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Abstract

Humans routinely face novel environments in which they have to generalize in order to act

adaptively. However, doing so involves the non-trivial challenge of deciding which aspects

of a task domain to generalize. While it is sometimes appropriate to simply re-use a learned

behavior, often adaptive generalization entails recombining distinct components of knowl-

edge acquired across multiple contexts. Theoretical work has suggested a computational

trade-off in which it can be more or less useful to learn and generalize aspects of task struc-

ture jointly or compositionally, depending on previous task statistics, but it is unknown

whether humans modulate their generalization strategy accordingly. Here we develop a

series of navigation tasks that separately manipulate the statistics of goal values (“what to

do”) and state transitions (“how to do it”) across contexts and assess whether human sub-

jects generalize these task components separately or conjunctively. We find that human

generalization is sensitive to the statistics of the previously experienced task domain, favor-

ing compositional or conjunctive generalization when the task statistics are indicative of

such structures, and a mixture of the two when they are more ambiguous. These results

support a normative “meta-generalization” account and suggests that people not only gener-

alize previous task components but also generalize the statistical structure most likely to

support generalization.

Author summary

To act in new situations, people not only have to generalize from previous experiences,

but they also have to decide how to do so. One strategy is to re-use behaviors they’ve

already learned, but this will only be helpful if all aspects of the new situation are similar

enough. Alternatively, people can combine knowledge from multiple sources and devise a

new plan. For example, a skilled musician may re-use the hand motions learned playing
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the guitar to play a different style of music on a banjo. Previous theoretical work has sug-

gested that the best strategy is to learn from the statistics of the environment to decide

how to best generalize, whereby some environments imply that all parts of a task should

be re-used as a whole, whereas others suggest that different components can be general-

ized separately. Here, we test whether people’s generalization strategy changes with their

environment using three navigation tasks, in which people have to decide both where they

want to go and how to get there. We varied whether it was advantageous to generalize

these two pieces of information separately or together and found that people adapted their

generalization in line with an optimal computational model of meta generalization. These

results suggest that people not only generalize what they learn within a single task, but

they also generalize their generalization strategy as well.

Introduction

It has long been proposed that rather than simply re-use past associations in a novel scenario,

humans can flexibly recombine components of prior knowledge to take novel actions [1]. For

example, an adept musician can learn multiple instruments by generalizing the motor skills

needed to play across instruments, even as they use those skills to different effect across the dif-

ferent instruments. Conversely, they can transfer songs learned on one instrument to another

even as the movements needed to play a song on the piano, for example, are very different

than that of a guitar. In principle, the sequences of notes used to generate songs are distinct

from the skills needed to play an instrument: each is an independent component that can be

combined with others arbitrarily. This degree of compositionality is critical for flexible goal-

directed behavior but is often lacking in theoretical accounts of human and animal

generalization.

Previous models have considered how agents and animals can cluster “latent states” across

multiple contexts that share task statistics in both Pavlovian [2] and instrumental learning set-

tings [3, 4]. These models assume each context acts as a pointer to a latent structure, and gen-

eralizing task statistics requires inference over which structure the current context belongs to.

This form of Bayesian non-parametric clustering and generalization can be approximately

implemented in corticostriatal gating networks endowed with hierarchical structure [3] and

have been used to explain human generalization behavior and neural correlates thereof in a

number of reinforcement learning tasks [3–9].

However, the form of clustering assumed in these models introduces normative challenges

that may prevent them from scaling to ecological problems. In these models, task structures

are either reused and otherwise learned from scratch, meaning constituent knowledge within

each task structure is inseparable. As a consequence, when some observations rule out a given

task structure, the agent can no longer generalize any aspects of that structure, thereby pre-

venting the sharing of partial knowledge between contexts, requiring agents to relearn infor-

mation they already have access to. This all-or-none generalization would, for example,

prevent a musician from transferring a song learned on a piano to a guitar, given the differ-

ences in required motor actions to produce the desired notes. This form of generalization is

representationally greedy, forcing an agent to relearn what it already knows. More problemati-

cally, it also tends to be brittle in artificial agents, as policies and policy-dependent representa-

tions are often not robust to new tasks [10, 11].

Thus, given the normative challenges posed by generalizing structures as a whole, a key

desideratum for clustering models is that they support component-wise generalization, i.e.,

PLOS COMPUTATIONAL BIOLOGY Generalizing to generalize

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007720 April 13, 2020 2 / 33

Funding: This work was supported in part by the

National Science Foundation Proposal 1460604 to

MJF, www.nsf.gov. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007720
http://www.nsf.gov


that they can be compositional. We note that this desideratum is not limited to clustering mod-

els, and there are many possible decompositions of the reinforcement learning problem [12–

16]. Often, task components have been derived from a decomposition of the value function

over actions and states. Here, we consider a decomposition of the learning problem into the

two types of information that determine the value function, information about movement

through an environment (the “transition function”) and learning information about rewards

or goals (the “reward function”). In a reinforcement learning problem, these are are commonly

framed as two separate pieces of information about a task combined through planning to

determine actions [17]. These two pieces of information are a natural choice for components,

as one may have multiple goals (i.e., reward function) in the same environment (i.e., transition

function) in different situations or may share the same objectives in distinct environments.

Interestingly, this choice of task components reveals a statistical trade-off in generalization

that will drive an adaptive learner to vary its generalization strategy across tasks [18]. Indepen-

dently generalizing rewards and transitions as task components adds a statistical bias to the

generalization that is adaptive when the relationship between the two components across con-

texts is weak, noisy or difficult to discover. As an analogy, because clustering rewards and tran-

sitions independently ignores the relationship between them, it brings a similar set of benefits

in limitations as a Naive Bayes classifier. Information will be lost, but this may result in a more

robust statistical model [19]. In contrast, joint clustering will, with sufficient experience, learn

the correct generalization statistics at a potential cost of sample efficiency. When there is a

strong, discoverable relationship between rewards and transitions across contexts, then it is

adaptive to generalize them together, as previous models have implicitly assumed [3, 4]. How-

ever, the cost of choosing the suboptimal fixed generalization strategy can grow exponentially;

a normative agent can circumvent this cost by dynamically arbitrating between these forms of

independent and joint clustering as a function of the statistical evidence of each across learning

episodes [18]. This “meta-generalization” strategy requires that the agent has access to both

joint and compositional task representations and best makes use of them depending on the

environment.

It is not well understood how human learners generalize component knowledge in rein-

forcement learning tasks. However, normative analysis offers testable predictions. If humans

learners decompose task structures into rewards and transitions and act adaptively, then we

would expect their generalization behavior to vary between a joint and compositional strategy

as the statistics of the task environment changes. In the present work, we thus assessed whether

human generalization behavior would depend on the extent to which external task statistics

are suggestive of independent vs. joint generalization of task structures in three separate exper-

iments that manipulated this hierarchical task statistic.

We developed a novel series of navigation tasks that separately manipulate goal-values

(“where do you want to go?”; the reward function) from the actions needed to move in the

maze (“how can you get there?”; the transition function over states and actions). Both pieces of

information are required to solve the task (i.e., to reach the reward). We manipulated the sta-

tistics of these two component-features across contexts and tasks, such that the transition func-

tion was more or less informative about the reward function. We then assessed the degree to

which humans were able to generalize these learned structures in novel contexts, and whether

such generalization was consistent with joint (i.e., entire structure) or independent clustering.

To preview our results, we find that subjects vary their generalization strategy with the encoun-

tered task statistics, such that they generalize compositional task-components independently

when appropriate to do so and jointly when suggested by the task, consistent normative theo-

retical predictions and a compositional representation of task structure.
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Results

Subjects completed a series of tasks in which they navigated a 6x6 grid-world on a computer in

an attempt to discover the reward in one of a set of labeled goal locations across trials (Fig 1).

For simplicity, subjects learned a deterministic and uniquely identifiable mapping between

arbitrary keyboard presses and movements within the grid-world, as opposed to a complete

state-action-state transition function (prior simulations in [18] suggest that learning this

reduced action-movement mapping in lieu of a full transition function does not influence the

generalization tradeoffs discussed in the current work). These mappings were chosen to be

independent, such that it was not possible to learn a mapping on one hand and transfer it to

another, either directly or via simple transformation. Similar to the “finger sailing” task [20,

21], this design allows us to study subjects’ ability to learn about mappings (state transitions)

separately from the goal-values (reward function). Moreover, successful performance in the

task requires flexible re-planning on each trial—a form of model-based control [22]: the sub-

jects’ initial location and that of the goal were varied from trial to trial, so as to equate the

reward value of each button press (i.e., stimulus-response bias). Critically, many of the contexts

share the same mapping and/or goal-values, and subjects can boost learning by leveraging this

structure [18].

To formally assess alternate learning and generalization strategies in the human navigation

tasks, we adapted the computational models previously used to analyze the statistical tradeoff

between compositional and joint structure learning [18]. These include a joint clustering agent,
an independent clustering agent and ameta-generalization agent that dynamically arbitrates

between the two (Materials and methods). All three models are extensions of the joint cluster-

ing model proposed by [3] to account for flexible re-use of learned structures across contexts,

and make equivalent predictions on the types of instrumental stimulus-response tasks that

Fig 1. Subjects controlled a circle agent in a grid world (left) and navigated to one of three potential goals (colored

squares labeled “A”, “B”, or “C”). Context was signaled to the subject with a shared color for the agent and goals. In

each context, subjects learned the identity of the rewarded goal within the trial (top right) while also learning a

mapping between the keyboard responses and the cardinal movement within the grid world (bottom right).

https://doi.org/10.1371/journal.pcbi.1007720.g001
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have previously been investigated, wherein the reward values were not manipulated separately

from the transitions [4, 5]. Each agent probabilistically assigning contexts into clusters that

share similar observation statistics via Bayesian inference, with the observation statistics serv-

ing as the likelihood and the Chinese Restaurant Process (CRP [23]) as a context-popularity

based prior. (In these models, “context-popularity” refers to the number of distinct contexts

that are assigned to a single cluster, meaning that a contexts that is experienced multiple times

only contributes once to context-popularity. This is distinct from a frequency model, which

counts each repeated context multiple times.) This context-clustering process allows the agents

to reuse previously learned functions in novel contexts, and hence facilitating generalization.

Similar mathematical principals underlie prior clustering models of Pavlovian transfer learn-

ing [2], category learning [24–26], and memory [27]. Moreover, these agents generalize task

structure based on context popularity as a consequence of the CRP prior. In a new context,

each agent will reuse task structure as a parametric function of how popular that task structure

is across previously encountered contexts.

However, the agents differ by whether they cluster reward and transition functions as sepa-

rate entities or jointly. The joint clustering agent clusters each context based on the “joint”

(conjunctive) statistics of learned state transitions and reward functions (Fig 2). Such an agent,

when attempting to generalize learned structures to new contexts, will use information it has

gathered about the likely mappings to infer the likely goal values, but as such, it cannot reuse

one independently of the other. This is equivalent to generalizing complete policies as indivisi-

ble structures. In contrast, the independent clustering agent clusters transitions and rewards

Fig 2. Schematic depiction of computational agent. The meta-generalization agent arbitrates between independent clustering and joint clustering

according to a learned weight w. In both clustering strategies, contexts (colored squares) are grouped into clusters based on the statistics of their

associated goal (G), and transition (T) functions. Independent clustering clusters each context twice, once each for goal-value and transition functions,

whereas joint clustering assigns each context into a single cluster. Planning derives a behavioral policy from the learned contingencies. Adapted from

[18].

https://doi.org/10.1371/journal.pcbi.1007720.g002
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separately by probabilistically assigning each context into two context-clusters, each associated

with either a reward or transition function. Such an agent can make inferences about likely

goal values that are not tied to any specific mapping, but as such, it cannot improve perfor-

mance when the two functions are informative about each other. As neither fixed strategy is

optimal across unknown task domains, the meta-generalization agent dynamically arbitrates

between joint and independent clustering based on the expected value of each (approximately

equivalent to the Bayesian model evidence of each), given the experienced task statistics in the

environment.

In reinforcement learning problems, information about the transition structure is typically

available prior to information about the reward value, and consequently, the three agents differ

largely in their generalization of reward functions [18]. While both agents generalize goal val-

ues as a function of their popularity across contexts, the joint clustering agent considers this

popularity only for the subset of contexts that share the same mapping (in the musician exam-

ple, this is like inferring what song to play based on its popularity conditioned on the set of

instruments that share the same motor mappings). In contrast, the independent clustering

agent generalizes goals by pooling across all contexts regardless of mappings. Thus, we can dis-

tinguish these model predictions by looking at goal generalization to see whether it varies as a

function of mapping. Because the meta-generalization agent arbitrates between these two strat-

egies probabilistically, it predicts a dynamically weighted blend of the two across time.

We exploit this logic in the following grid-world tasks: in each task, subjects learn to navi-

gate to reach a goal in a set of training contexts with varying overlap in mappings and rewards

and are then probed for generalization in an unprompted set of novel contexts. Subjects are

not told that it is possible to generalize (as it turns out in our designs, it is always advantageous

to generalize mappings, but disadvantageous to generalize rewards in all but one of the experi-

mental conditions). Critically, the degree to which mappings were informative of goal values

was manipulated across experiments, allowing us to test whether subjects are sensitive to this

structure. Across these three experiments, joint and independent clustering each predict a

fixed and identifiable strategy, thus allowing us to differentiate between the two on each task

qualitatively. The meta-generalization agent, which predicts that subjects adaptively change

their generalization strategy to exploit the statistics of the task, varies in its behavior across the

three tasks.

To preview the results, we find that subject generalization strategy changes with the meta-

statistics of the task and is inconsistent with any single fixed generalization strategy. These

results suggest that people rely on multiple strategies to generalize and adapt their behavior to

be consistent with the statistics of their environment.

Experiment 1: Joint structure

In the first experiment, subjects navigated grid-worlds in which there was a consistent rela-

tionship between the goal locations and the mappings, such that a given mapping was always

paired with a given goal during training (Fig 3, Table 1, S1 Table). This relationship is sugges-

tive of joint structure, and we hence tested whether subjects would later generalize this struc-

ture to novel contexts. Prior to an unsignalled generalization probe, subjects completed 32

trials across 3 training contexts, each of which was associated with one of two mappings and

one of two potential goals. Subjects were instructed on the relationship between contexts, map-

pings, and goals during a pre-training instruction but were not told how the relationships gen-

eralize between contexts. Subjects received a binary reward (linked to financial payment) for

selecting the correct goal and no reward for choosing the other goal. Two of the training con-

texts shared the same transitions and were paired with the same high popularity goal, while the
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third context was paired with the remaining goal and mapping. Thus, there was a one-to-one

relationship between transitions and goals during training. To control for potential stimulus-

response biases, the number of trials within each context was balanced such that each mapping

and each correct goal was presented in the same number of trials (i.e., the context associated

with the low popularity goal/mapping was presented twice as frequently as the other two con-

texts [4]). In a subsequent test phase, subjects saw three novel contexts in which the joint statis-

tics of the training contexts were either repeated (repeat condition) or switched (switch

condition) in a between-subjects manipulation. However, the more popular goal in training

(goal “A”) remained the more popular goal in testing, regardless of condition.

Computational modeling. To confirm the intuition that this task design is indicative of

joint structure, we compared the simulated behavior of six computational models on the task,

Fig 3. Experiment 1: Joint structure. A: Task Design: During training, subjects saw three contexts (depicted here as

circles) in which a given transition function (mappings, indicated by red/blue hands) was always paired with the same

reward function (goals A or B), suggestive of joint structure. In the test phase, subjects saw three novel contexts in

which the relationship between transitions and goals was either repeated (i.e., each goal was paired with the same

mapping as seen during training) or switched (goal B associated with the mapping that was previously paired with goal

A). The switch vs. repeat manipulation was conducted between-subjects. B: Goal popularity in the training

environment as a function of mapping (as tracked by a joint agent, left) and collapsed across all contexts (as tracked by

an independent agent, right). C: Goal accuracy of models (light grey) and human subjects (dark grey) across all trials in

the training and test contexts. Chance performance denoted with dotted line. Error bars denote standard deviation.

https://doi.org/10.1371/journal.pcbi.1007720.g003

Table 1. Test contexts for experiment 1. Goal popularity, both overall and for contexts with shared mappings, is denoted as the fraction of contexts in training with the

same goal.

Context Goal Mapping Popularity Goal Pop. (Overall) Goal Pop. (Same Map.) n Trials

Repeat Test 1 A High 2/3 2/2 4

Repeat Test 2 A High 2/3 2/2 4

Repeat Test 3 B Low 1/3 1/1 8

Switch Test 1 A Low 2/3 0/2 4

Switch Test 2 A Low 2/3 0/2 4

Switch Test 3 B High 1/3 0/1 8

https://doi.org/10.1371/journal.pcbi.1007720.t001
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including three generalization agents and three non-generalizing control agents (see Materials

and methods). The generalization models were the Joint clustering, Independent clustering

and Meta-generalization agents described above [18]. The non-generalizing control agents

were a “flat” agent that assigns each context to a new cluster, a Q-learning agent parameterized

with a learning rate and an uncertainty-based exploration agent that explores goals based on

the upper confidence bound (UCB) of their reward distributions. The key difference between

the generalizing and non-generalizing agents is that the generalizing agents pool information

across contexts, whereas the non-generalizing agents do not. This process continues through-

out all trials, such that the new contexts encountered by the generalizing agents during the test

phase can influence subsequent generalization. Note also that all of the generalizing and non-

generalizing models learn contextually: the task was designed to require context and aggregat-

ing reward across all trials regardless of context leads to chance performance and does not pro-

duce any of the qualitative behaviors discussed below (see S4 Text).

Each model was simulated with sampled parameters on 2500 random instantiations of the

tasks, and these simulations were sub-sampled to create 200 batches matched to the sample

size of human subjects. This allows us to identify a pattern of results that discriminate the pre-

dictions of the models across their range of plausible parameter values, marginalizing over the

parameters with an analogous logic to a Bayes factor [28] and Bayesian model evidence [29].

This form of simulation naturally penalizes for complexity as models that are too expressive

will generate a wide range of possible datasets [29].

Each of the six models successfully learned the task, achieving greater than chance accuracy

in both the training and test contexts (Fig 3; p< 0.005 for all models). In this task, joint cluster-

ing earned the highest reward overall, and because it earned more reward than the flat agent

(the top non-generalizing agent) in both the training (accuracy differenceM = 0.02%,

p< 0.005) and test (accuracy differenceM = 0.02%, p< 0.005), we can conclude that it is

adaptive to generalize rewards and transitions jointly in this task.

We confirmed that the independent and joint clustering agents are differentially sensitive

to the test context manipulation. In particular, the joint clustering agent predicts better perfor-

mance in the repeat condition (in which the goals are paired with the same mappings as during

training, even in novel contexts) than in the switch condition (M = 0.194, 95% highest poste-

rior density interval (HPD) = [0.163, 0.230]), whereas the independent agent predicts no such

effects (M = 0.002, 95% HPD = [-0.023, 0.026]). Conversely, the independent agent predicts

faster learning when the most popular goal is rewarded in either test context (Fig 4; M = 0.183,

95% HPD = [0.154, 0.211]), whereas this effect is marginal in the joint agent (M = 0.023, 95%

HPD = [0.000, 0.056]). (Note that joint clustering can be sensitive to goal popularity for a

given mapping; see experiment 2). In addition, the meta-generalization agent, which infers

which structure is most likely during the training phase, is more similar to the joint agent

(effect of test condition: M = 0.174, 95% HPD = [0.129, 0.217]) but, like the independent

agent, also shows a (much smaller) effect of the rewarded goal (M = 0.05, 95% HPD = [0.006,

0.087]). Finally, we confirmed that none of the flat agent, the Q-Learner, nor the upper confi-

dence bound agents were sensitive to these manipulations and showed no differences between

the test contexts (Fig 4A and 4C).

Human behavior. The behavior of 129 subjects collected online via Amazon Mechanical

Turk was carried through to analysis, 49 of which were randomly assigned the switch condi-

tion. In both the training and test conditions, subjects were well above chance in goal accuracy

(Training: M = 82.0%, one-sided t-test, t(128) = 26.8, p< 10−53; Test: M = 80.8%; t(128) =

21.9, p< 10−44). Across training, subject performance improved as a function of time as mea-

sured by rewards received, reaction time and navigation efficiency (see S2 Text). Using Bayes-

ian linear modeling, goal accuracy (rewards received) was found to increase as a function of
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trials within a context (S2A Fig; E½bt� ¼ 0:154, 95% HPD = [0.127, 0.182]) as was their speed

(reciprocal reaction time) (E½bt� ¼ 0:048: 95% HPD = [0.002, 0.098]). Navigation (in)effi-

ciency, defined as the number of responses taken in excess of the minimum path length

between the start location of the trial and the selected goal, also decreased as a function of trials

within each context (E½bt� ¼ � 0:012, 95% HPD = [-0.015, -0.008]).

The primary measure of interest was goal accuracy in the test context, which differentiates

the predictions of joint and independent clustering models (see above). Goal accuracy was

assessed with hierarchical Bayesian logistic regression that included test condition (switch vs.

repeat) as a between-subjects measure and correct goal as a within-subjects measure (see Mate-

rials and methods). In addition, the number of trials experienced within the same context and

whether a trial of the same context was sequentially repeated and previously correct were

included as nuisance regressors. Both nuisance regressors significantly predicted test accuracy

(times in context: E½bt� ¼ 0:34, 95% HPD = [0.223, 0.470]; sequential correct repeats:

E½brep� ¼ 1:623, 95% HPD = [1.002, 2.201]). Consistent with the predictions of joint clustering

and the meta-generalization agent, subjects were more accurate in the repeat condition than in

the switch condition (Fig 3, E½brepeat� ¼ 0:41, 95% HPD = [0.16, 0.66], p1-tail < 0.0005). Accu-

racy did not vary as a function of the rewarded goal in the test contexts (E½bgoal� ¼ 0:005, 95%

HPD = [-0.15, 0.14]). This pattern of behavior is consistent with the predictions of the joint

and meta agents and is inconsistent with the predictions with the independent agent or any

non-generalizing agent, suggesting that subjects generalized the task components jointly.

Fig 4. Generalization performance, experiment 1. A: Qualitative model predictions expressed as difference in goal

accuracy between the Repeat and Switch test conditions (Rep.) and the difference between test contexts with different

correct goals (Goal). B: Human subject data. Regression weights for the between-subjects comparison of goal accuracy

in the two test conditions (Rep.) and the within-subjects comparison of test contexts with different correct goals

(Goal). C: Histogram of simulated effect sizes in the two comparisons of interest for each of the 6 evaluated models

across a range of parameters. Error bars denote standard deviation.

https://doi.org/10.1371/journal.pcbi.1007720.g004
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Experiment 2: Independent structure

While experiment 1 provided evidence for generalization in the task and transfer of compo-

nent structure jointly, this experiment alone does not suggest subjects would always generalize

components jointly in all domains. In experiment 1, there is a strong relationship between

mappings and goals in the statistics of the training environment, which normatively favors

joint clustering. Nonetheless, the meta-generalization agent (which combines independent

and joint clustering and infers which is more likely) also predicted behavior that was similar to

the joint agent. The behavior of the meta agent varies with the statistics of the task domain and

thus can often produce similar behavior to a single, fixed strategy within a single experiment.

Thus, to differentiate a meta-generalization strategy from a single fixed strategy, it is necessary

to examine generalization across multiple tasks.

In experiment 2, we wished to test whether subjects would show evidence for independent,

compositional, generalization when suggested to by the task environment. Because the meta

agent is sensitive to the conditional relationship between goals and mappings, we provided

subjects with an environment where this relationship was very weak. Rather than the one-to-

one relationship present in experiment 1, the same goal could be re-used with different map-

pings, and the same mapping could be re-used with different goals, with some goals more pop-

ular than others (Fig 5A; Table 2, S2 Table). Subjects completed 112 trials in seven training

contexts prior to an unsignaled generalization test with four novel contexts. Each training con-

text was associated with one of two mappings and one binary, deterministically rewarded goal

location out of four possible locations.

Fig 5. Experiment 2: Independent structure. A: Subjects saw seven contexts (circles) during training, each paired

with one of two mappings (red: high popularity, blue: low popularity) and one of four goals (A, B, C or D). Two of the

high popularity goals were paired with multiple mappings, suggestive of independent structure. Subjects learned to

navigate in an additional four novel test contexts following training (grey circles). B: Goal popularity in the training

environment as a function of mapping (as tracked by a joint agent, left) and collapsed across all contexts (as tracked by

an independent agent, right). C: Goal accuracy of models (light grey) and human subjects (dark grey) across all trials in

the training and test contexts. Chance performance denoted with dotted line. Error bars denote standard deviation.

https://doi.org/10.1371/journal.pcbi.1007720.g005

PLOS COMPUTATIONAL BIOLOGY Generalizing to generalize

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007720 April 13, 2020 10 / 33

https://doi.org/10.1371/journal.pcbi.1007720.g005
https://doi.org/10.1371/journal.pcbi.1007720


Note that, as before, independent clustering predicts that subjects learn about the statistics

of goals and mappings independent of the other, and as such, they would learn about the popu-

larity of goals across contexts regardless of mapping. For example, goal A is the most popular

goal overall (marginalizing over mappings) but is equally popular as other goals within the

contexts paired with the low popularity mapping (Fig 5B). Thus, independent and joint clus-

tering make qualitatively different predictions about which goals will be searched first in a

novel context as a function of the associated mapping. As such, subjects were given four novel

contexts in an unsignaled test phase chosen to differentiate joint and independent clustering

by crossing the overall goal popularity with the conditional goal popularity (conditioned on the

mapping; Fig 5A and 5B; Table 2). If subjects learn independent structure, then they should

more rapidly learn for novel contexts associated with the more popular goal A (i.e., test context

1) even if it is paired with the low popularity mapping, whereas joint clustering predicts no

such advantage.

This same logic sets up within-subject performance comparisons between pairs of test con-

texts. Here, we focus on performance conditioned on a single mapping as these are the most

relevant comparisons. Thus, we compare goal-accuracy in test context 1 to 2 and test context 3

to 4. In the first comparison, test contexts 1 and 2 have the same conditional goal popularity

but different overall popularity. In the second comparison, test contexts 3 and 4 have the same

overall popularity but different conditional popularity. Thus, an agent that generalizes based

on the overall popularity will show a difference between test contexts 1 and 2 but not between

contexts 3 and 4, whereas an agent that generalizes based on the conditional popularity will

show the opposite result.

Computational modeling. We sought to test whether this task design was indicative of

independent rather than joint structure. Each of the six computational models was simulated

on the task to generate predictions in these contexts (see Materials and methods). All of the

models successfully learned the task, with above-chance accuracy in both the training and test

contexts (Fig 5C; all p’s<0.005). Importantly, because of the nature of the test contexts chosen

to differentiate the models, none of the generalizing agents achieved greater reward than the

non-generalizing flat model that learns anew for each context (all p’s <10−5 in favor of the flat

model over clustering agents in both training and test), suggesting the task design did not

encourage subjects to generalize, even though other situations reveal substantial and com-

pounding advantages for these generalization models [18]. Thus, we can interpret any evi-

dence for generalization in this task as spontaneous as the task environment does not

incentive generalization [3].

The key manipulations of interest are expressed as a difference score in the goal accuracy

between test contexts 1 and 2, and the difference between test contexts 3 and 4. As previously

noted, test context 1 is associated with goal “A”, which is the most popular goal overall.

Because test context 2 is associated with goal “B”, which has lower overall popularity, indepen-

dent clustering predicts higher average reward in test context 1 relative to test context 2 (Fig 6;

Table 2. Test contexts for experiment 2. Goal popularity, both overall and for contexts with shared mappings, is denoted as the fraction of contexts in training with the

same goal.

Context Goal Mapping Popularity Goal Pop. (Overall) Goal Pop. (Same Map.) n Trials

Test 1 A Low 3/7 1/3 6

Test 2 B Low 2/7 1/3 6

Test 3 C High 1/7 0/4 6

Test 4 D High 1/7 1/4 6

https://doi.org/10.1371/journal.pcbi.1007720.t002
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M = 0.165, 95% HPD = [0.104, 0.237]). Joint clustering predicts no difference between these

two conditions (M = -0.001, 95% HPD = [-0.051, 0.052]) because goals “A” and “B” have the

same popularity conditioned on the mapping. Conversely, independent clustering predicts no

difference between test contexts 3 and 4 because the associated goals have the same overall

popularity (M = -0.003, 95% HPD = [-0.056, 0.048]), whereas joint clustering predicts a nega-

tive difference due to the different conditional popularity (M = -0.125, 95% HPD = [-0.186,

0.058]).

As the meta-generalization agent probabilistically weighs these two strategies according to

their evidence, and because the training environment does not rule out some joint structure

altogether (i.e., some goals are experienced multiple times with one mapping), it shows both

effects (1 vs. 2: M = 0.070, 95% HPD = [0.015, 0.126]; 3 vs. 4: M = -0.071, 95% HPD = [-0.141,

-0.0146]). Importantly, none of the three non-generalizing agents predict a difference between

these two contexts, suggesting that any difference in these metrics can be interpreted as a mea-

sure of generalization.

For completeness, we also compared goal-accuracy between the two mappings (i.e., test

context 1 and 2 vs. test context 3 and 4), affording three orthogonal contrasts for the regression

model. All three generalization agents earned more reward in the low popularity mapping

(test contexts 1 and 2) then in the high popularity mapping (test contexts 3 and 4; independent:

M = 0.256, 95% HPD = [0.208, 0.300], joint: M = 0.161, 95% HPD = [0.118, 0.207], meta:

M = 0.234, 95% HPD = [0.189, 0.278]). Both conditioned on the mapping and overall, the

goals associated with test contexts 1 and 2 were more popular than those associated with test

Fig 6. Generalization performance, experiment 2. A: Qualitative model predictions expressed as the difference scores

Context 1—Context 2 and Context 3—Context 4. B: Human subject data. Regression weights for the two within-

subjects comparisons. C: Histogram of simulated effect sizes in the two comparisons of interest for each of the 6

evaluated models across a range of parameters. Error bars denote standard deviation.

https://doi.org/10.1371/journal.pcbi.1007720.g006
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contexts 3 and 4. As expected, none of the flat agents showed a difference between these

contexts.

Beyond average reward per context, the generalizing agents are further differentiated by the

goals selected in the first trial of a new context (Fig 7A and 7B). Independent clustering pre-

dicts that goals will be chosen in these trials with the most popular goal selected most fre-

quently, regardless of the associated mapping. In contrast, both joint clustering and meta-

generalization predict the goal selection in these trials will be influenced by the mapping. This

leads to the qualitative prediction that in the first trial of test contexts 1 and 2, independent

clustering and the meta agent predict subjects will select goal A more often than either goal B

or C, while joint clustering does not make this prediction. All the non-generalizing agents

explore the first goal in a novel context uniformly, regardless of mapping. This occurs because,

without information from previous contexts, there is no reason to prefer one goal over

another.

Human behavior. We analyzed the behavior of 114 subjects in experiment 3. As in the

previous experiments, subjects were well above chance performance (25%) when selecting

goals in both the training and the test contexts (Fig 5C; Training: M = 75.1%, one-sided t-test,

t(113) = 37.2, p< 10−64; Test: M = 54.7%; t(113) = 14.2, p< 10−26). Overall performance was

further assessed with goal accuracy, reciprocal reaction time and navigation efficiency, all of

which improved as a function of the number of trials within the training contexts (see S2

Text). The number of trials per context was found to predict accuracy (S3A Fig; E½bt� ¼ 0:115,

95% HPD = [0.108, 0.121]), reciprocal reaction time (E½bt� ¼ 0:016: 95% HPD = [0.014,

0.017]) and navigation efficiency (E½bt� ¼ � 0:006, 95% HPD = [-0.007, -0.005], indicating

subject performance improved over the course of training.

Fig 7. Goal selection in the first trial of novel test contexts in experiment 2, separated by associated mapping

transitions (blue and red). A, BNumber of times each goal was selected by the independent, joint and meta

computational agents in test contexts 1 & 2 (A), which shared the low-popularity transition (mapping) function, and in

test contexts 3 & 4 (B), which shared the high-popularity transition function. C,D Like the independent agent, subjects

chose goal A more frequently than the other goals across both contexts. Error bars denote standard deviation.

https://doi.org/10.1371/journal.pcbi.1007720.g007
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Analysis of the a priori test context contrasts was consistent with the predictions of inde-

pendent clustering and meta-generalization. These contrasts were assessed with a hierarchical

Bayesian logistic regression that included time with context, a subject-specific bias term, and

whether a trial of the same context sequentially followed a correct trial as nuisance variables

(see Materials and methods). Test accuracy was predicted by both nuisance factors and

increased with the number of times a context was seen (E½bt� ¼ 0:48, 95% HPD = [0.413,

0.547]) and when a trial of the same context was repeated sequentially and previously correct

(E½brep� ¼ 0:921, 95% HPD = [0.668, 1.155]).

Of the two contrasts of interest, the difference between contexts 1 and 2 was statistically sig-

nificant, (Fig 6D; E½b1>2� ¼ 0:140, 95% HPD = [0.012, 0.266], p1- tail = 0.0135). Importantly, a

positive value of this contrast was predicted by the independent clustering and meta-generali-

zation agents, and no other model. The second contrast of interest, the difference between test

contexts 3 and 4 was not significantly different from zero. (E½b3>4� ¼ 0:0476, 95% HPD =

[-0.069, 0.174]). A negative value of this value was predictive by joint clustering and meta-gen-

eralization and no other model. For completeness, we also examined the contrast between the

two mappings (i.e., test contexts 1 and 2 vs. 3 and 4), an effect which was predicted to be posi-

tive by all three generalizing strategies. We did not find evidence of this effect in our subject

pool (E½b1&2>3&4� ¼ 0:060, 95% HPD = [-0.031, 0.144], p1-tail = 0.097).

Follow-up analyses suggested these effects were driven by positive transfer in test con-

text 1. Accuracy was higher in test context 1 than 3 and 4 (context 1 vs. 3 & 4:

E½b1>2 þ b1&2>3&4� ¼ 0:199, 95% HPD = [0.045, 0.364]) but there was no difference between

accuracy in test context 2 than in 3 and 4 (context 2 vs. 3 & 4: E½b1&2>3&4 � b1>2� ¼ � 0:080,

95% HPD = [-0.230, 0.087]). Thus, accuracy in test context 1, which was associated with the

most popular goal overall, was higher than in the other three contexts whereas we did not

find a difference between the remaining test contexts. These results are consistent with the

generalization of the most popular goal overall (goal A) but not the parametric effects pre-

dicted by the models.

Subjects’ goal selection in the first trial of a test context was also consistent with indepen-

dent clustering and meta-generalization but not joint clustering. Goal choice was analyzed at a

group level with two binomial models (Materials and methods). Consistent with the predic-

tions of independent clustering and meta-generalization, across all trials the choice-probability

of goal A was above chance (E½yA� ¼ 0:309, 95% HPD = [0.268, 0.353]) and higher than the

average choice probability of goals B and C (E yA �
1

2
ðyB þ yCÞ

� �
¼ 0:085, 95% HPD = [0.034,

0.135]). Furthermore, this was true regardless of the associated mapping. Choice probability

for goal A was greater than the average goal probability for goals B and C in contexts 1 and 2

(Fig 6C; E yA �
1

2
ðyB þ yCÞ

� �
¼ 0:083, 95% HPD = [0.009, 0.150]) and in test contexts 3 and 4

(Fig 6D; E yA �
1

2
ðyB þ yCÞ

� �
¼ 0:087, 95% HPD = [0.017, 0.157]).

Thus, we find evidence that subjects generalized the goal with the highest overall context

popularity, regardless of the mapping presented in the context. We did not find evidence that

goal generalization was parametrically proportional to context-popularity (e.g., preference for

goal B over goal C or D), a prediction of the three generalization models as a consequence of

the CRP prior.

Experiment 3: Ambiguous structure

Experiments 1 and 2 showed that subjects generalization learning in novel contexts was more

similar to a joint agent when the statistics of the training environment supported joint struc-

ture (experiment 1) and more like an independent agent when the statistics supported inde-

pendent structure (experiment 2). In experiment 3, we provided subjects with a task
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environment with a more ambiguous relationship between mappings and goals in order to

probe whether subjects would show evidence of both joint and independent clustering within

the same task. This mixture of joint and independent clustering is a key prediction of the

meta-generalization agent, which is able to consider both forms of structure and to make infer-

ences in novel environments that are influenced by the prior training statistics. Indeed, across

both previous experiments, subjects behave more similarly to the meta-generalization agent

than either joint or independent clustering alone, but we have not yet provided evidence for

meta-generalization within a single task.

Thus, in the final experiment, we presented subjects with an environment with a more

ambiguous relationship between goal-values and state-transitions across contexts (Fig 8). In

this case, the joint vs. independent structure statistics were more ambiguous: goal A was the

most popular and paired with different mappings (consistent with independent structure),

whereas goals B and C were always paired with a single mapping (consistent with joint struc-

ture). Furthermore, goal A was the most popular goal overall but was equally popular to goal C

conditional on experiencing the lower-popular mapping. As in the prior experiment, this

design differentiates the predictions of independent and joint clustering, as the former is sensi-

tive to the overall goal popularity whereas the latter is sensitive to the popularity conditioned

on the associated transition function. Subjects completed 120 training trials across five con-

texts prior to completing 30 trials in four novel test contexts chosen to probe generalization

(Fig 8A; Table 3, S3 Table).

This task has a more ambiguous relationship between mappings and goals than either

experiment 1 or experiment 2. This is most clear in the mutual information between mappings

Fig 8. Experiment 3: Ambiguous structure. A: Subjects saw five contexts (circles) during training, each paired with

one of two mappings (red: high popularity, blue: low popularity) and one of three goals (A, B, or C). The most popular

goal A was paired with multiple mappings, but the other goals B and C were paired with a single mapping each,

making the structure more ambiguous. Subjects learned to navigate in an additional four novel test contexts following

training (grey circles). B: Goal popularity in the training environment as a function of mapping (as tracked by the joint

agent, left) and collapsed across all contexts (as tracked by the independent agent, right). C: Goal accuracy of models

(light grey) and human subjects (dark grey) across all trials in the training and test contexts. Chance performance

denoted with dotted line. Error bars denote standard deviation.

https://doi.org/10.1371/journal.pcbi.1007720.g008
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and goals within the training contexts, which we normalize here by overall goal entropy for the

purpose of cross-experiment comparison (see S3 Text). When normalized mutual information

(NMI) is 1, there is a perfect correspondence between mappings and goals and when NMI is 0,

there is no relationship. When we evaluate the training sets of each of the experiments, we see

a correspondence between NMI and generalization strategy. In experiment 1, where we found

evidence for joint clustering, the relationship between mappings and goals is strongest

(NMI = 1.0). In experiment 2, where we found evidence for independent clustering, the rela-

tionship was the weakest (NMI�0.16). In experiment 3 the relationship between mappings

and goals is somewhere between the other two experiments (NMI�0.3). As updating within

the meta-generalization agent is sensitive to the correspondence between mappings and goals

[18], we would thus expect more of a blend of joint and independent clustering in experiment

3.

Computational modeling. As in experiment 2, there was no incentive to generalize, as

confirmed by simulations showing that none of the three generalizing agents accumulated

greater total reward than the non-generalizing flat agent during either the training or test con-

texts (Fig 8; all p’s<.005 in favor of the flat model). We thus again designed the task such that

it was possible to discriminate between predictions of different types of generalization models

without incentivizing generalization. Two comparisons, the contrast between test context 1

and 4 and the contrast between contexts 2 and 3, differentiate the predictions of joint and inde-

pendent clustering. Test contexts 1 and 4 shared the low-popularity mapping and were paired

with goals A and C, respectively. Goal A was the highest popularity goal overall but was equally

popular as goal C when conditioned on the low-popularity mapping. Thus, the independent

agent performs better in test context 1 compared to test context 4 (Fig 9A; M = 0.265, 95%

HPD = [0.228, 0.296]), whereas the joint agent shows no such advantage (M = 0.12, 95% HPD

= [-0.023, 0.047]). Conversely, consider the contrast between test contexts 2 and 3, both of

which were paired with the high-popularity mapping, but were associated with goals B and C,

respectively. These two goals shared the same overall popularity but differed in popularity con-

ditional on the high popularity mapping. As such, the joint clustering agent performs better in

test context 2 than 3 (M = 0.148, 95% HPD = [0.112, 0.195])), while independent clustering

shows no difference (M = -0.005, 95% HPD = [-0.037, 0.025]). Critically, the meta-generaliza-

tion agent showed patterns consistent with both independent clustering (test context 1> 4:

M = 0.142, 95% HPD = [0.098, 0.184]) and joint clustering (test context 2> 3; M = 0.058, 95%

HPD = [0.023, 0.088]). For the purpose of completion, we also compare goal accuracy between

the two mappings (contexts 1 and 4 vs. 2 and 3), providing the third orthogonal contrast for

the regression model; all three models predicted a positive value for this difference (indepen-

dent: M = 0.137, 95% HPD = [0.117, 0.158]; joint: M = 0.131, 95% HPD = [0.103, 0.158]; meta:

M = 0.129, 95% HPD = [0.103, 0.160]). As in the prior two experiments, neither the flat agent,

the Q-learning agent nor the upper confidence bound exploration agent showed any difference

in these contrasts, confirming these metrics as measures of generalization.

Table 3. Test contexts for experiment 3. Goal popularity, both overall and for contexts with shared mappings, is denoted as the fraction of contexts in training with the

same goal.

Context Goal Mapping Popularity Goal Pop. (Overall) Goal Pop. (Same Map.) n Trials

Test 1 A Low 3/5 1/2 10

Test 2 B High 1/5 1/3 10

Test 3 C High 1/5 0/3 5

Test 4 C Low 1/5 1/2 5

https://doi.org/10.1371/journal.pcbi.1007720.t003
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In sum, the three models make qualitatively different predictions. The joint model predicts

a cost in test context 3; the independent model predicts an advantage in test context 1, and,

given the ambiguity of the statistical structure during training, meta-generalization predicts a

mixture of both effects (Figs 8 and 9).

Human behavior. The behavior of 115 subjects was analyzed on the task. As for prior

experiments, subjects successfully learned the task and chose goals well above chance in both

the training and test contexts (Fig 8C; Training: M = 83.2%, one-sided t-test, t(114) = 53.3,

p< 10−81; Test: M = 65.8%; t(113) = 20.9, p< 10−40). Goal accuracy, reciprocal reaction time

and navigation efficiency were assessed as a function of time using Bayesian linear modeling

(see S2 Text). The number of trials per context was found to predict accuracy (S4 Fig;

E½bt� ¼ 0:109, 95% HPD = [0.098, 0.012]), reciprocal reaction time (E½bt� ¼ 0:008, 95% HPD

= [0.0063, 0.0091]) and navigation efficiency (E½bt� ¼ � 0:003, 95% HPD = [-0.0043,

-0.0027]), indicating subject performance improved over the course of training.

Accuracy in the test contexts provided support for the meta-learning agent over either the

joint or independent clustering agent (Fig 9B). Test context accuracy was assessed with hierar-

chical Bayesian logistic regression where the a priorimodel predictions were instantiated as

contrasts between contexts (1 vs. 4 and 2 vs. 3), with the number of trials per context, and

whether a context was sequentially repeated and previously correct were included as nuisance

regressors (Materials and methods). Subjects’ accuracy increased with the number of trials

within each test context (E½bt� ¼ 0:431; p1-tail < 0.0005, 95% HPD = [0.352, 0.501]) and when

a context was repeated on the next trial and previously correct (E½brep� ¼ 0:752; p1-tail <

0.0005, 95% HPD = [0.486, 1.019]). Critically, subjects were more accurate in test context 1

Fig 9. Generalization performance in experiment 3. A: Qualitative model predictions expressed as the difference

scores Context 1—Context 4 and Context 2—Context 3. B: Human subject data. Regression weights for the two within-

subjects comparisons. C: Histogram of simulated effect sizes in the two comparisons of interest for each of the 6

evaluated models. Error bars denote standard deviation.

https://doi.org/10.1371/journal.pcbi.1007720.g009
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than 4 (E½b1>4� ¼ 0:231, 95% HPD = [0.098, 0.370], p1-tail < 0.0005) and were more accurate

in test context 2 than in 3 (E½b2>3� ¼ 0:123, 95% HPD = [0.003, 0.253], p1-tail < 0.0275). For

completion, we also examined the difference in goal accuracy between the two mappings (i.e.,

test contexts 1 and 2 vs. 3 and 4). Consistent with all three generalization agents, subjects were

also more accurate in contexts 1 and 4 than in 2 and 3 (E½b1þ4>2þ3� ¼ 0:101, 95% HPD =

[0.014, 0.194], p1-tail < 0.0125).

As a follow-up analysis, we further examined positive and negative transfer in the first trial

of a test context (above or below chance performance on the first trial). Both independent clus-

tering and the meta-generalization agent predict positive transfer in test context 1 and negative

transfer in the other test contexts, given the overall popularity of goal A during training. Joint

clustering does not predict positive transfer in any context and predicts negative transfer in

contexts 1, 2 and 3. Consistent with independent clustering we found positive transfer in test

context 1 (y* Binom(θ); Pr y1 >
1

3

� �
¼ 0:963, 95% HPD = [0.325, 0.500]) but did not find

evidence of positive or negative transfer in the other test contexts (y* Binom(θ); θ2: 95%

HPD = [0.29, 0.46]; θ3: 95% HPD = [0.23, 0.40]; θ4: 95% HPD = [0.21, 0.38]).

Overall, these results are consistent with the predictions of meta-generalization and are not

fully captured by either the independent or joint clustering.

Discussion

In the current work, we evaluated human generalization against the predictions of the three,

dissociable generalization strategies proposed in [18]. The independent clustering model

assumes that subjects generalize in novel environments based on the overall popularity of the

previous goal and mappings independently. The joint clustering model assumes that subjects

re-visit goal locations in proportion to how often they were paired with each mapping. Finally,

meta-generalization assumes that subjects learn the overall statistical relationship between

goals and mappings and then generalize based on the evidence for independent or joint struc-

ture. Across the suite of tasks, we provided evidence that humans vary their generalization

strategy with the learned statistics of their environment in an adaptive way. This suggests that

humans leverage compositional representations when generalizing in reinforcement learning

tasks and adaptively respond to the statistical challenges of generalization.

In the process of doing so, we also replicated prior work demonstrating that human subjects

exhibit positive transfer for previously learned task-sets (stimulus-response-outcome relation-

ships) [3, 5], with increasing generalization performance for those rules that had been most

popular across training contexts [4]. Even when popular contexts were experienced fewer

times, subjects tended to generalize the goals associated with popular contexts, suggesting con-

text popularity-based generalization, rather than raw frequency. Further, subjects generalized

in experiments 2 and 3 even as it was disadvantageous, replicating the prior finding suggesting

that humans will generalize spontaneously even if it requires paying a cost to do so [3, 6].

However, prior empirical work assumed that task-sets are generalized as a whole, and thus

amount to joint clustering. The current set of studies was designed to disrupt and manipulate

the relationship between transition and reward functions. Consistent with normative accounts

[18], subjects were able to generalize each function independently of the other, particularly

when the training environment was suggestive of such independent structure. These results

provide evidence for the flexibility of human generalization, including the tendency to recom-

bine component pieces of knowledge that have not been experienced together, to new con-

texts. For example, in experiments 2 and 3 subjects tended to generalize the most popular goal

overall, regardless of the mappings associated with it during training. This situation is analo-

gous to a musician that can transfer popular songs learned across multiple instruments to
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another instrument even with very different physical actions needed. However, when the task

statistics implied joint structure, subjects were able to harness that relationship to generalize

accordingly, repeating goals that had been previously paired with the same mapping over

those that had been reached using a different mapping function (experiment 1 and partially

experiment 3). This situation is analogous to exhibiting a preferential tendency to play a song

on a new instrument that has shared actions required to produce the desired effect.

Why do we expect these tasks to produce these generalization strategies? If subjects are act-

ing adaptively, then we would expect them to use the statistics of the training set to inform the

nature of their generalization strategy on the test set, thus amounting to a form of meta-gener-

alization. This meta-generalization is normatively driven by the degree to which state transi-

tions and rewards are mutually informative and the pattern of human generalization behavior

is similarly governed. In our three experiments, we observe that subject behavior is most simi-

lar to joint clustering in experiment 1, where the mutual information is high, and most similar

to independent clustering in experiment 3, where the mutual information is lowest (Fig 10).

Thus, the degree to which each fixed strategy accounts for human behavior depends on the

task statistics as meta-generalization predicts.

Previous empirical work has provided support for clustering models as an account for gen-

eralization of both operant [4, 5] and Pavlovian values [30, 31]. This approach to generalization

is qualitatively similar to those found in the machine learning literature that rely on policy re-

use in multi-task settings [32–34]. Alternatively, an agent may make inferences about unseen

portions of the task space solely relying on information present in the task, either through clus-

tering portions of the task space [35, 36] or by function approximation [37]. Humans appear

to both cluster the task state for the purpose of planning [38] and interpolate rewards

Fig 10. Comparison of human behavior to model to model predictions. Angle cosign between the vector of a priori
model contrasts and human subject regression coefficients is shown for independent clustering (blue) and joint

clustering (orange) across experiments 1 (joint structure), 2 (independent structure), and 3 (ambiguous structure)

ordered by degree of joint structure in the tasks. Positive values (max = 1) reflect similarity between model prediction

and human behavior.

https://doi.org/10.1371/journal.pcbi.1007720.g010
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continuously in unvisited states [39], and moreover, generalize within and across tasks simul-

taneously [8].

Mechanistically, learning about latent task-set structure is thought to involve the same,

albeit hierarchically nested, frontostriatal circuits that are responsible for simple reward feed-

back-based learning [3–5]. How might this circuitry adapt to assume joint vs. independent

clustering? One simple mechanism to enforce compositional representations of goals and tran-

sitions would be to embed them in independent systems. For example, learning motor map-

pings might involve interactions among basal ganglia, cerebellum and/or motor areas of the

cortex [20, 21, 40], while learning reward/goal values may involve interactions among prefron-

tal areas representing value and/or state [41–44]. Thus the ventral striatal orbitofrontal circuit

could learn goal or state values that can be reused independently of the actions needed to

reach them [42, 45], thus potentially facilitating compositional recombination.

In contrast, when higher-order rules or goal values are used to constrain physical mappings,

such joint structure can be learned in hierarchical rostrocaudal circuits that embed multiple

levels of abstraction [3, 7, 46]. The mechanisms by which the brain could infer which of these

structures (orthogonal/independent vs. hierarchical) should be used remain underexplored.

Nevertheless, previous modeling and empirical work has suggested that reinforcement learn-

ing principles can be used to engage the level of rostrocaudal hierarchy needed for a given task,

and when such hierarchy is not present, reward prediction errors are used to prevent gating of

these circuits in favor of combinatorial representations [7, 46]. Indeed, these studies found

that the degree of evidence of hierarchical structure using a Bayesian mixture of experts, akin

to our meta-generalization agent, was related to the development of hierarchical gating policy

in the neural network [3, 46]. More recent work has suggested this form of structure learning

is neurally dissociable from the associative learning and involves the rostrolateral prefrontal

cortex and angular gyrus [9].

Limitations

The experiments presented here were designed to show the effects of joint and independent

clustering on goal generalization during a defined generalization phase and did not examine

other aspects of generalization, including generalization during training, interactions with

planning, and mapping generalization. Detecting generalization during training can be diffi-

cult, as subjects have to simultaneously learn task structure and associative contingencies. Pre-

vious related work has found clear evidence for generalization effects only after sufficient

training experience was accrued to infer the most likely structure that affords context cluster-

ing [4]. In the experiments presented above, joint and independent clustering are not distin-

guishable during training in the sample sizes we have collected.

A second limitation is that in each of the experimental tasks, the mappings subjects learned

to navigate the mazes represent a minimal version of a transition structure needed to the pre-

dictions of the model. This was done to be amenable to learning while still presenting a learn-

ing challenge. Similarly, the planning problem itself, in terms of cardinal movements (but not

button responses) in the maze was simple. While prior simulations suggest that the type of

goal-generalization effects we are primarily concerned with here is not affected by this minimal

version of a transition function [18], we do not know if this holds for human learners in more

complex domains. Moreover, planning is computationally expensive and poorly understood.

It has been shown in purely computational agents that generalize parameterized skills (sequen-

tial policies) can reduce exploration costs in novel domains [47], but whether humans general-

ize similarly is unknown. A particularly interesting proposal is that a composition of multiple,

simultaneous actions using a linear approximation to the Bellman equation can result in rapid
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generalization to a change in rewards [16, 48]. These linear approximations have recently been

argued to be biologically plausible implantation of planning, consistent with behavioral data

and hippocampal recordings [49].

Relatedly, we largely focus on the consequences of joint and independent clustering on goal

generalization in our experimental design, and have not considered how joint and indepen-

dent clustering make different predictions about how mappings are generalized. For example,

if an independent clustering agent tries a response from the wrong mapping on the first trial of

a new context, we would expect the agent to try to move in the same direction on the next trial

using the corresponding response of a different mapping. We would not expect this tendency

from a joint agent, because it would presumably use the observed mapping information to

adjust its high-level plan. While our experiment was not designed to find this effect within-

subjects, we can nonetheless look for this pattern of behavior in a cross experiment compari-

son. Using Bayesian logistic regression, we compared the tendency of subjects to “switch”

from one mapping to another following an unsuccessful attempt to move, that is, move in the

same direction as they would have in a previous trial had the previous mapping been valid for

the context. We would expect this to be more common in experiment 2, as the task supports

independent clustering, than in experiment 1, where the task supports joint clustering. While

we find this prediction is directionally correct, we do not find strong statistical evidence for it

(E½bexp2>exp1� ¼ 0:128, one-tailed p-value = 0.03, HPD = [-0.015, 0.24]) in a Bayesian logistic

regression that considers both training and test contexts and includes trial number, the num-

ber of trials within a context, whether a context was repeated sequentially and previously cor-

rect, and an individual subject bias term as nuisance regressors. One potential interpretation is

that this follow-up analysis across experiments is simply underpowered. Further complicating

this analysis is a difference in experience with the task in experiment 1 and experiment 2,

which we attempt to control for statistically. As such, we can not draw strong conclusions

from our data about how mapping generalization differentiates joint and independent

clustering.

While we found consistent evidence for the most diagnostic qualitative patterns predicted

by the meta-generalization agent across three experiments, not all of the predictions of the

model were borne out. Our models of generalization, like previous clustering models of gener-

alization, rely on the CRP prior. When used in context-popularity based clustering, the CRP

predicts that contexts will be generalized as a parametric function of their popularity. While

previous data confirm that subjects do have a strong bias to prefer more popular structures as

a prior [4], that work did not assess whether such an effect was parametric (i.e., increasingly

stronger preferences for increasingly more popular structures). We find mixed evidence for

such a parametric effect in our data. In experiment 2, we found evidence that subjects general-

ize only the most popular goal. In experiment 3, two of the three significant test context con-

trasts relied on the distinction between the second and third most popular goal in training

(specifically, the contrast between contexts 2 and 3 and the contrast between 1 and 4 vs. 2 and

3 involved these preferences). Assuming this partial null effect does not simply reflect an

absence of statistical power, there are multiple potential explanations, the most simple of

which is that experiment 2 was more difficult than experiment 3 (as it had more training con-

texts and more goals to choose from) and consequently, subjects had lower accuracy in experi-

ment 2 than in experiment 3 (S5 Fig; experiment 2 vs. 3: difference score = -0.045, t = 2.3,

p<0.03). Because subjects tend to extend less cognitive effort in more demanding tasks [50–

52], it is possible that they relied on a less cognitively demanding strategy. Relatedly, the higher

number of trials in the latter two experiments relative to the first may have encouraged subjects
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to adopt a more cognitively demanding strategy, as they may have changed the relative costs

and benefits of doing so.

The difference in task complexity (which extends to the first experiment as well) resulted

from experimental choices designed to increase the interpretability of the experiments. Criti-

cally, the ability to resolve the predictions of joint and independent clustering is related to the

complexity of the space of reward and mapping functions, as the models make different pre-

dictions only in explored regions of this space. We increased the space of contexts and goals in

experiments 2 and 3 in order to differentiate model predictions on a within-subjects basis. In

addition, we balanced the number of presentations of each context so that each goal would be

correct the same number of times. Otherwise, goals associated with higher popularity contexts

would have a higher expected value marginalized across contexts. These two choices interact

such that contexts were experienced less frequently in experiment 2 than experiment 3,

increasing the difficulty of the associative learning problem.

A further consequence of these choices is that working memory demands are not equal

across the tasks. This consequently offers an alternative explanation to the meta-generalization

agent: people may be arbitrating their generalization strategy based on the complexity of the

task-space as opposed to reward prediction. How working memory would influence the arbi-

tration strategy is not obvious, but intuitively, we might expect people to favor joint structure

to the extent that working memory capacity supports it and then switch to independent struc-

ture as task complexity increases. Joint structure is more representationally greedy than inde-

pendent structure, and such, we would expect it requires a higher memory load to learn the

reward contingencies. Subjects learn reward contingencies more slowly under higher memory

load [53] and we would expect working memory decay to affect joint and independent struc-

ture unequally. Joint clustering will necessarily result in at least as many context-clusters as

independent clustering, meaning that the reward values of independent clustering are updated

more frequently, possibly leading to better estimates of reward and thus, the meta-generaliza-

tion agent may favor independent clustering as task-complexity increases. While we have not

considered resource constraints in our model and they likely play an important role, it never-

theless remains clear from our data that people arbitrate between a compositional and non-

compositional generalization strategy depending on task demands. Indeed, the same issue as

to capacity limitations also arises in related literature on model-based vs. model-free contribu-

tions to learning [54], where highlighting this tradeoff across environments is nonetheless

useful.

A related limitation is the auto-correlated presentation of training contexts in the tasks.

While the approximate inference method used in the computational modeling (an approxi-

mate global MAP estimate) is generally insensitive to order manipulations, this does not

appear to be true for humans subjects, who show substantial order effects in both learning [55]

and in generalization tasks [8]. Moreover, we note that neural network model implementa-

tions of this context clustering have assumed a gating process in which prefrontal cortical

neural populations are updating when the abstract structure changes [3]. Notably, the develop-

ment and generalization of abstract structures in these gating networks is actually enhanced

during block training [56], as in the empirical data; this amounts to non-exchangeable approx-

imate inference [8]. However we have not explored this manipulation in the context of joint vs

independent clustering. We would expect this pattern to extend here as well, but how the train-

ing regime interacts with meta-generalization is unclear.

Finally, in this study, we presented model predictions and behavioral analyses at a group

level and do not make claims about individual subjects. This limitation is a consequence of the

task design: we probe generalization in a small number of test trials chosen to differentiate the

computational models qualitatively. There are only a few (2-4) trials per subject per measure
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that distinguish the model predictions and most of the trials in each experiment are used to

teach the subjects the statistics of the task or to balance the stimulus-action-outcome value of

each goal and button-press. While we could attempt to fit a process model to each subject to

determine each subject’s generalization strategy, the estimated strategy of each subject will be

highly dependent on a few trials and we are hesitant to rely upon this type of individual differ-

ence metric. As a result, it is difficult to make claims of whether individual subjects show a

mixture of joint and independent clustering in experiment 3, or whether our findings are

driven by two separate pools of subjects. We note that this distinction does not speak to

whether individual subjects use a meta-generalization strategy within a given task, as a meta-

generalization that deterministically chooses a strategy would produce two pools of subjects.

At a group level, we would expect to see a negative relationship between the joint and indepen-

dent effect if two separate pools of subjects drive the effects, a relationship we fail to see (see

S5 Text).

More generally, the difficulty in identifying individual subject strategy is not a limitation

of the grouped data because of its larger sample size. The models make unique and identifi-

able qualitative predictions on these tasks and the metrics of these predictions, the context

contrasts, are orthogonal from each other and not correlated with overall performance.

As such, we believe it is strong to make qualitative predictions about which conditions

show better or worse performance especially when the predicted patterns are orthogonal as

here.

Materials and methods

Ethics statement

All participants were compensated for their participation and gave informed consent as

approved by the Human Research Protection Office of Brown University under protocol

0901992629, “How prefrontal cortex augments reinforcement learning.”

Subjects

We collected in subjects online using Amazon Mechanical Turk and psiTurk [57].

Experiment 1. 198 subjects completed the task, of which two subjects were excluded for

reporting they took written notes during the experiment. Cluster analysis was used to asses

subjects for non-performance. A Gaussian mixture model was fit to the two measures: trials

following a correct trial of the same context and the overall accuracy in all other training con-

text trials (see S1 Text). On the basis of this analysis, 67 subjects were excluded for non-

performance.

Experiment 2. For experiment 2, we collected 153 subjects, five of which were excluded

for reporting they took written notes. Cluster analysis was used to assess non-performance on

the task. A Gaussian mixture model was fit to two measures: the accuracy in trials following a

correct trial of the same context and the binomial chance probability in all other training con-

text trials (see S1 Text). On this basis, we excluded 33 subjects from further analysis, leaving a

total of 114 subjects.

Experiment 3. 151 subjects completed experiment 3, two of which were excluded for

reporting they took written notes during the experiment. Using the same measures and analy-

sis as in experiment 2, we used cluster analysis to exclude 34 of the remaining 149 subjects on

the basis of their performance on these measures (see S1 Text).
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Task

In each of the three experiments, subject controlled agent in a 6x6 grid world which they had

to navigate into a labeled (‘A’, ‘B’, ‘C’, or ‘D’) goal location. In each study, subjects had to learn

both the value of the goals in each context as well as a “mapping” between button responses

(‘a’, ‘s’, ‘d’, ‘f’, ‘j’, ‘k’, ‘l’, and ‘;’) and movement in the grid worlds (North, South, East, West).

Each trial was a new instance of a grid world and associated with a color-cued context. To aide

memory, contexts were autocorrelated in time. This was done by splitting the training contexts

by permuting the order of the contexts under the constraints that the first half and second half

of training were equally balanced and subject to a hazard rate of 25% in the first half of training

that was lowered to 8% in the second half. The order of contexts was fully randomized in each

test phase. In each context, one goal provided a fixed deterministic reward while all other goals

were unrewarded. Separately, each context was also associated with one of two deterministic

mappings. One mapping was always associated with left-hand keys on a standard US keyboard

(‘a’, ‘s’, ‘d’, ‘f’) and the other was always associated with the right-hand keys (‘j’, ‘k’, ‘l’, ‘;’).

These two mappings were orthogonal for each hand, such that it was not possible to learn a

mapping on one hand and transfer that knowledge directly to the other hand. Organized from

left to right (i.e., ‘a’ to ‘f’ or ‘j’ to ‘;’), there were two possible mappings, either West, North,

South, East, or North, West, East South. Each mapping was assigned to each uniquely across

each hand, randomized across subjects, and each which mapping corresponded to the high or

low popularity mapping was also varied across subjects.

It is worth noting these mappings are substantially more simple than the state-transition

functions found in purely computational agents. This simplification was done to aid learning

and the degree to which humans learn the transition structure was not an experimental ques-

tion. As these mappings were deterministic and non-overlapping, each was identifiable with a

single button press. Prior theoretical work [18] compared these reduced mappings to full

state-transition functions and found that goal generalization was not affected by this

simplification.

Subjects were required to learn both the identity of the correct goal and the mappings

through exploration. To counterbalance for low-level action-values, the location of the goals

and the starting point of the agent were randomized on each trial. In addition, barriers were

randomly placed in a subset of trials to encourage additional planning. The relationship

between keypresses and movements was permuted across subjects, as was the visible label

attached to each goal.

Subjects were instructed that each context was paired with a single mapping and a single

rewarded goal location and asked to use their left-hand and right-hand to navigate. Subjects

were instructed that the shared color of the agent and goal cued the mapping and the value of

the goals and that this relationship was constant across all trials with the same color. As an

additional memory cue in experiment 2, each trial was labeled with a “room number” consis-

tent with its context and all trials in a context within the experiment shared the same pattern

of walls.

Computational modeling

We used a version of the independent clustering, joint clustering and meta-generalization

agent models adapted from [18] to generate qualitative predictions for each of the three experi-

ments. Simulations were run generatively to inform the design of the experiments and make

qualitative predictions. To verify the statistical significance of these predictions, we estimated

the posterior distribution of the relevant comparisons via sampling. Specifically, we generated

2500 simulated samples of each model on each task and sub-sampled 200 batches of
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simulations matched to the sample size in the human experiments (e.g. for experiment 2, we

generated 200 batches of 115 simulations to match the 115 subjects collected). This allows us

to estimate the probability that a randomly sampled experiment would produce the observed

effects. Importantly, independent and joint clustering are matched in the number of free

parameters and can be directly compared. Accuracy, or binary rewards collected per trial, are

reported as opposed to total reward.

Each model was a reinforcement learning model that learned a mapping function between

keyboard responses and movements in the maze as well as a value function over goals. For-

mally, we define a mapping function with a probability mass function ϕ(a, A), where a defines

a keyboard movement and A is a movement in the maze. As rewards in the task are binary, the

value function over goals can also be expressed as a probability distribution over goals R(g) =

Pr(g). For all three agents, mappings and goals are estimated with maximum likelihood estima-

tion. Agents were provided with fully supervised information as to the attempted movement

direction in the case the agent attempted to move through a barrier, as this information was

visually signaled to human participants as well.

The mapping and reward function was constant and deterministic for all trials within a

context. The models differed in how they assumed these functions were generalized across

contexts. Joint clustering assumes that each context c belongs to a cluster of contexts k that

share a single mapping and reward function, ϕk and Rk. Generalization is then cast as the prob-

lem of inferring the correct assignment of c into k via Bayesian inference:

Pr ðc 2 kjDÞ / Pr ðDjkÞPr ðc 2 kÞ ð1Þ

where the likelihood function Pr ðDjkÞ ¼
Q

D�kðAjaÞRkðgÞ is the product of the observed

probability of transitions and rewards on each trial for context cluster k. For the likelihood

function, we use the maximum likelihood estimate over all trials. The prior is defined with a

Chinese restaurant process [23], defined

Pr ðc 2 kÞ ¼
Nk
Nþa

a

Nþa

8
<

:
ð2Þ

where Nk is the number of contexts previously assigned to a cluster, N = ∑k Nk is the total num-

ber of contexts visited thus far and α is a concentration parameter that governs the propensity

for the process to assign a new context to a new cluster. For all of the simulations here, α was

drawn from a standard log-normal distribution, such that loga � N ð� 0:5; 1Þ, to simulate

individual differences generalization. During action selection (discussed below) themaximum
a posteriori (MAP) cluster assignment was used to approximate the posterior.

While joint clustering assumes mappings and goals generalize together, independent clus-

tering loosens this assumption by assigning each context twice: once for mappings and once

for goals. As before, cluster assignments are made via Bayesian inference (Eq 1) with the Chi-

nese restaurant process prior (Eq 2) but with a different likelihood for mapping clusters and

reward clusters. Mapping clusters use as their likelihood the mapping function Pr ðDjkÞ ¼
Q

D�kðAjaÞ whereas goal clusters use the reward function over goals as their likelihood

Pr ðDjkÞ ¼
Q

DRkðgÞ. While this can lead to a larger absolute number of clusters (with poten-

tially two clusters per contexts vs. one per context in the joint model), independent clustering

is a simpler statistical model as it does not represent co-occurrence statistics [18].

In contrast to both joint and independent clustering, the meta-generalization agent does

not employ a fixed generalization strategy and instead dynamically arbitrates between joint

and independent clustering. This is done via sampling, where each strategy is sampled
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proportionally to how well it predicts reward in each novel context. Formally, each model is

sampled according to its weight, wm, which is defined as

wm /
Yn

t¼1

Pr ðrtjmÞ

 !

Pr ðm Þ ð3Þ

wherem is either independent or joint clustering and rt is the reward observed on trial t. The

prior over models, Pr(m), was chosen stochastically by sampling a uniform between zero and

one. These model weights are an approximation of the unnormalized Bayesian model evidence

and are consistent with a prediction error based arbitration strategy [18]. Thus, the meta-gen-

eralization agent favors joint or independent clustering to the degree to which it predicts

unseen rewards.

Action selection was equivalent in all three models. Each agent had access to the structure

of each grid-world on each trial in the form of a transition function T(s, A, s0). This transition

function defined the probability of transitioning from location s to location s0 having made the

cardinal movement A. As movement in the grid-worlds was deterministic, this probability was

always either one or zero. This was done to mirror human participants who have access to

visual information indicating a spatial relationship between states as well as the locations of

goals and the presence of barriers. We note that the spatial planning component of this task

was intended to be simple for human participants.

This transition function was used to solve an action-value function on each trial in terms of

cardinal movements,

Qðs;AjcÞ ¼
X

s0
Tðs;A; s0Þ½Rk̂ðs

0Þ þ Vk̂ðs
0Þ� ð4Þ

where Rk̂ðs0Þ is the reward function over states for the MAP cluster assignment k̂ and where Vk̂
is the corresponding value function over states. Here, the reward function Rk̂ðs0Þ is expressed

over locations in the grid-world instead of over goals. In the behavioral task, goal locations are

randomized to account for stimulus-response biases and the location of each goal is provided

to the agent as it is visually available to subjects.

The value function over states, which defines the discounted expected reward of each state

under the optimal policy, is defined by the Bellman equation,

Vk̂ðsÞ ¼ max
A

X

s0
Tðs;A; s0ÞðRk̂ðs

0Þ þ gVk̂ðs
0ÞÞ

" #

ð5Þ

where γ is a discount parameter set to γ = 0.8 for all agents. This system of equations is solved

using value iteration [17].

On each trial, a cardinal movement is sampled from a softmax function over the action-

value function:

Pr ðAjs; cÞ / ebQðs;AjcÞ ð6Þ

where β, a free parameter, controls the propensity to choose the highest valued action. The

value of β was sampled for each simulation such that logb � N ð2:0; 0:5Þ. The learned map-

ping functions were then used to sample keyboard responses,

Pr ðajAÞ ¼ �k̂ðajAÞ ð7Þ

As a comparison to the generalization agents, three contextual but non-generalizing agents

were also simulated: a “Flat” agent, a Q-learning agent and an Upper Confidence Bound
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(UCB) agent. The Flat agent is the most similar to the generalization agents, differing only in

its assignments of contexts into clusters. The Flat agent assigns each context into a unique clus-

ter, preventing the pooling of information between contexts. Conveniently, this can be inter-

preted as the limiting case of all of the generalizing agents with the concentration parameter α
set to infinity and is thus otherwise the same.

The Q-learning agent further differed from the generalization agents in that the value of

each goal was learned with a prediction-error based learning rule, defined:

RcðgÞ  RcðgÞ þ Zðr � RcðgÞÞ ð8Þ

where r is the observed reward, and η 2 [0, 1] is a learning rate. Like the Flat agent, the Q-

learning agent learned both the mapping and the goals statistics of each context independently,

so the reward function here is defined in terms of contexts and not clusters. For each simula-

tion, a single fixed learning rate was sampled from the distribution logit� 1
ðZÞ � N ð� 1; 1Þ,

where logit−1(x) = 1/(1 + exp(−x)) is the inverse logit transform (thus the sampled value of the

learning rate is bound between 0 and 1). Aside from this learning rule, the Q-learning agent

was otherwise equivalent to the Flat agent.

Finally, the UCB agent incorporated estimates of uncertainty in the learned value of goals

used during planning. By this, we mean that the value of each goal in a context was defined to

be a function of the expected value of reward and the uncertainty of the estimate,

RcðgÞ ¼ mc;g þ os2
c;g ð9Þ

where μc,g and s2
c;g are the mean and variance of the rewards for goal c in context c and where

ω is a free parameter that controls the degree of uncertain-guided exploration (see [58] for a

thorough discussion of uncertainty guided exploration). In our simulations, ω was sampled

from the distribution logit� 1
ðoÞ � N ð� 1; 1Þ. Other than this estimate of reward, the UCB

agent is equivalent to the Flat agent and Q-learning agent.

To estimate the mean and variance of rewards for the UCB agent, we used a time-varying

normal approximation via a Kalman filter [59]. We define our Kalman filter with a series of

update rules. The mean is updated according to the rule

mc;g  mc;g þ Gðr � mc;gÞ ð10Þ

and the variance by

s2
c;g  ð1 � GÞ � ðs

2
c;g þ zÞ ð11Þ

where z is the diffusion noise that reflects the tendencies of reward to drift over time and

where G refers to the “Kalman gain” (learning rate), defined

G ¼
mc;g þ z

mc;g þ zþ �
ð12Þ

where � is a form of irreducible noise. The values of z and � were sampled from the distribu-

tions logit� 1
ðzÞ � N ð� 1; 1Þ and logit� 1

ð�Þ � N ð� 1; 1Þ, respectively. This estimate of mean

and variance allows the estimate of reward to drift over time, with the consequence that the

model will tend to over-explore the tasks defined here.

Statistical analyses

Analysis of computational models. As noted above, we simulated 200 batches of simula-

tions for each model matched to the human subject sample size for each condition in each
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experiment. This represents a distribution on which we can directly calculate significance sta-

tistics and effect sizes. For each relevant comparison, we report the mean value (M), and the

95% highest posterior density interval (HPD) [60] and, when appropriate, the one-tailed p-test

(p1-tail) evaluated directly on this distribution. Statistical significance was determined by

whether the measured effect included chance in its 95% HPD (chance was zero for the context

contrasts). Because we evaluate 200 samples, the minimum p-value we report is p1-tail < 0.005

for a single model. We do not report t-tests or other null-hypothesis significance tests on the

computational models.

Hierarchical Bayesian logistic regression. We analyzed test context accuracy in each of

the three experiments with hierarchical Bayesian logistic regression [60, 61], with a hierarchi-

cal prior over individual regression coefficients. All models were estimated using the No-U-

turn sampler, a variant of Hamiltonian MCMC [62], implemented in the PyMC3 software

library [63].

A priorimodel predictions were instantiated with and orthogonal set of contrasts between

test contexts. Experiment 1 contained both within-subjects and between-subjects prediction

and thus contained predictors for both. To control for within context learning, the number of

trials in a context (t), whether a context was sequentially repeated and correct (rep) were

included as nuisance predictors. It was modeled with the following logistic regression model:

logitðpÞ ¼ bsSþ bHH þ btt þ breprep ð13Þ

where S 2 {0, 1} is equal to 1 for the (between-subjects) “Switch” condition, where “H”2{0, 1}

is equal to 1 when the rewarded goal for the context is the high popularity goal. A hierarchical

prior b � N ðmb; sbÞ was used for all predictors with a vague normal mb � N ð0; 100Þ and Cau-

chy hyper-prior σβ*Half- Cauchy(0, 100) for the mean and variance of each predictor,

respectively.

The predictions of interest in experiments 2 and 3 were all within-subjects measures. As

both experiments had 4 test contexts, a maximum of three orthogonal contrasts was possible.

As before, the number of trials in a context, whether a context was repeated and previously

correct were included as nuisance predictors. These were modeled as a linear combination of

terms in a logistic regression,

logitðpÞ ¼
X

c

bccþ btt þ breprep ð14Þ

where logit(x) = 1/(1 + exp(−x)), c is a contrast, t is the trial number within a context and rep

2{0, 1} indicates whether a context has been sequentially repeated. Hierarchical priors for the

regression coefficients were defined in the same manner as experiment 1.

We report the expectation (mean value) of the regression coefficients (denoted as E½b�).
These were interpreted as group level effects and statistical significance was determined by

gauging whether 0 fell within the 95% highest posterior density interval (HPD) [60] or using a

1-tailed test, denoted as p1-tail, where appropriate. An advantage of this Bayesian approach is

that we are able to define novel contrast with the same posterior sample through algebraic

manipulation (i.e., addition or subtraction) of our parameters. For additional insight, we

report relevant contrast created through this form of recombination.

Analysis of goal selection. In experiment 2, we analyzed the probability each goal was

chosen in the first trial of a novel context at a group level with two Bernoulli models. For the

first model, we collapsed the goal selection for all subjects across all test contexts, and modeled

the goal-choice probability with independent Bernoulli distributions,

pg � BernoulliðygÞ ð15Þ
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where g 2 {A, B, C, D} is a goal. In a separate analysis, we modeled goal choice probability as

independent Bernoulli distributions, collapsing across all test contexts that shared a transition

function. Thus, as test contexts 1 and 2 shared the same transition function, θg was modeled

separately for contexts 1 and 2 then 3 and 4.

Similarity analysis. The qualitative predictions of the joint and independent clustering

models were compared to human behavior across each of the three experiments. A vector of

length two was created for each experiment for both human and model data. For human data,

this consisted of the regression coefficients of the contrasts of interests and for the model data,

this corresponded to the difference score between test conditions. Angle cosine was calculated

between samples of these two sets of vectors as a metric of similarity, with a maximum similar-

ity occurring when the angle cosine equals 1 and a measure of 0 representing orthogonal

predictions.

Supporting information

S1 Fig. Cluster analysis of subjects training performance in experiments 1 (A-D) and 2(E-

H). A,E: Accuracy in repeated, correct trails vs. all other trials. B,F: Proportion of time the clos-

est goal was selected by inclusion status. C,G: Subject rated difficulty by inclusion status. D,H:

Time spend reading viewing instructions by inclusion status.

(TIF)

S2 Fig. Experiment 1, training performance. Accuracy (A), median reaction time (B) and the

excess number of steps taken over the shortest path (C) shown as a function of the number of

trials within each training context.

(TIF)

S3 Fig. Experiment 2, training performance. Accuracy (A), median reaction time (B) and the

excess number of steps taken over the shortest path (C) shown as a function of the number of

trials within each training context.

(TIF)

S4 Fig. Experiment 3, training performance. Accuracy (A), median reaction time (B) and the

excess number of steps taken over the shortest path (C) shown as a function of the number of

trials within each training context.

(TIF)

S5 Fig. Cross experiment training accuracy. Left: Accuracy as a function of the number of

presentations in each context. Initial differences reflect a difference in chance accuracy

between experiments Right: Accuracy as a function of number of presentations remaining (per

context) within the training phase. Sharp drops in accuracy reflect the fact that each context

was not shown the same number of times.

(TIF)

S1 Table. Experiment 1 task design. The number of trials within each context is balanced

such that each goal and each mapping is presented the same number of trials across both train-

ing and test. Subjects saw either the “Repeat Test” context or the “Switch Test” contexts.

(PDF)

S2 Table. Experiment 2 task design. The number of trials within each context is balanced

such that each goal and each mapping is presented the same number of trials across both train-

ing and test.

(PDF)
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ing and test.
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1985 (pp. 1-198). Springer, Berlin, Heidelberg.

24. Anderson JR, Matessa M. A rational analysis of categorization. In: Machine Learning Proceedings

1990. Elsevier; 1990. p. 76–84.

25. Love BC, Medin DL, Gureckis TM. SUSTAIN: a network model of category learning. Psychological

review. 2004; 111(2):309. https://doi.org/10.1037/0033-295X.111.2.309 PMID: 15065912

26. Sanborn AN, Griffiths TL, Navarro DJ. Rational approximations to rational models: alternative algo-

rithms for category learning. Psychological review. 2010; 117(4):1144. https://doi.org/10.1037/

a0020511 PMID: 21038975

27. Gershman SJ, Radulescu A, Norman KA, Niv Y. Statistical computations underlying the dynamics of

memory updating. PLoS computational biology. 2014; 10(11):e1003939. https://doi.org/10.1371/

journal.pcbi.1003939 PMID: 25375816

28. Ly A, Verhagen J, Wagenmakers EJ. Harold Jeffreys’s default Bayes factor hypothesis tests: Explana-

tion, extension, and application in psychology. Journal of Mathematical Psychology. 2016; 72:19–32.

https://doi.org/10.1016/j.jmp.2015.06.004

PLOS COMPUTATIONAL BIOLOGY Generalizing to generalize

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007720 April 13, 2020 31 / 33

https://doi.org/10.1016/j.cognition.2016.04.002
https://doi.org/10.1016/j.cognition.2016.04.002
http://www.ncbi.nlm.nih.gov/pubmed/27082659
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24672013
https://doi.org/10.1162/jocn_a_01128
http://www.ncbi.nlm.nih.gov/pubmed/28358657
https://doi.org/10.1093/cercor/bhr117
http://www.ncbi.nlm.nih.gov/pubmed/21693491
https://doi.org/10.1016/j.cogpsych.2019.101261
http://www.ncbi.nlm.nih.gov/pubmed/32059133
https://doi.org/10.1523/JNEUROSCI.3336-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29959234
https://doi.org/10.1613/jair.639
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1371/journal.pcbi.1006116
http://www.ncbi.nlm.nih.gov/pubmed/29672581
https://doi.org/10.1023/A:1009778005914
https://doi.org/10.1080/00222895.2010.526467
https://doi.org/10.1080/00222895.2010.526467
http://www.ncbi.nlm.nih.gov/pubmed/21184355
https://doi.org/10.1523/JNEUROSCI.4647-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21471389
https://doi.org/10.1037/0033-295X.111.2.309
http://www.ncbi.nlm.nih.gov/pubmed/15065912
https://doi.org/10.1037/a0020511
https://doi.org/10.1037/a0020511
http://www.ncbi.nlm.nih.gov/pubmed/21038975
https://doi.org/10.1371/journal.pcbi.1003939
https://doi.org/10.1371/journal.pcbi.1003939
http://www.ncbi.nlm.nih.gov/pubmed/25375816
https://doi.org/10.1016/j.jmp.2015.06.004
https://doi.org/10.1371/journal.pcbi.1007720


29. Rasmussen CE, Ghahramani Z. Occam’s razor. In: Advances in neural information processing sys-

tems; 2001. p. 294–300.

30. Gershman SJ, Jones CE, Norman KA, Monfils MH, Niv Y. Gradual extinction prevents the return of

fear: implications for the discovery of state. Frontiers in behavioral neuroscience. 2013; 7:164. https://

doi.org/10.3389/fnbeh.2013.00164 PMID: 24302899

31. Gershman SJ, Hartley CA. Individual differences in learning predict the return of fear. Learning & behav-

ior. 2015; 43(3):243–250. https://doi.org/10.3758/s13420-015-0176-z

32. Wilson A, Fern A, Tadepalli P. Transfer learning in sequential decision problems: A hierarchical Bayes-

ian approach. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning; 2012.

p. 217–227.

33. Mahmud M, Hawasly M, Rosman B, Ramamoorthy S. Clustering markov decision processes for contin-

ual transfer. arXiv preprint arXiv:13113959. 2013;.

34. Rosman B, Hawasly M, Ramamoorthy S. Bayesian policy reuse. Machine Learning. 2016; 104(1):99–

127. https://doi.org/10.1007/s10994-016-5547-y

35. Hashemzadeh M, Hosseini R, Ahmadabadi MN. Clustering subspace generalization to obtain faster

reinforcement learning. Evolving Systems. 2019; p. 1–15.

36. Mannor S, Menache I, Hoze A, Klein U. Dynamic abstraction in reinforcement learning via clustering. In:

Proceedings of the twenty-first international conference on Machine learning. ACM; 2004. p. 71.

37. Konidaris G, Osentoski S, Thomas P. Value function approximation in reinforcement learning using the

Fourier basis. In: Twenty-fifth AAAI conference on artificial intelligence; 2011.

38. Tomov M, Yagati S, Kumar A, Yang W, Gershman S. Discovery of hierarchical representations for effi-

cient planning. BioRxiv. 2018 Jan 1:499418.

39. Wu CM, Schulz E, Speekenbrink M, Nelson JD, Meder B. Generalization guides human exploration in

vast decision spaces. Nature human behaviour. 2018; 2(12):915. https://doi.org/10.1038/s41562-018-

0467-4 PMID: 30988442

40. Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural

networks. 1999; 12(7-8):961–974. https://doi.org/10.1016/s0893-6080(99)00046-5 PMID: 12662639

41. Bartra O, McGuire JT, Kable JW. The valuation system: a coordinate-based meta-analysis of BOLD

fMRI experiments examining neural correlates of subjective value. Neuroimage. 2013; 76:412–427.

https://doi.org/10.1016/j.neuroimage.2013.02.063 PMID: 23507394

42. Frank MJ, Claus ED. Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning,

decision making, and reversal. Psychological review. 2006; 113(2):300. https://doi.org/10.1037/0033-

295X.113.2.300 PMID: 16637763

43. Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. Orbitofrontal cortex as a cognitive map of task

space. Neuron. 2014; 81(2):267–279. https://doi.org/10.1016/j.neuron.2013.11.005 PMID:

24462094

44. Schuck NW, Cai MB, Wilson RC, Niv Y. Human orbitofrontal cortex represents a cognitive map of state

space. Neuron. 2016; 91(6):1402–1412. https://doi.org/10.1016/j.neuron.2016.08.019 PMID:

27657452

45. Padoa-Schioppa C, Assad JA. Neurons in the orbitofrontal cortex encode economic value. Nature.

2006; 441(7090):223. https://doi.org/10.1038/nature04676 PMID: 16633341

46. Frank MJ, Badre D. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1:

computational analysis. Cerebral cortex. 2012; 22(3):509–526. https://doi.org/10.1093/cercor/bhr114

PMID: 21693490

47. Oh J, Singh S, Lee H, Kohli P. Zero-shot task generalization with multi-task deep reinforcement learn-

ing. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org;

2017. p. 2661–2670.

48. Todorov E. Linearly-solvable Markov decision problems. In: Advances in neural information processing

systems; 2007. p. 1369–1376.

49. Piray P, Daw ND. A common model explaining flexible decision making, grid fields and cognitive control.

bioRxiv. 2019; p. 856849.

50. Kool W, Gershman SJ, Cushman FA. Cost-benefit arbitration between multiple reinforcement-learning

systems. Psychological science. 2017; 28(9):1321–1333. https://doi.org/10.1177/0956797617708288

PMID: 28731839

51. Kool W, McGuire JT, Rosen ZB, Botvinick MM. Decision making and the avoidance of cognitive

demand. Journal of Experimental Psychology: General. 2010; 139(4):665. https://doi.org/10.1037/

a0020198

PLOS COMPUTATIONAL BIOLOGY Generalizing to generalize

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007720 April 13, 2020 32 / 33

https://doi.org/10.3389/fnbeh.2013.00164
https://doi.org/10.3389/fnbeh.2013.00164
http://www.ncbi.nlm.nih.gov/pubmed/24302899
https://doi.org/10.3758/s13420-015-0176-z
https://doi.org/10.1007/s10994-016-5547-y
https://doi.org/10.1038/s41562-018-0467-4
https://doi.org/10.1038/s41562-018-0467-4
http://www.ncbi.nlm.nih.gov/pubmed/30988442
https://doi.org/10.1016/s0893-6080(99)00046-5
http://www.ncbi.nlm.nih.gov/pubmed/12662639
https://doi.org/10.1016/j.neuroimage.2013.02.063
http://www.ncbi.nlm.nih.gov/pubmed/23507394
https://doi.org/10.1037/0033-295X.113.2.300
https://doi.org/10.1037/0033-295X.113.2.300
http://www.ncbi.nlm.nih.gov/pubmed/16637763
https://doi.org/10.1016/j.neuron.2013.11.005
http://www.ncbi.nlm.nih.gov/pubmed/24462094
https://doi.org/10.1016/j.neuron.2016.08.019
http://www.ncbi.nlm.nih.gov/pubmed/27657452
https://doi.org/10.1038/nature04676
http://www.ncbi.nlm.nih.gov/pubmed/16633341
https://doi.org/10.1093/cercor/bhr114
http://www.ncbi.nlm.nih.gov/pubmed/21693490
https://doi.org/10.1177/0956797617708288
http://www.ncbi.nlm.nih.gov/pubmed/28731839
https://doi.org/10.1037/a0020198
https://doi.org/10.1037/a0020198
https://doi.org/10.1371/journal.pcbi.1007720


52. Westbrook A, Kester D, Braver TS. What is the subjective cost of cognitive effort? Load, trait, and aging

effects revealed by economic preference. PloS one. 2013; 8(7):e68210. https://doi.org/10.1371/journal.

pone.0068210 PMID: 23894295

53. Collins AGE, Frank MJ. How much of reinforcement learning is working memory, not reinforcement

learning? A behavioral, computational, and neurogenetic analysis. European Journal of Neuroscience.

2012; 35(7):1024–1035. https://doi.org/10.1111/j.1460-9568.2011.07980.x PMID: 22487033

54. Otto AR, Gershman SJ, Markman AB, Daw ND. The curse of planning: dissecting multiple reinforce-

ment-learning systems by taxing the central executive. Psychological science. 2013; 24(5):751–761.

https://doi.org/10.1177/0956797612463080 PMID: 23558545

55. Flesch T, Balaguer J, Dekker R, Nili H, Summerfield C. Comparing continual task learning in minds and

machines. Proceedings of the National Academy of Sciences. 2018; 115(44):E10313–E10322. https://

doi.org/10.1073/pnas.1800755115

56. Rougier NP, Noelle DC, Braver TS, Cohen JD, O’Reilly RC. Prefrontal cortex and flexible cognitive con-

trol: Rules without symbols. Proceedings of the National Academy of Sciences. 2005; 102(20):7338–

7343. https://doi.org/10.1073/pnas.0502455102

57. Gureckis TM, Martin J, McDonnell J, Rich AS, Markant D, Coenen A, et al. psiTurk: An open-source

framework for conducting replicable behavioral experiments online. Behavior research methods. 2016;

48(3):829–842. https://doi.org/10.3758/s13428-015-0642-8 PMID: 26428910

58. Gershman SJ. Deconstructing the human algorithms for exploration. Cognition. 2018; 173:34–42.

https://doi.org/10.1016/j.cognition.2017.12.014 PMID: 29289795

59. Welch G, Bishop G, et al. An introduction to the Kalman filter. 1995;.

60. Kruschke J. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press; 2014.

61. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis. vol. 2. CRC

press Boca Raton, FL; 2014.

62. Hoffman MD, Gelman A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian

Monte Carlo. 2011; 15:1593–1623.

63. Salvatier J, Wiecki TV, Fonnesbeck C. Probabilistic programming in Python using PyMC3. PeerJ Com-

puter Science. 2016; 2:e55. https://doi.org/10.7717/peerj-cs.55

64. Noorani I, Carpenter R. The LATER model of reaction time and decision. Neuroscience & Biobehavioral

Reviews. 2016; 64:229–251. https://doi.org/10.1016/j.neubiorev.2016.02.018

PLOS COMPUTATIONAL BIOLOGY Generalizing to generalize

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007720 April 13, 2020 33 / 33

https://doi.org/10.1371/journal.pone.0068210
https://doi.org/10.1371/journal.pone.0068210
http://www.ncbi.nlm.nih.gov/pubmed/23894295
https://doi.org/10.1111/j.1460-9568.2011.07980.x
http://www.ncbi.nlm.nih.gov/pubmed/22487033
https://doi.org/10.1177/0956797612463080
http://www.ncbi.nlm.nih.gov/pubmed/23558545
https://doi.org/10.1073/pnas.1800755115
https://doi.org/10.1073/pnas.1800755115
https://doi.org/10.1073/pnas.0502455102
https://doi.org/10.3758/s13428-015-0642-8
http://www.ncbi.nlm.nih.gov/pubmed/26428910
https://doi.org/10.1016/j.cognition.2017.12.014
http://www.ncbi.nlm.nih.gov/pubmed/29289795
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1016/j.neubiorev.2016.02.018
https://doi.org/10.1371/journal.pcbi.1007720

