., 2010) or infer a change in a

latent context or rule-structure (Gershman et al., 2010; Donoso et al., 2014). In principle, MSN

entropy could also be influenced by hierarchical inputs from cortical areas that either further con-

strain action selection or increase noise, based on other factors such as perceived volatility. Human

functional MRI (fMRI) studies have identified correlates of uncertainty processing in multiple areas,

notably in the anterior cingulate cortex and striatum (Behrens et al., 2007; Bach et al., 2011), leav-

ing open multiple possible mechanism to consider uncertainty at the whole brain level, including the

top-down modulation of MSN entropy or TAN signals. Interestingly, a recent fMRI study have linked

abstract prediction errors to the basal-forebrain, a separate source of cholinergic signaling

(Iglesias et al., 2013). A final possibility is that uncertainty can be communicated to the TANs via

more complex local striatal networks involving both MSNs and GABAergic interneurons, or an exter-

nal source, such as a derivative of the dopamine learning signal. Nevertheless, while we have pro-

posed that MSN synapses on TANs may directly relay an uncertainty cue, the core model prediction

that TANs promote adaptive striatal learning via some representation of uncertainty is not itself sen-

sitive to the source of the uncertainty cue.

Accordingly, the model makes several novel empirical predictions. A central prediction of the

model is that MSN entropy should correlate with decision uncertainty during a task, which interacts

with task stochasticity, and should covary with the degree of TAN pause inhibition. Similarly, we pre-

dict TAN pause duration (or equivalently, TAN firing rate) should correlate with decision uncertainty.

Whereas previous studies have found a link between TAN activity and reversal learning

(Ragozzino et al., 2002; Witten et al., 2010), our model makes the more specific prediction that

M2 blockade would correspond with a decrease in overall accuracy during the performance of a

probabilistic reversal learning task with multiple reward schedules. Notably, these manipulations

were performed in the medial striatum, an area typically thought to be more involved in reversal

than acquisition (Clarke et al., 2008). It is an open question whether TAN ablations would affect

acquisition performance in other striatal areas, and in fact our model does predict changes in acqui-

sition depending on the probabilities of reinforcement. We also expect M2 blockade would affect

the tradeoff between exploration and exploitation by interfering with the striatum’s ability to anneal

it’s own exploration policy with uncertainty. We would expect this effect to extend to overtraining;

M2 blockade may lessen the effects of overtraining on stochastic tasks. We would expect optogentic

silencing of TANs entirely to have similar effects.

While there are several previously proposed solutions to the general learning problem posed

here (Yu and Dayan, 2005; Behrens et al., 2007; Mathys et al., 2011), the model we provide here

is not meant as an alternative to these high level descriptions. Rather, we propose how a specific sys-

tem, the striatum, can modulate its own behavior adaptively in line with Bayesian accounts and pro-

vide an interpretation of the role of TANs, tying together electrophysiological, pharmacological,

lesion and behavioral data. This poses an additional theoretical question, as there is evidence to sug-

gest that people learn in an adaptive way when faced with change points (Behrens et al., 2007;

Nassar et al., 2010), and in different contexts in a process that likely involves the frontal cortex

(Collins and Koechlin, 2012; Collins and Frank, 2013): why would the striatum consider uncertainty

in a heuristic fashion if other systems are able to consider uncertainty explicitly? One benefit such a

heuristic system that approximates optimal behavior could offer would be a lack of complexity. Opti-

mal adaptation in a changing environment requires knowledge of the generative process underlying

change, a problem that is complex and potentially ill-posed. Inference over the generative model

may be too costly in highly complex, rapidly change or novel environments. In such an environment,

striatal uncertainty could still be available and alter behavior in an adaptive way, encouraging explo-

ration and weighing recent feedback strongly.
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Limitations
While there is some evidence that the duration of the TAN response may be an important regulator

of cellular activity, the duration of the TAN pause has often not been linked to signaled probability

of reward (Morris et al., 2004). It is important to note that the uncertainty over which actions are

selected is independent of signaled probability of reward. As such, we would not expect the TAN

response to vary with signaled probability of reward in well-trained animals performing a task in

which the reward contingencies do not change. If the animals have learned the task well, then the

uncertainty about the frequency of reward in a fixed schedule will be low.

Furthermore, the predictions of our model are not sensitive to the choice of TAN pause duration

as a parameter of interest. In the implementation proposed, the duration of the TAN pause controls

the degree to which spiny neurons are disinhibited. The algorithm we have used to simulate learning

in the neural network model is sensitive to differences in excitation between stimulus presentation

and feedback and these changes in disinhibition result in changes to the degree weights are

updated in the neural network model. The model would make the same prediction if we varied the

overall firing rate during the pause or altered inhibition directly.

An additional limitation is the focus of the current work on the effects of TAN behavior on MSN

excitability relative to other components of striatal cholinergic signaling. The initiation of the TAN

response depends on both dopamine and thalamic signaling, (Aosaki et al., 1994; Ding et al.,

2010) both of which convey behaviorally relevant information (Montague et al., 1996;

Matsumoto et al., 2001) and which we have not considered in the current work. Rather, we have

only considered the modulation of such signals by MSN activity via collaterals. TANs may play a role

integrating thalamic and dopaminergic signaling, but we are unable to make predictions about

changes in the TAN response motivated by cell signaling or receptor activation.

Materials and methods

Neural network model of the basal ganglia
The neural network model presented here was adapted from the basal ganglia model presented by

Frank (2006) and implemented within the emergent neural network software (Aisa et al., 2008).

The model is available on our online repository at http://ski.clps.brown.edu/BG_Projects/Emer-

gent_7.0+/. The model uses point neurons with excitatory, inhibitory and leak conductance that con-

tribute to an integrated membrane potential transformed into a rate-code. Learning in the model is

accomplished with the Leabra algorithm (O’Reilly and Munakata, 2000) and a reinforcement learn-

ing version based on dopaminergic modulation of Hebbian plasticity (Frank, 2005).

The neural network model is an attractor network organized into layers of point neurons (units), in

which layers represent neural structures (c.f. Frank, 2006 for a more detailed description of the

model). The network is dynamic across time, and units within the network have stochastic behavior.

The membrane potential Vm of each unit within a layer is updated at each cycle (discrete time-point)

as a function of its net current Inet and a time constant tnet:

dVm

dt
¼ tm� Inet

The net current of a unit is, in turn, a stochastic function of its excitatory, inhibitory, and leak con-

ductances (g) updated at each cycle as follows:

Inet ¼ geðtÞgeðEe�VmÞþ

gi tð Þgi Ei �Vmð Þþ

gi El �Vmð Þþ

. . .

where Vm is the membrane potential of the unit, EC is the equilibrium potential for current c, and

where the subscripts e, l, and i refer to the excitatory, leak, and inhibitory currents, respectively. The

total conductance of each channel gc are decomposed into the constant and time varying compo-

nents gc and gc(t). Units in the network are connected via synaptic weights, which can be excitatory
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or inhibitory. The total excitatory input/conductance ge(t) to a unit is a function of the mean of the

product the firing rate of each sending unit xi and the corresponding synaptic weights wi, a time

constant tg and a scaling factor k:

dge

dt
¼ tg k

1

n

X

i

xiwi � geðtÞ
 !

Inhibitory conductance is computed similarly, but applied to synaptic inputs that come from inhib-

itory neurons, while leak conductance does not vary with time. Gaussian noise (s) is added to the

membrane potential Vm of a subset of units in the network (units in the motor cortex and substantia

nigra layers, s =. 0015 and. 002 respectively, sampled from at each cycle of processing). As the con-

ductances of each unit vary across time and between trial to trial as a function of input activity, the

rate-coded activity of each unit with a layer varies with its inputs and noise. This added noise induces

stochasticity in network choices (and their latencies; Ratcliff and Frank 2012) for any given set of syn-

aptic weights, encouraging exploration: noise in motor cortex induces changes in the degree to

which a candidate response is active and hence subject to disinhibition by gating via striatum, and

noise in the SNc facilitates within-trial variation in the balance between Go and NoGo unit activity,

differentially emphasizing learned positive versus negative outcomes and their effect on gating.

Together, these sources of variance yield stochastic choice and dynamics within the striatum shown

in Figure 2.

The activity communicated to other units in the network, yj, is a threshold sigmoid function of the

membrane potential:

yjðtÞ ¼
1

1þ 1
g½VmðtÞ�Q�þ

where g is a gain parameter and where ½X�þ is a function that returns 0 if X � 0 and X otherwise.

This function is discontinuous at VmðtÞ ¼ Q, and is smoothed with a Gaussian noise kernel (� ¼ 0,

s ¼ 0:005) to produce a softer threshold and represent the intrinsic processing noise in neurons:

y�j ðxÞ ¼

ð

¥

�¥

1
ffiffiffiffiffiffiffiffiffi

2ps
p e

� z2

2s2yjðz�xÞdz

where x is the value ½VmðtÞ � Q�þ and y�j ðxÞ is the noise-convoluted activation.

The layers in the network represent neural structures within the basal ganglia and thalamus. As a

first approximation, action selection in the neural network is mediated by two simulated populations

of MSNs. The populations of ’Go’ and ’NoGo’ units, representing striatonigral (’D1’) and striatopalli-

dal (’D2’) MSNs, respectively, receive excitatory input from a cortical layer corresponding to a unique

stimulus. Both the Go and NoGo layer contain 18 units, half of which, through their downstream tar-

gets, are connected to one of two motor responses. Reciprocal connections with a layer of inhibitory

interneurons (simulating the GABergic fast-spiking interneurons in the striatum) control the overall

excitability of the two populations. Activity in Go units inhibits a population in the globus pallidus

interal segment (GPi), which results in disinhibition of the thalamus. Activity in the NoGo units inhib-

its a population in the globus pallidus external segment (GPe), which results in disinhibition of the

GPi and inhibition of the thalamus. If there is sufficient activity in the thalamus, it provides a bolus of

activity to a corresponding motor cortical column, which can then inhibit its competitors via lateral

inhibition, and an action will be selected. This process is stochastic at a network level and depends

both on interactions between units that vary with time (learning) as well as noise in the network

within trials. However, while this process has trial to trial variability, activity in the Go pathway will

facilitate the selection of an action through its downstream effects on the thalamus while activity in

the NoGo pathway will suppress response selection.

Learning in the model occurs through weight updating in corticostriatal synapses without a super-

vised learning signal. A combination of a Hebbian learning rule and a contrastive Hebbian learning

rule are used to determine the weight updates. Variants of contrastive Hebbian learning are consis-

tent with large scale simulations of spike-time dependent plasticity (O’Reilly et al., 2015) and serve

as a simplifying assumption to a more detailed mechanism of synaptic plasticity. The Hebbian
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component of the learning rule assumes that the coactivation of MSNs and their cortical inputs pro-

portionally determines the synaptic weight change. The contrastive Hebbian component is deter-

mined by the difference in coactivation of pre- and postsynaptic activity across response selection

(’minus phase’) and outcome feedback (’plus phase’). The equation for the Hebbian weight change

Dhebbwij between sending unit xi and receiving unit yj is defined:

Dhebbwij ¼ yþj ðxþ
i �wijÞ

where yþj refers to the activity of the receiving unit during outcome feedback (’plus’ phase) and xþ
i is

the activity of the sending unit. The contrastive Hebbian weight change is

DCHLwij ¼ ðyþj xþ
i Þ� ðy�j x�i Þ

Where y�j and x�
i are the activity of the receiving and sending units during action selection

(’minus’ phase). The contrastive Hebbian term is subject to a soft-weight bound to keep between 0

and 1:

DsbCHLwij ¼ ½DCHL�þð1�wijÞþ ½DCHL��wij

where ½X�þ is a function that returns X if X > 0 and 0 otherwise and where ½X�� is a function that

returns X if X < 0 and 0 otherwise. The Hebbian and contrastive Hebbian terms are combined addi-

tively with a normalized mixing constant khebb

Dwij ¼ " khebbDhebbþ 1�khebbð ÞDsbCHL½ �

Dopamine acts as a training signal in the model, providing a phasic increase during feedback for

correct responses and a phasic pause for incorrect responses. Dopamine is simulated to act through

D1 receptors in Go units, increasing excitability. In addition, D1 receptors were simulated to

enhance contrast by increasing the striatal unit’s activation gain and activation threshold. This has

the effect of increasing the activity of highly active Go units and decreasing the activity of weakly

active units, increasing the signal-to-noise ratio. D2 receptors were simulated in NoGo units such

that an increase in dopamine decreases NoGo excitability. As a result, a phasic increase in dopamine

during feedback has the effect of increasing Go activity relative to NoGo activity while a phasic

decrease in dopamine will have the reverse effect. Altering the activity of Go and NoGo units in

response to phasic changes in dopamine during feedback alters coritcostriatal weights through the

contrastive Hebbian component of the learning rule. This facilitates error driven learning without

providing the network a supervised learning signal.

TAN behavior
TANs are endogenously active in the absence of synaptic activity (Bennett and Wilson, 1999) and

were modeled as a separate endogenously active layer in which the leak channel equilibrium poten-

tial El was typically higher than Vm. Unlike striatal Go and NoGo units, the activity of TANs were not

dependent on synaptic signaling from other units in the network and TANs were simulated with little

stochasticity. During stimulus presentation and action selection, TAN activity was held constant

across all trials in all simulations (Figure 2, top left). Following action selection, a TAN burst–pause

was simulated during outcome feedback. The burst was simulated at the onset of feedback to mirror

the TAN burst by transiently increasing Vm above the equilibrium potential. The subsequent pause

was generated with an accommodation current, which allows the initial burst of TAN activity to cre-

ate a subsequent hyperpolarization. This simulates the after-hyperpolarization that has been found

to follow a depolarization in TANs via calcium-dependent potassium current (Wilson and Goldberg,

2006).

An accommodation current Ia drives the membrane potential toward a low value which is added

to Inet: Ia ¼ gaðtÞgaðEa � VmÞ. A high accommodation current has the effect of hyperpolarizing the

neuron as a function of how active it has been, simulating gated ion channels that accumulated with

activity and driving the membrane potential to a low value. Consequently, the initial high firing rate

at the onset of reinforcement causes the activity-dependent accommodation current to hyperpolar-

ize the TAN units, silencing them for a length of time during feedback. The accommodation current

is updated at each time step as a function of its time constant, ta:
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dga

dt
¼

tga

�

1� gaðtÞ
�

if baðtÞ>Qa

tga

�

0� gaðtÞ
�

if baðtÞ<Qd

8

<

:

where tga is the time constant of the channel conductance,Qa and Qd are the activation and deactiva-

tion thresholds required to invoke accommodation, respectively. The basis variable ba is a time aver-

age of the activation state:

dba

dt
¼ tba

�

yj � baðtÞ
�

where tba is the time basis variable time constant and yj is the unit activity. During periods of persis-

tently high activity, the basis variable ba will increase in proportion to its time constant tba . When the

basis variable exceeds the activation threshold Qa, the accommodation conductance will increase,

resulting in a net decline in current and a lower TAN firing rate. This process simulates the Ca2+

dependent potassium currents in TANs: the basis variable simulates the build up of Ca2+ in the cell

and the effects of the basis variable on accommodation conductance simulates the opening (or clo-

sure) of Ca2+ dependent channels. During the subsequent pause, dba
dt

is negative as activity is low,

causing the accommodation current to subside as the basis variable falls below the deactivation

threshold Qd, resulting in an increase in Vm at the end of feedback (post-pause rebound, Figure 2,

bottom left).

The behavior of the TAN pause was manipulated by varying tba . Networks with fixed TAN pauses

were simulated by specifying a constant value of tba such that the duration of the TAN pause lasted

a pre-specified duration. The duration of the pause is reported in milliseconds (ms), which converted

from cycles (the base unit of time within the network) at an assumed rate of 10 ms/cycle (Ratcliff and

Frank, 2012). Pause durations were simulated ranging from 120 ms to 280 ms in 10 ms steps. For

networks with a variable TAN pause, we simulated the impact of inhibitory collaterals from MSNs

onto TANs such that the time constant tba was proportional to MSN activity (using either entropy or

a more realistic approximation thereof, see below). This embodies our assumption that MSNs do not

directly induce the TAN pause (which is driven by external inputs, e.g. from thalamus) but modulate

its duration via accommodation (potentially via calcium-dependent potassium currents; Wilson and

Goldberg, 2006) leading to an MSN activity-dependent reduction in TAN activity via direct

signaling.

For the initial simulations of an adaptive mechanism to control pause duration, tba was updated

as a function of the Shannon’s entropy across the population of Go units on a trial to trial basis. On

each time step during stimulus presentation, the rate-coded activity of each Go unit was normalized

such that the normalized activity of all Go units summed to one. The normalized activity was then

treated as a decision variable for the purposes of calculating entropy: the sum of activity over all

units that contributed to a single response was treated as the probability of the selection of that

response:

paðtÞ ¼
X

na

i¼1

yai ðtÞ

where yai ðtÞ is the activity of unit i corresponding to action a at time t. This assumption conforms

with other interpretations of population activity within typical network models, where a probability

distribution can be created by normalizing activation levels within a finite set of units (Hinton and

Sejnowski, 1983; Rao, 2005; D’Angiulli et al., 2013). While the model presented here is more bio-

logically complex, the same principle applies when treating the firing rates of discrete units as a

probability distribution over actions. Shannon’s entropy was calculated with paðtÞ and summing

across all cycles within the action selection phase:

H ¼�
X

t

X

a

paðtÞlog2paðtÞ

High entropy indicates that there is more competition between actions in the Go units and low

entropy indicates low competition. We leverage this same quantity for controlling TAN pauses via
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adaptive feedback (as described above) and also as a statistic to approximate the uncertainty of the

network over its action selection policy, and how this evolves across learning.

A second more biophysical feedback mechanism was simulated, where instead of using an analyt-

ical expression for MSN entropy, TANs directly approximate MSN population entropy through syn-

aptic integration. In these simulations, co-activation of pairs of MSNs co-localized on TAN dendrites

were assumed to drive changes in TAN pause behavior. Thus the TAN time-constant tba was

adjusted as a function of supra-threshold activity in pairs of Go units, in which each member of the

pair corresponded to a different action (Figure 9). The 9 Go units corresponding to each of the 2

available actions were organized into 9 pairs of units. The activity in each unit was threshold and if

the activity in both units were above threshold, the pair was counted as having an ’AND conjunction’

(as the detection of supra-threshold activity is equivalent to the Boolean function AND):

cj ¼ 1 if ðykj > �Þ AND ðylj > �Þ
0 otherwise

�

where cj is the Boolean value (0 or 1) of the ’AND conjunction’ for the pair of units j, ykj and ylj are

the activities for the units associated with actions k and l, respectively, � is the threshold value. The

value of cj across over all the actions and across all cycles in the action selection phase of a trial:

Hconj ¼
X

t

X

j

cjðtÞ

The time constant tba was set as a function of Hconj which accumulated during response selection

and hence affected the duration of subsequent accommodation hyperpolarization during the pause

induced by the initial burst in the subsequent reinforcement phase.

Synaptic effects of TAN activity
TANs were simulated to modulate Go and NoGo activity largely through the activity of M2 and M1

muscarinic receptors. The effects of M1 and M2 receptors are relatively well understood

(Goldberg and Reynolds, 2011) and thus suitable for modeling. M1 and M2 receptors have oppos-

ing effects on MSN excitability: M1 activity increases dendritic excitability of indirect pathway MSNs

through the post-synaptic closure of Kir2 K+ channels (Shen et al., 2007), while M2 receptors inhibit

glutamate release in presynaptic terminals of both direct and indirect pathway MSNs

(Calabresi et al., 1998; Ding et al., 2010). Cholinergic signaling can also modulate MSN excitability

through increased GABAergic inhibition (Witten et al., 2010). Crucially, these effects act at different

time scales: M1 activity is longer lasting and slower to initiate than the pre-synaptic effects of M2

receptors (Shen et al., 2005; Ding et al., 2010). Thus, the different temporal dynamics receptor

activity may interact with the time-course of the TAN response: whereas the TAN burst activates M1

receptors and increases excitability in indirect pathway MSNs, the subsequent TAN pause reduces

M2-mediated presynaptic inhibition and postsynaptic GABAergic inhibition (Gerfen and Surmeier,

2011).

M2-like muscarinic receptors are located on pre- and postsynaptic glutamatergic afferents of

MSNs have the effect of inhibiting corticostriatal glutamate transmission (Goldberg and Reynolds,

2011). The effects of M2-like receptors were modeled with inhibitory synaptic connections from

TANs to the Go and NoGo units. Excitatory synaptic connections to inhibitory interneurons were

also used to simulate the nicotinic stimulation on GABAergic interneurons (Witten et al., 2010).

These interneurons project to both Go and NoGo units and have an inhibitory effect. The effects of

simulated M2 receptors and excitatory connections to the interneurons results in increased inhibition

of both layers during action selection when TAN activity is constant (Figure 2, left) and disinhibition

during the feedback pause (Figure 2, center).

M1 muscarinic receptors were simulated with a transitory increase in the leak channel Equilibrium

potential El for NoGo units during feedback. This was done to simulate the effects of M1 activity on

inward rectifying potassium currents (Goldberg and Reynolds, 2011). Although M1-mRNA is found

in both striatopallidal and striatonigral MSNs, the effect was simulated in the NoGo Layer only as

increased sensitivity to glutamatergic signaling is selective to striatopallidal MSNs (Shen et al.,

2007). In order to simulate M1 antogonists, the transitory increase in leak channel equilibrium
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potential in NoGo units during the simulated TAN pause was removed. No effects of M1 receptors

were simulated during the action selection phase.

Where noted, a rebound post–pause phasic increase in TAN activity was also modeled. A phasic

increase in TAN activity is commonly reported following the feedback related TAN pause

(Aosaki et al., 2010). Mediated by nicotinic acetylcholine receptors located on dopamine terminals

in the striatum, the release of acetylcholine associated with a phasic increase in TAN activity evokes

dopamine release (Cachope et al., 2012; Threlfell et al., 2012). The release of DA during the post–

pause phasic TAN burst may modulate cortico-straital plasticity in relation to activity during the

feedback related pause DA release promotes spine growth specifically when stimulated after spiny

neuron activity (Yagishita et al., 2014). The effects of the post-pause TAN burst were modeled by

simulating the modulation of dopamine release by nicotinic receptors through the modulation of the

dopamine membrane potential during the plus phase. The observed dynamic range of effects were

normed as change TAN firing rate above baseline from 0 to 1.

Bayesian model
An approximately Bayesian reinforcement learning model was used as a computational level descrip-

tion of the behavior of the neural network model. For i.i.d. Bernoulli trials in a stationary task (a rea-

sonable approximation of the task), the exact posterior distribution of expected values is a beta

distribution parameterized with a and b (Daw et al., 2005)

Qðs;aÞ~Betaða;bÞ

The parameters a and b can be updated online after each trial with the following rules:

aðtþ1Þ ¼ aðtÞþ rðtÞ

b tþ1ð Þ ¼ b tð Þþ 1� r tð Þ

where the reward on the current trial, r(t), is either 0 or 1. Because the task is non-stationary, a multi-

plicative parameter g ranging from 0 to 1 was used to decay the parameters a and b during the

update:

aðtþ1Þ ¼ gðaðtÞþ rðtÞÞ

aðtþ1Þ ¼ gðaðtÞþ 1� rðtÞÞ

This multiplicative decay parameter increases the flexibility of the learner and has been used pre-

viously to model human learning (Daw et al., 2005; Doll et al., 2009, 2011). In simulations, g was

either held constant throughout training (analogous to fixed pause duration) or varied as a function

of trial-to-trial changes in uncertainty with two free parameters, g0 and g1:

logitðgÞ ¼ g0 þg1�DH

The free parameters g0 and g1 determine the baseline decay rate and sensitivity to trial-to-trial

variations in uncertainty. Importantly, g1 was negative as performance is best when the model

decays more quickly (and hence learns more from individual outcomes) during conditions of high

uncertainty/volatility, analogous to shorter TAN pauses with more MSN uncertainty. Uncertainty was

defined as the Shannon’s entropy of the action selection probability, determined by integrating the

expected values of both actions over the belief distributions:

H ¼�
X

n

i¼1

pðajsÞlog2pðajsÞ

The difference in entropy between trials was smoothed using a delta rule algorithm with the

learning rate h as a parameter. DHðaÞ was initialized at the 1 bit (the maximum possible entropy)

and updated after each trial with the following rule:

DH‹DHþhd

d¼ DH� Ht�Ht�1½ �
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Smoothing the difference in entropy between trials reduces the influence of trial-to-trial variance

and allows for entropy for previous recent trials to influence the decay rate.

Action selection was accomplished through sampling Q-values. This allows for the consideration

of uncertainty during the action selection. For each trial, a Q-value from the belief distribution of

each available action was randomly sampled. The action with the highest Q-value was selected for

the given trial.

OpAL
An algorithmic model of the basal ganglia adapted from the OpAL model (Collins and Frank, 2014)

was used to provide a mechanistic description of the feedback-control mechanism proposed in the

neural network. OpAl is an actor–critic reinforcement learning model that mimics the opponent (D1/

D2) actor system in the neural network. In OpAL, a single critic learns the value of a stimulus with its

own learning rate (hc). A prediction error (d), the difference between the observed reward ðr) on a

trial and the learned value of the critic on trial ðVtÞ, is used to update the estimate on each trial.

d¼ r�Vt

Vtþ1 ¼ Vt þhcd

The prediction error on each trial is also used to update to actor values, a ’Go’ (Gt) and ’NoGo’

(Nt) value, for the chosen action conditional on the current stimulus with two separate learning rates:

Gtþ1 ¼GtþhGd

Ntþ1 ¼Nt þhNd

where hG and hN are the learning rates for the G and N weights, respectively. These two actor val-

ues correspond to the Go and NoGo units in the neural network and model learned contributions of

striatonigral and striatopallidal MSNs to action selection. Choices between actions were made using

a softmax policy choice on the linear combination of actor weights:

pðaÞ / expfbGGa�bNNag

Here, bG and bN control the degree to which each of the weights influence action and pðaÞ is the
probability action a is selected. Collins and Frank (2014) simulate a variety of documented effects

with this model, including how dopamine affects the asymmetry in learning and choice incentive

(sensitivity to gains vs costs of alternative actions), show how its behavior converges to expected val-

ues and provide a normative interpretation.

Here, we expand OpAL to include the effect of TANs on modulating learning rate, using a multi-

plicative decay term, g. On each trial, following the update of the actor weights, the weights were

decayed to a naı̈ve prior with the inverse logit transform of g as follows:

Gtþ1‹Gtþ1
1

1þ e�g

� �

þ 0:5� 1� 1

1þ e�g

� �

Ntþ1‹Ntþ1
1

1þ e�g

� �

þ 0:5� 1� 1

1þ e�g

� �

The inverse logit transform of g range bounds the decay rate between zero and one. Gamma was

either held fixed, simulating fixed duration TAN pauses, or was allowed to vary with as a linear func-

tion of entropy in the model. Entropy in the model was the Shannon’s entropy of the policy function:

H ¼�
X

a

pðaÞlog2pðaÞ

Simulated task
Both the neural network and Bayesian models were trained on a series of two alternative forced

choice tasks. In each trial, the models were presented with one of two stimuli and made one of two

responses. Equal valued rewards were delivered pseudo-randomly on a fixed stochastic schedule

over epochs of 20 trials. The reward schedule for the two options were not yoked, such that sam-

pling one action did not provide full information of the other’s reward schedule. After 10 epochs of
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20 trials (or 200 trials), the reward contingencies for each action were exchanged and the models

were trained on an additional 10 epochs.

For both the neural network and the Bayesian models, each parameterization was trained on 50

instantiations. Initial weights of the neural network were randomized for each simulation. Simulations

were run over eight reward schedules. The payout schedules for the best action were 85, 80, 75, 70,

65, 60, 55 and 40%. The payout schedules for the lowest rewarded action action were 15, 20, 25, 30,

35, 40, 45 and 10%. Comparisons between the neural network with and without TANs, as well as the

manipulation of pause duration, were shown in networks trained on an 80/20% reward schedule.
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