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Abstract

The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in

some contexts while facilitating fast adaptations in others. The specific contributions of dif-

ferent BG structures to this nuanced behavior remain unclear, particularly under varying

situations of noisy and conflicting information that necessitate ongoing adjustments in the

balance between speed and accuracy. Theoretical accounts suggest that dynamic regula-

tion of the amount of evidence required to commit to a decision (a dynamic “decision bound-

ary”) may be necessary to meet these competing demands. Through the application of

novel computational modeling tools in tandem with direct neural recordings from human BG

areas, we find that neural dynamics in the theta band manifest as variations in a collapsing

decision boundary as a function of conflict and uncertainty. We collected intracranial record-

ings from patients diagnosed with either Parkinson’s disease (PD) (n = 14) or dystonia (n =

3) in the subthalamic nucleus (STN), globus pallidus internus (GPi), and globus pallidus

externus (GPe) during their performance of a novel perceptual discrimination task in which

we independently manipulated uncertainty and conflict. To formally characterize whether

these task and neural components influenced decision dynamics, we leveraged modified

diffusion decision models (DDMs). Behavioral choices and response time distributions were

best characterized by a modified DDM in which the decision boundary collapsed over time,

but where the onset and shape of this collapse varied with conflict. Moreover, theta dynam-

ics in BG structures modulated the onset and shape of this collapse but differentially across

task conditions. In STN, theta activity was related to a prolonged decision boundary

(indexed by slower collapse and therefore more deliberate choices) during high conflict situ-

ations. Conversely, rapid declines in GPe theta during low conflict conditions were related to
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rapidly collapsing boundaries and expedited choices, with additional complementary deci-

sion bound adjustments during high uncertainty situations. Finally, GPi theta effects were

uniform across conditions, with increases in theta associated with a prolongation of decision

bound collapses. Together, these findings provide a nuanced understanding of how our

brain thwarts impulsive actions while nonetheless enabling behavioral adaptation amidst

noisy and conflicting information.

Introduction

We are constantly exposed to ambiguous and conflicting information, requiring us to care-

fully gather and assess information from various sources before making choices. When pre-

sented with conflicting information for alternative actions, it can be helpful to take time to

pause and ensure that decisions appropriately reflect multiple sources of evidence. However,

too much reflection can cause decision paralysis, especially amidst ambiguity. Therefore,

striking a delicate balance, tailored to the circumstances, is crucial but also notoriously diffi-

cult. Here, we examine how such tradeoffs can be mitigated by dynamics in the basal ganglia

(BG) that offer mechanisms to pause decisions and collect more evidence when needed but

also to expedite choices when it may be come costly to accumulate for too long [1–5]. We

developed a novel perceptual paradigm which orthogonally varies conflict and uncertainty

and examined how these conditions would lead to dynamic adjustments in decision strate-

gies. Together with tailored computational models, we examine how the brain navigates

trade-offs between speed and accuracy and how it adapts to varying uncertainty and conflict

which provides insights for biology, decision science, and health. The BG comprise various

subcortical structures that coordinates selection of actions in response to cortical inputs,

while also regulating the needed evidence (i.e., decision threshold) for committing to a

choice [1,6–9]. Neurons in the striatum are the BG’s main input segment and accumulate

evidence for alternative choice options [10,11]. Those in the globus pallidus internus (GPi)

are the BG’s main output segment and gate the striatal impact on decision-making [10–14].

GPi receives input from 2 other BG structures, the globus pallidus externus (GPe) and the

subthalamic nucleus (STN), which are part of distinct pathways that intricately link the BG

and the cortex [7,8,15,16]. To date, the relative contribution of these structures to decision-

making, particularly in the presence of noisy and conflicting information, is not yet under-

stood. We describe the distinct and complementary dynamics in the STN, GPe, and GPi for

modulating decision-making within the same paradigm but orthogonally varying conflict

and uncertainty.

Leveraging computational methods, we use diffusion decision models (DDMs; [17,18]) to

link activity in the various BG structures to specific aspects of decision-making dynamics

(Fig 1A). DDMs capture simultaneously which choices are made and when they occur across

the full distribution of response times (RTs). They provide a powerful computational account

for studying brain–behavior mappings because they decompose choices into distinct latent

components that together resemble the dynamic decision process [19–21]. Each component is

represented by a quantifiable parameter with well-established psychological interpretation

[19–21]. However, the DDM is just one instance of a broader class of sequential sample models

(SSMs; [30]), each with its own assumptions about the underlying decision dynamics [19,21–

23]. In this study, we show how one can leverage and test neurobiologically derived hypotheses

for these alternative models of evidence accumulation.
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Inspired by past neurobiological models that focused on the neural dynamics across BG

regions, we leveraged modified DDMs to advance and refine our current understanding of

STN-mediated control over decisions. The STN, driven by cortical inputs, is known to detect

conflict between choice alternatives [1,24–29] and pauses the selection of actions to promote

further information integration or stops actions outright. The causal role of the STN as a

global brake in response to decision conflict has been validated in behavioral, functional

imaging, neural manipulation, and lesion studies across species [24,28,30–39]. Past studies

have used the standard DDM to show that elevations in cortical and STN theta band power,

triggered by decision conflict, is linked to increases in the so-called DDM parameter decision

threshold (also referred to as boundary separation, a; Fig 1A) [1,22,25,32,34,40,41]; increases

in decision threshold generate slower and more accurate responses [20,21]. However, the

standard DDM assumes that decision thresholds are constant during the decision-making

process (Fig 1A), whereas normative considerations such as those motivated above suggest

that in many circumstances the boundaries should collapse over time ([38–41], Fig 1B).

Moreover, neural data and network models suggest that STN and GP dynamics should trans-

late into dynamic decision thresholds [22,25,28,37], thereby motivating modified DDMs

with dynamic decision boundaries. We therefore tested whether the standard DDM or

Fig 1. Characteristics of Weibull-informed decision boundaries index dynamic cautiousness in our experimental paradigm. (A) Representation of

the classical DDM with fixed decision boundaries. The DDM emulates latent decision-making processes that evolve over time and that represent the

sequential accumulation of information. According to this model, choices and corresponding RTs manifest from these decision-making processes.

Specifically, decision-making processes are presumed to continue until they reach a certain decision threshold that is associated with a specific choice.

(B) Dynamics of Weibull-informed decision boundaries, characterized by initial height a followed by a collapsing bound with separable onset (β) and

shape (α) parameters. (C) Task stimuli involved dot motion patterns that varied in strong vs. weak discriminability (motion coherence) and low vs. high

conflict (angle subtending response targets), producing 4 task conditions (SD-LC, WD-LC, SD-HC, and WD-HC). For example, the SD-HC condition

involved stronger discriminability but higher conflict because motion trajectories of dots were close to the category boundary (blue vertical line invisible

to participants) of left/right responses (detailed in the Methods). The blue category boundaries refer to the implicit decision criterion that participants

attempt to infer during perceptual tasks according to signal detection theory. If more dots are moving to the left of the category boundary, then

participants respond “left.” Otherwise, they respond “right.” Determining whether the motion coherence actually falls on the left or right side of that

category boundary requires accumulating evidence up to a decision threshold according to the DDM. DDM, diffusion decision model; RT, response

time.

https://doi.org/10.1371/journal.pbio.3002978.g001
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modified DDMs with dynamic boundaries best capture behavioral patterns in our paradigm.

Applying dynamic DDMs in a mechanistic task that dissociates different forms of conflict

and uncertainty allows us also to reconcile contradictory findings in previous studies. For

example, many studies suggest that STN theta power increases decision threshold in the

presence of higher conflict, but there are some indications that the same level of theta power

actually reduces threshold under lower conflict [32,42]. A collapsing decision boundary can

help address this problem: instead of raising the boundary with conflict, one can start with a

high boundary and merely prolong its collapse when there is conflict, but expedite its col-

lapse when conflict is low so as to not waster further time accumulating evidence. Our find-

ings confirm this hypothesis, which challenges a simple unidirectional association of higher

STN theta power with increased decision threshold [28,43,44]. Moreover, we reveal a promi-

nent role for reductions in GPe theta under low conflict situations in which decisions can be

expedited.

Past studies vary in terms of what constitutes conflict, from perceptual uncertainty, to

uncertainty in value-based decision-making, to response or stimulus conflict [24,32,36,42,45].

Dissociations between uncertainty and conflict within the same paradigm are missing. We will

show that this dissociation reveals novel mechanisms of how BG structures contribute to deci-

sion dynamics, potentially involving interactions between the STN, GPe, and GPi [8,24,32].

Neurocomputational simulations suggest that the GPe, via strong reciprocal interactions with

the STN, could play pivotal roles under higher uncertainty by expanding the potential spec-

trum of decision boundary dynamics [1,46]. The GPe’s promotion of response cautiousness

may be particular effective for resolving conflict under conditions of high information uncer-

tainty. This might be because the GPe has been tied to fine-tuning processes for selective atten-

tion and has shown greater specificity in information transmission than other BG output

structures [1,7,8,47,48].

To examine how distinct BG components contribute to decision dynamics, we recorded

local field potentials (LFPs) from STN, GPi, and GPe in human patients with Parkinson’s dis-

ease (PD) (n = 14) or dystonia (n = 3) while they judged the primary direction of moving dots,

either left or right (Fig 1C). In this task, we independently varied conflict and uncertainty in

discriminability (detailed in the Methods and below). We then related variations in single-trial

theta band dynamics to the dynamic decision boundaries in the modified DDM within a

regression-based approach. We focused on theta power based on strong a priori hypotheses

established by previous work [34,42,49] and to focus our main findings on the novel dissection

of decision dynamics across 3 distinct BG structures. Importantly, we also confirmed that a

variant of this task (see Methods) adapted for younger students without neurological disorders

(n = 25) produced similar conflict-induced behavioral changes as those found in the patient

groups, establishing that the behavioral dynamics are generalizable.

As hypothesized based on past neurocomputational applications [22,28], the modified

DDM with dynamically collapsing decision boundaries best captured behavioral patterns. The

onset and shape of this within-trial dynamic decision threshold was characterized by a Weibull

distribution governed by 2 free parameters (Fig 1B). Early (poststimulus) theta activity modu-

lated collapse onset, whereas later pre-response activity modulated collapse shape.

Theta dynamics in distinct BG regions modulated the decision boundary collapses in a

complementary fashion. To preview our main findings: Under strong motion coherence, the

presence of conflict increased STN theta and prolonged collapsing boundary, supporting more

cautious and accurate choices. In contrast, under low conflict, decisions could be made expedi-

tiously, and we found that decreased GPe theta was linked to a more precipitous decline in the

collapsing boundary. When motion coherence was weak (higher uncertainty), boundary col-

lapse was delayed with higher theta in both STN and GPe. Finally, higher GPi theta was related

PLOS BIOLOGY Diverse basal ganglia decision dynamics
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to prolonged decision boundaries uniformly across task conditions, consistent with its role as

the final output structure of the BG [1,27].

Results

Separating conflict from discriminability

In our perceptual decision task, we independently manipulated uncertainty in discriminability

(coherence) and conflict (Fig 1C). Specifically, task stimuli involved moving dot patterns that

varied in 2 levels of motion coherence (signal strength) and angular trajectory (signal interfer-

ence), respectively. Varying motion coherence makes perceptual discriminability stronger or

weaker according to the degree of overlap of cortical populations coding for specific motion

directions [8,20,50–55]. Varying angular trajectory induces cognitive conflict: even when

coherence is high, those trajectories close to the category boundary (vertical blue lines in Fig

1C) induce conflict due to the overlap of category-specific cortical populations [56–58]. Since

priming bimanual responses with the requirement of a single motor output has been advanced

as a formal definition of cognitive conflict [59,60], we refer to these conditions as lower versus

higher conflict (see Methods). Within the SSM framework, discriminability affects the rate of

sensory evidence accumulation, whereas co-activation of mutually incompatible responses ele-

vates decision boundaries [22,34,42,59].

As typically seen in dot motion discrimination tasks, stronger compared to weaker discrim-

inability was associated with higher accuracy (mean difference: 8.32%, SEM = 1.74%,

p< 0.001; Wilcoxon signed-rank test: V = 316, N = 26, p< 0.001, r = −0.752; S1 Fig provides

details) and faster mean RTs for correct responses (mean difference: −100 ms, SEM = 28 ms,

p = 0.004; Wilcoxon signed-rank test: V = 66, N = 26, p = 0.004, r = −0.560). We augment past

findings by showing that higher conflict induced slower mean RTs for correct but not for

incorrect responses, and more so under stronger than weaker discriminability (Fig 2A). The

absence of conflict-induced slowing for error responses can be linked to failures to sufficiently

increase decision thresholds [29,30]. Specifically, higher accuracy is associated with increased

RTs (reflecting a so-called speed-accuracy trade-off up to a saturation point) as shown in

Fig 2B. We provide additional summary statistics in S1 Fig, aside from the empirical RT quan-

tiles and accuracy by task conditions (Fig 2D).

Evidence for dynamic cautiousness adaptations during decisions

We fit a variety of SSMs that varied in either decision boundary dynamics (i.e., fixed, linear

collapsing, Weibull-informed collapsing) or relative (stochastic) evidence accumulation

dynamics (i.e., constant versus variable drift rates). S1 Table provides model comparison and

posterior predictive checks. Supporting the central behavioral prediction, the best-fitting

model included constant drift rates that varied by discriminability (stronger, weaker) and Wei-

bull-informed collapsing decision boundaries whose onset and shape varied by conflict and

discriminability-by-conflict interaction, respectively. Other model parameters were fixed

across task conditions (see Methods). This best-fitting model produced dynamics are graphi-

cally simulated in Fig 2C, showing both drift rate and boundary effects as a function of

discriminability and conflict. It demonstrated good parameter recovery (S2 Fig) and captured

the data well (Fig 2D: squares representing empirical data are within ellipses representing

Bayesian estimation uncertainty). It particularly captured the tails of the RT distributions

(including accuracies) better than the full DDM with variability parameters (S2 Table) and

other models as demonstrated in S3 Fig. Importantly, the students’ behavioral pattern was also

best fit by the Weibull DDM, with similar modulations of drift rates by discriminability and

PLOS BIOLOGY Diverse basal ganglia decision dynamics
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decision boundary dynamics by conflict and discriminability (S3 Table). This suggests that the

presented patterns for the patients are generalizable.

Distinct cautiousness dynamics tied to conflict and discriminability

Using Bayesian hierarchical model estimations, we report parameter changes across task con-

ditions in terms of their corresponding posterior probabilities (PPs) that index the likelihood

Fig 2. Behavioral task performance. (A) Left plot: Changes in performance measures (high minus low conflict) due to conflict for each discrimination

level (stronger = easier, weaker = harder). Error bars indicate SEMs. Asterisks indicate significance (p< 0.05; Wilcoxon signed-rank tests for paired

samples). Right plot: Conflict-induced change in accuracy for each discrimination level. These plots illustrate a conflict-related decrease in accuracy for

higher discriminability and slower correct responding for both higher and weaker discriminability. Additionally, there is pronounced slower errors for

weaker discriminability. The DDM allows for disentangling these speed-accuracy trade-offs in response to conflict. (B) Accuracy (% correct) as a

function of reaction times with shaded intervals indicating SDs. Task conditions: SD-LC = stronger discriminability, lower conflict; SD-HC = stronger

discriminability, higher conflict; WD-LC = weaker discriminability, lower conflict; WD-HC = weaker discriminability, higher conflict. This between-

subject analysis may suggest higher accuracy for faster RTs under higher conflict with weak discriminability. However, within-subject analysis in S1D

Fig shows that correct responses are slower under high conflict. The DDM further supports that high conflict leads to prolonged boundary collapses,

allowing more time for accurate responses but at the cost of slower RTs, with this effect stronger under weaker discriminability, as shown in Fig 2E. (C)

Best-fitting dynamics of boundary collapse and drift rates by condition using the Weibull model. Whereas stronger discriminability increases drift rates,

higher conflict induces a more prolonged elevation in decision bound before collapsing. (D) Posterior predictive check of best-fitting model. Squares

indicate data; crosses indicate posterior predictions. Ellipses surrounding crosses indicate 95% confidence intervals in expected range of data given

stochasticity in model and estimation uncertainty. All empirical values (shown as squares) fall well within these elliptical confidence intervals,

demonstrating excellent model fit. All measures were calculated by condition and by subject before averaging. (E) Conflict-by-coherence interaction,

leading to more concave boundary collapse for high conflict particularly under stronger coherence (SD-HC). Shown are differences in posterior

distribution of collapse shapes (α) of conditions relative to the easiest SD-LC condition. PP: αSD-HC > αSD-LC = 1.00; αWD-HC > αSD-LC = 0.9973;

αWD-LC > αSD-LC = 0.8882; αSD-HC > αWD-HC = 0.93. (F) Main effect of high-low conflict on the onset of boundary collapse. Shown is the difference in

posterior distribution of collapse onsets (β) between higher versus lower conflict trials. PP: βhigher > βlower = 0.8937. We provide data and corresponding

analyses scripts for reproducing figures on: https://osf.io/k38pj/?view_only=5c442294fcfb4991bb42cd902c60249c. DDM, diffusion decision model; PP,

posterior probability; RT, response time.

https://doi.org/10.1371/journal.pbio.3002978.g002
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of observed effects exceeding zero [61,62]. Drift rates (v) were larger under stronger than

weaker coherence discriminability (PP: vstronger > vweaker = 1.00), consistent with past studies

that manipulated discriminability without independently varying perceptual conflict

[20,32,63]. Moreover, conflict induced a prolongation in the boundary collapse, an effect that

is captured by a combination of the collapse onset and its shape. The shape parameter (α) was

more concave for higher than lower conflict trials (Fig 2E; PP: αSD-HC > αSD-LC = 1.00;

αWD-HC > αWD-LC = 0.99) and more so under stronger than weaker discriminability (PP:

αSD-HC > αWD-HC = 0.93). Collapse onset (β) was marginally delayed for higher than lower

conflict trials (Fig 2F; PP: βhigher > βlower = 0.89). We did not find differences in drift rate or

nondecision time between participants with recordings from the STN versus the GP subseg-

ments (S4 Table and S4 Fig). Moreover, the students without neurological conditions showed

similar modulations in the model parameters (S5 Fig). Notably, we show below that this rela-

tionship was moderated by the magnitude of theta activation and its distinct effects across BG

components. We clarify that the term “moderate” is not intended to imply causality; rather, it

highlights the use of a regression-based generative modeling approach.

Conflict-related theta dynamics across all BG components

Previous studies have established that cognitive conflict increases theta band activity in the

STN with some studies also demonstrating a causal relationship [26,29,36,37,42,49]. Fig 3A

(left panel) shows greater poststimulus theta increases in STN and GPe for higher than lower

conflict trials. This conflict-related theta activity persisted in the STN leading up to the

response, before finally declining, for both discriminability levels (Fig 3A, right panel). This

pattern might be expected if STN theta prolongs the bound under high conflict before collaps-

ing, a claim we will test formally below. In contrast, while GPe theta band dynamics were high

for both high conflict conditions, they showed an early and rapid decline in the high coherence

case (the condition in which one should not need to accumulate any more evidence because

conflict is low and discriminability is high). We will also test this effect on boundary collapse

below. During the pre-response period, both the GPi and STN showed comparable differences

in theta activity in response to conflict. We will later demonstrate (subsection: “Universal

dynamics in GPi for all discriminability levels”) that this observation aligns with prior findings

suggesting that these components act in synchrony [7,8,64]. We provide additional time-fre-

quency plots in the S6–S11 Figs, demonstrating that in addition to theta, STN showed specific

decreases in beta-frequency power (13 to 30 Hz) leading up to the response, consistent with

past research showing beta desynchronization in STN prior to motor engagement [36,65–67].

Fig 3B summarizes the time-frequency plots of conflict-related changes across BG compo-

nents. We provide additional time-frequency plots for each discriminability level and each

task condition (S6–S8 Figs). Moreover, S9–S11 Figs provide event-related potential (ERP)

analyses and phase-locking value (PLV) analyses demonstrating the reliability and specificity

of neural responses during task performance to confirm that the observed neural activity is

indeed tightly linked to relevant behavioral processes.

Theta modulates dynamic cautiousness with collapsing boundaries

We next assessed the functional significance of these neural dynamics with the modified (Wei-

bull) DDM. To do so, we added trial by trial measures of theta activity as neural regressors into

the model discussed above. We found that model fits improved over those applied to behavior

alone. Specifically, including early (poststimulus) theta activity (Fig 4A) and later (pre-

response) theta activity reduced the deviance information criterion (DIC) values by 181, sug-

gesting that neural measures significantly modulated the decision boundary dynamics on a

PLOS BIOLOGY Diverse basal ganglia decision dynamics
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trial-by-trial basis. Specifically, poststimulus theta activity modulated collapse onset (β), while

later pre-response theta activity modulated collapse shape (α). To recapitulate, we found

increased theta activity in response to conflict across all BG components (previous section). In

this section, we showed that trial-wise markers of these conflict signals are predictive of the

dynamics of collapsing boundaries. Next, we show that the impact of these dynamics on col-

lapsing boundaries differed by region and by task condition, in line with differential mecha-

nisms needed to prolong or rapidly collapse the boundary as a function of conflict and

uncertainty.

STN and GPe differentially modulate decision boundary collapses in high

versus low conflict conditions

Previous findings demonstrated that conflict increased frontal and STN theta, which elevated

boundary separation, facilitating response caution [32,34,35,42,68,69]. Consistent with past

findings, under stronger discriminability conditions, we found that increased STN theta was

linked to elevated decision boundary on higher conflict trials (PP: αSD-HC,θz|higher > αSD-HC,θz|

mean = 0.93). Compared to past findings though, we show that boundary is not statically ele-

vated at trial onset but instead that conflict moderated more concave collapse of the boundary

Fig 3. Task-evoked neuronal response. (A) Stimulus-induced mean changes (solid/dotted bold lines) in theta power (4–8 Hz) by condition. The time

series of each trial was normalized and averaged across channels (for each BG component). Shaded areas represent within-subject standard errors. Task

conditions: SD-LC = stronger discriminability, lower conflict; SD-HC = stronger discriminability, higher conflict; WD-LC = weaker discriminability,

lower conflict; WD-HC = weaker discriminability, higher conflict. (B) Time frequency plots show a task-evoked increase in LFO power (averaged across

channels) relative to baseline. Spectra are shown for high minus low conflict (averaged across coherence) aligned to stimulus onset (left panel) and

response (right panel) for each BG component. We provide additional analyses in S6–S11 Figs and corresponding analyses scripts on: https://osf.io/

k38pj/?view_only=5c442294fcfb4991bb42cd902c60249c. BG, basal ganglia.

https://doi.org/10.1371/journal.pbio.3002978.g003
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rather than a static (i.e., a priori and constant) elevation of the boundary and that this collapse

shape was modulated by STN activity leading up to the behavioral response (Fig 4B). This

effect was not observed in low conflict trials; instead, higher STN theta was linked to somewhat

more rapid onsets of boundary collapses under lower conflict (PP: βθz|higher < βθz|mean = 0.97).

This provides empirical evidence for hypotheses raised by previous studies [32,42]. In sum-

mary, increased theta activity in the STN modulated decision boundaries to preferentially col-

lapse more slowly during high conflict situations but sped up this collapse during low conflict

situations.

Strikingly, we observed diametrically opposed effects in GPe, which were related to much

more rapid collapses of boundary adjustments in lower conflict trials (Fig 4B, bottom row),

Fig 4. Decision boundary dynamics modulated by theta activity. (A) Exemplified scheme for integrating mean activation in theta-frequency band

during pre-response (z-scored mean activation during the last 500 ms before response) and poststimulus (z-scored mean activation during the first 500

ms after stimulus onset) periods as trial-based neural regressors into the best-fitting model. Single-trial LFPs were z-scored for each condition separately

before entering them into the HDDM. Means refer to hierarchically centered grand means. (B) Theta-specific modulations for STN and GPe under

stronger discriminability. STN theta was related to prolonged decision boundary in SD-HC but decreased boundary in lower conflict conditions.

Conversely GPe theta was related to a prolonged bound in low conflict. (C) Theta-specific modulations for STN and GPe under weaker

discriminability. (D) Theta-specific modulations across all BG components for higher theta activity. (E) Comparison of collapse onset (β) and collapse

shape (α) across BG components for higher theta (i.e., theta power 1 SD above hierarchically centered grand means). Coefficients refer to the group

posterior distributions (whereby points refer to means and vertical lines refer to SEMs). We also present the PP for group-specific differences in

coefficients below each plot. See S3 Table for all estimated (posterior) coefficients. (F) GPi theta was related to prolonged bound across all conditions.

For visualization, we show impact of theta at 3 levels (i.e., 1 SD below grand mean, at grand mean, 1 SD above grand mean; but all regressions were

done continuously). We provide data and corresponding analyses scripts for reproducing figures on: https://osf.io/k38pj/?view_only=

5c442294fcfb4991bb42cd902c60249c. BG, basal ganglia; GPe, globus pallidus externus; GPi, globus pallidus internus; LFP, local field potential; PP,

posterior probability; STN, subthalamic nucleus.

https://doi.org/10.1371/journal.pbio.3002978.g004
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consistent with the rapid theta decline during the pre-response period shown in Fig 3A (mid-

dle-right panel). Specifically, earlier (poststimulus) decreases in theta were related to a more

rapid collapse onset (βθz|higher > βθz|mean = 0.96) in lower conflict trials. This is also reflected in

the theta decline during the poststimulus period shown in Fig 3A (middle-left panel). Hence,

decreasing GPe theta moderated the expedition the inevitable collapse. In summary, increased

STN theta was linked to delayed boundary collapses, leading to more cautious and accurate

decisions under higher conflict, while decreased GPe theta fastened boundary collapses under

lower conflict. Moreover, under stronger discriminability, higher theta in the STN was associ-

ated with more concave collapse shape, while the opposite was found in the GPe.

Complementary dynamics in STN and GPe for weaker discriminability

In the weaker discriminability condition, STN modulation of boundary collapse was signifi-

cantly different from that reported above for stronger discriminability (Fig 4C; αSD-HC,θz|higher

> αWD-HC,θz|higher = 0.95). These results converge with biophysical models showing that STN

theta requires strong cortical inputs across 2 conflicting responses, which have supralinear

effects on theta activity [28]; see also [1]. In other words, the STN seems to exhibit less pro-

nounced engagement in boundary regulation under weaker discriminability in which conflict

might be less salient than under stronger discriminability.

For GPe, unlike the strong discriminability case, theta power did not decline rapidly in

weak discrimability (Fig 3). Instead, higher theta related to more concave collapses on higher

conflict trials, promoting more cautious responding (PP: αWD-HC,θz|higher > αWD-LC,θz|mean =

0.97). This suggests that after the early collapse onset, the pre-response decision period is still

modulated by theta power: continuing to buy time in GPe during weaker evidence (WD-HC

condition). In summary, conflict-related heightened theta activity in the GPe later in the deci-

sion-making process modulated boundaries to collapse more slowly during harder decisions

(involving weaker discriminability) but modulated a speed up of this collapse during easier

decisions (involving stronger discriminability and lower conflict). This shows the complemen-

tary dynamics of STN and GPe depending on discriminability levels (Fig 4E).

Universal dynamics in GPi for all discriminability levels

Higher theta in GPi was uniformly linked to delays in the onset of the collapse rather than its

shape, and these effects were consistent across task conditions (Fig 4F). These findings are con-

sistent with the notion that GPi neural activity governs BG output to coordinate action selec-

tions in a task-independent fashion, whereas opponent STN and GPe signals have different

effects on GPi depending on the decision-relevant factors. Overall, trial-by-trial modulation in

poststimulus theta activation modulated response cautiousness by varying collapse onset (but

not shape) in distinct ways across the BG components (S4 Table and S12 Fig). We have also

conducted a sensitivity analysis in which we used beta power as a covariate in the best-fitting

Weibull DDM instead of theta (S13 Fig). This based on some studies [34,70,71] suggesting that

beta can in some task domains also relate to response cautiousness. In contrast to the signifi-

cant associations observed between higher theta and decision boundary dynamics in a condi-

tion, we found no evidence that higher beta affected the onset or shape of these decision

dynamics.

Discussion

The BG play a pivotal role in decision-making processes across various species, yet the field

lacks comprehensive data, particularly in humans, on how neural dynamics within different

BG structures facilitate these processes. Especially, the dynamic interplay between these
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mechanisms and their contextual adaptation amidst noisy and conflicting information, crucial

for preventing impulsive actions and fostering adaptability, remains poorly understood. Our

study uniquely investigates the involvement of decision dynamics across multiple BG struc-

tures in humans. This is an overlooked perspective as past research has predominantly concen-

trated on the STN or the GPi in isolation and not how either of these structures’ ongoing

activity contributes to decision dynamics in the form of collapsing bounds. Moreover, unlike

past studies, we distinctively separate the effects of conflict from other forms of decision uncer-

tainty. Our findings underscore the significance of understanding different mechanisms for

controlled decision-making, providing insights into the relevant dynamics of impulsivity.

Our study defined specific computational roles for population-level neural activities across

BG components that underlie decision-making. Recent studies with rodents and monkeys

have identified that the BG causally contribute to the accumulation of sensory evidence over

time [10,11,72]. These observations are consistent with computational models of BG circuitry

in which BG output “gates” the selection of cortical actions with a dynamic threshold deter-

mining the amount of evidence needed to commit to a choice [1,22]. Our observations charac-

terize the neural implementation of these algorithmically defined processes across 3 BG

structures.

Our study presents new insights into decision dynamics within the basal ganglia, utilizing

unique intracranial data and leveraging computational methods to rigorously assess the links

between neural and decision dynamics within a conflict paradigm. Previous research in this

area has assumed a static decision boundary, largely due to computationally tractability, which

is now overcome via a new estimation method provided in HDDM. The collapsing boundary

model is debated in many aspects of decision-making largely based on behavioral data (e.g.,

[73] but see: [74,75]), and our study provides the first characterization of how it can be imple-

mented by subcortical dynamics as a function of conflict and uncertainty. We found that

SSMs with dynamic decision boundaries captured behavioral patterns better than classical

DDMs with time-invariant decision thresholds [2,5]. Such a dynamic process is also justified

by underlying neural dynamics and by normative considerations [2,3], especially when task

demands involve a mixture of difficulty levels across trials [4,5]. By quantifying these boundary

dynamics, we further demonstrated that theta activities in the STN are not linked to uniform

increases in decision boundaries. Instead, they modulate boundary collapse over time, with

opposing effects in higher versus lower conflict. While previous biophysical model simulations

have suggested these opposing effects [28], our study is the first to empirically demonstrate

them and link them to decision-relevant boundary collapse by utilizing modified DDMs.

Many decision-relevant dynamics in the STN and the GPe complemented each other.

First, whereas STN theta was largely related to boundary adjustments in higher conflict trials,

GPe theta modulation was strongly related to a rapid collapse of the decision bound in lower

conflict trials. Moreover, these effects were especially prevalent in STN under stronger

discriminability but by the GPe under weaker discriminability. This latter finding is consis-

tent with the notion that the GPe may serve to guide selection of specific actions rather than

exert global braking, aligning with the selective versus global model commonly associated

with the indirect and hyper-direct pathways [25,48,49,64]. Overall, the modulatory roles of

these hyper-direct and indirect pathway structures differed from GPi dynamics, which uni-

formly related to prolonged decision boundaries across task conditions, supporting the

notion that this structure forms the final stage of BG output that is subsequently used for

coordinated action selections, and consistent with related findings in monkeys [3]. Our find-

ings indicate that theta activity across BG subcomponents contribute to slow-down mecha-

nisms in a complementary and context-specific way. Importantly, theta activity in distinct

BG subcomponents serves different functional roles in decision-making. For example, STN
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theta was related to prolonged decision boundary dynamics under higher conflict, and GPe

additionally contributed to these mechanisms under higher uncertainty (weaker discrimina-

bility). Conversely, the links between GPi theta and decision dynamics was uniform across

conditions, with increased theta related to higher decision thresholds regardless of conflict.

Future research is required to disentangle whether this region specificity reflects different

underlying computations in those regions or to differential effect on downstream targets

based on their role in the larger PFC-BG network.

We leveraged the unique opportunity of subcortical neural recordings in patients with PD

or dystonia to dissect decision-relevant dynamics across different BG structures. This special

population limits the potential generalizability of these findings, although there is no reason to

think that these subcortical operations are different in those without neurological disorders

[48,65,66]. Indeed, comparison to a group of college students without neurological conditions

suggests that behavioral patterns and model dynamics were similar across groups. We

acknowledge that the uneven distribution of diagnoses and the small sample size (S1 Table)

may limit the generalizability of our results. Future studies are necessary to validate and extend

our findings. While our hypotheses regarding the role of the STN are grounded in previous lit-

erature [28–30,32–38,42,68], the distinct and complementary dynamics observed in the GPe

and GPi warrant further replication and computational modeling across diverse contexts. This

is particularly important for clarifying the relative contributions of the STN and GPe, espe-

cially given the limited sample size of subjects with GPe and GPi recordings. Additionally, sub-

sequent studies could explore similarities and differences between PD [76,77] and Dystonia

[78]. While our findings do not address potential differences between these clinical conditions,

S14–S17 Figs might provide insights for future research.

While we extracted decision-relevant neural dynamics in the theta frequency band (4 to 8

Hz), previous studies also suggest decision-relevant dynamics exist in the beta frequency band.

However, beta-specific dynamics seem particularly important for stopping prepotent actions

[33,79,80] or resolving unambiguous decision conflict [36,81]. Understanding the extent to

which these findings generalize to other dynamic decision tasks, and the possible role of activ-

ity in other frequency bands, will require further investigation. Our study focused on the role

of theta dynamics in decision-making processes across multiple BG structures by utilizing spe-

cially modified DDMs to separately examine the dynamic effects of conflict and uncertainty.

This approach provided evidence that distinct decision dynamics are linked with different

slowing mechanisms. Moreover, this allowed us to clarify the functional differences of each

BG subcomponent during decision-making as indexed by the DDM parameters. We also

emphasize that our study’s regression-based generative modeling approach does not necessar-

ily imply any causal links between BG and decision dynamics.

Cognitive processes related to information integration and choice initiation are often for-

malized using SSMs, with the DDM being the most prominent application [30]. In our study,

we demonstrate that an adaptation of the DDM, incorporating more biologically plausible col-

lapsing decision boundaries, best represents behavioral patterns in a perceptual decision task

with varying levels of both conflict and uncertainty. Additionally, neural signals in specific

interconnected regions of the basal ganglia—a subcortical network linked to the frontal cor-

tex’s learning and planning systems—modulate key parameters of this modified DDM com-

plementarily and on a trial-by-trial basis. Specifically, GPe was linked to shortened decision

processes during lower conflict yet prolongation under higher uncertainty, whereas STN mod-

erated processes in higher conflict and lower uncertainty scenarios. GPi effects were uniform

across conditions.

Our findings may be clinically useful because they suggest new possibilities to better under-

stand multifaceted symptoms like impulsivity, not only for PD, but also for other conditions
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such as attention-deficit hyperactivity disorder [19,82–84]. Furthermore, more broadly, our

model with dynamic decision boundaries can be used to distinguish among various control

processes known to influence decision-making at different time points. For example, early-

and late-stage control processes are often differentiated in task-switch paradigms and research

indicates that distinguishing between these different control processes enhances our under-

standing of the impact of aging on cognitive control [85–87]. Moreover, our findings demon-

strate that varied theta dynamics correlate with unique control mechanisms within different

BG components, and the interplay of these processes makes us both deliberate in our actions

and capable of adapting to change. As the prominence of neuromodulation and neurofeedback

continues to rise, understanding how to target and regulate anatomically and functionally dis-

tinct neural mechanisms, such as these, becomes increasingly crucial.

Materials and methods

Participants

Participants included N = 17 patients with either PD (n = 14) or dystonia (n = 3) who were

undergoing implantation of deep brain stimulation (DBS) electrodes. The decision to undergo

routine, awake surgery was made by a multidisciplinary clinical team without any consider-

ation of research related factors. All participants provided written informed consent prior to

surgery, and the Institutional Review Board of Lifespan/Rhode Island Hospital approved the

study (IRB protocol: 263157). All study activities were carried out in accordance with the prin-

ciples outlined in the Declaration of Helsinki.

All recordings were performed in the dopaminergic OFF state as is standard for awake DBS

procedures. Electrode implantation targeted either STN or GP (i.e., the latter targeted either

the internal or external segment). Many participants completed multiple sessions with record-

ings from different locations in STN, GPe, and/or GPi. Out of 40 recording sessions in 17

patients, 3 sessions were excluded due to corrupted data (1 patient), 7 for fewer than 40 trials

completed (6 patients), and 4 for chance performance on the task defined as<50% total accu-

racy (2 patients). From the remaining 26 sessions, 15 STN recordings were from 8 patients,

and 11 GP recordings (5 GPe and 6 GPi) were from 6 patients. Recordings were from the left

side in 23 of the 26 sessions, and 14 out of 16 of these patients used their right hand for the

task. A total of 7 sessions included recordings from patients diagnosed with Dystonia (4 GPe

and 3 GPi). S1 Table provides details about the diagnosis, handedness, and other relevant

information for each subject.

We also collected data from a group of undergraduate students (N = 25) without any diag-

nosed neurologic conditions. This allowed us to test whether behavioral patterns across task

conditions were specific to the patient groups or also observable in those without neurologic

illness. This study was approved by the University of New Mexico (UNM) Institutional Review

Board and all participants provided written informed consent. Participants received course

credit for participation and the average age was 19.4 years old (SD = 1.3).

Cognitive task

All participants completed a varied number of trials (S1 Table) involving a moving dots kine-

togram programmed in MonkeyLogic [88]. Each trial consisted of 100 white dots (3 pixels) on

a black background moving in a circular aperture (Fig 1C). All dots had at least 3 frames of

consecutive movement and each dot was replaced in a proportional stepwise fashion. The task

design is similar to a previous animal study [58]. For this study, 50% of dots always moved in

random vectors. The remaining 50% of dots were split between leftward and rightward
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directions of movement. The subsequent task specifics differed slightly between the patient

and student groups to avoid any ceiling effects in behavioral measures.

For the patient groups, 36% of dots moved towards the target direction on stronger trials,

while 14% of dots moved towards the other target. On weaker trials, 30% of dots moved

towards the target while 20% moved in the opposite direction. Extensive pilot testing revealed

that these countervailing directions yielded maximally dissociable outcomes, particularly given

the additional manipulation of angular direction. In the context of sequential sampling mod-

els, this change in dot coherence was expected to alter the drift rate of evidence accumulation.

Moreover, we aimed to alter decision threshold with a manipulation of dot angular trajectory.

The 50% of non-randomly moving dots either moved in oblique left or right angles (112 or

248 degrees) or in tightly vertical left or right angles (170 or 190 degrees). This manipulation

was specifically designed to prime unidirectional versus bidirectional responses. Since priming

bidirectional responses with the requirement of a single motor output has been advanced as a

formal definition of cognitive conflict [59,60], we refer to these conditions as lower versus

higher conflict. In sum, the experiment consisted of a cross-over 2 (coherence: stronger,

weaker) by 2 (conflict: lower, higher) manipulation designed to alter drift rate and decision

threshold, respectively.

Binary choices in such perceptual tasks depend on judgments made relative to a decision

criterion (shown as blue vertical lines in Fig 1C), which differentiates left from right responses.

The proximity of the individual dot motion trajectories to this criterion determines the level of

conflict: dots moving on a more acute angle (relative to the vertical decision criterion) create

more conflict (due to activation of multiple category-specific cortical populations) than those

clearly aligned with a specific right or left response option [56–58]. In sum, the trajectory angle

of the dots determines higher or lower conflict levels, while the dot coherence determines

stronger or weaker discriminability, indicating the relative strength of evidence for left versus

right responses.

Within the framework of signal detection theory, tasks that require binary perceptual deci-

sions are based on judgments relative to a decision criterion (shown as blue vertical lines in

Fig 1C) that separate left from right responses [89,90]. Stimuli (in our case the individual dots)

located closer to this criterion (i.e., dots moving in a direction that is closer to the boundary,

here, vertical) inherently introduce greater conflict in decision-making than those more clearly

aligned with either response option (dots moving right or left at 180 degrees). For our task,

this has been explicitly demonstrated by Jazayeri and colleagues [56–58] who have employed

multiple similar task versions to demonstrate that the angular trajectory of dots influences the

extent of conflict. Hence the trajectory angle dictates whether the conflict is higher or lower:

when close to the criterion, even coherent motion will activate both competing responses—

and this coactivation is the source of conflict motivating an adjustment of decision threshold

in models of STN [22,25,28]. On the other hand, the coherence of the dot patterns determines

the discriminability—the strength of relative evidence towards left versus right responses. This

distinction between conflict (influenced by trajectory angle) and discriminability (determined

by dot coherence) is crucial. It allows us to dissect and understand the nuanced (decision-

relevant) dynamics of conflict-induced slow-down mechanisms under stronger versus weaker

discriminability of evidence (for one over the other response alternative). This is one aspect of

our study that contrasts to prior studies that have mostly utilized dot motion discrimination

tasks primarily to manipulate discriminability, along with other variables such as task instruc-

tions emphasizing speed or accuracy, to investigate conflict-induced slow-down mechanisms.

The different trial types (stronger/weaker discriminability and lower/higher conflict) were

interleaved.
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The task specifics were slightly adjusted for the student group. Specifically, while coherence

level on easier trials (i.e., stronger discriminability) was set to 36% for the patient groups, this

value was decreased to 34% for the students. Moreover, the angle difference for higher and lower

conflict trials was set to 20 and 126 degrees, respectively, for the patient groups. These differences

were adjusted to 60 and 120 degrees, respectively, for the students. All other task specifics were

the same across all participants. See S1 Text for information on response devices. Hence, the

older patient group had an easier task setting than the younger college students because the

angle under high conflict was larger (126 degrees compared to 120 degrees). The more obtuse

the angle, the easier it is to discriminate whether dots move more to the left or right of the imagi-

nary decision boundary (Fig 1C). Moreover, the larger angle difference between high and low

conflict trials for the older patients compared to the students (106 degrees versus 60 degrees)

made the detection of conflict easier for the older patients. In experimental psychology, it is stan-

dard practice to adjust task difficulty based on age-related cognitive differences to ensure compa-

rable engagement and performance across groups. Younger participants typically process

information faster and more accurately, so task parameters are often modified to account for

these differences and maintain consistent cognitive demands across age groups [91,92].

Electrophysiology

DBS targeting was performed using a combination of indirect (AC-PC coordinate system),

direct (MRI target visualization), and neurophysiological methods (see S1 Text).

Neural activity was recorded from patients using clinical microelectrodes sampled at either

40 k or 44 k Hz using the AO FDA-approved human neurophysiology system and down-

sampled to 1,000 Hz for LFP processing. Three to 4 signal channels were simultaneously

acquired in any given task session, and analyses were performed on the average post-processed

LFPs of simultaneous signals from the same brain structure. LFPs were time locked to the

stimulus onset in −2,000 ms to 5,000 ms epochs; these were then shifted by the RT to derive

response-locked LFPs. LFPs were low pass filtered at 20 Hz and baseline corrected to the time

locking event (defined as t = 0 ms).

Power was normalized by conversion to a decibel (dB) scale (10xlog10 (power/power base-

line)), allowing a direct comparison of effects across frequency bands. The baseline for each

frequency consisted of cross-condition averaged power from −500 to −300 ms prior to the

onset of the trial. Analyses of theta band (4 to 8 Hz) power used a Hilbert transform of band-

pass filtered data. For HDDM single-trial regression analysis, epochs were rejected if the theta

filtered power envelope exceeded 3 standard deviations from the mean.

For theta-specific frequency plots, we averaged the theta band time series (based on Hilbert

transformation) across trials (for a given condition) to show the percentage change in power.

To do so, we normalized the theta band time series by subtracting the mean of the trial-specific

baseline period (from −500 to −300 ms prior to stimulus onset) to show the respective within-

subject standard errors. Each epoch was then extracted (for stimulus onset: −400 to +500 ms,

whereby 0 reflects stimulus onset; pre-response: −500 to 0 ms, whereby 0 reflects response).

For the time-frequency plots, we computed the LFPs using the continuous wavelet transform

with a width (i.e., cycles) of each frequency band set to 4 plus f divided by 6 where f refers to

frequency. We then standardized power of each frequency by subtracting the trial-specific

baseline period (from −500 to −300 ms prior to stimulus onset) from the time series of that fre-

quency and dividing by the standard deviation of that baseline period. Trials with excessive

activity during the baseline period were excluded. Each epoch was then extracted (for stimulus

onset: −400 to +500 ms, whereby zero reflects stimulus onset; pre-response: −500 to 0 ms,

whereby 0 reflects response).
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Summary statistics of behavior

Due to the low sample size, we used nonparametric tests for analyses of summary statistics

such as mean RTs and accuracy. We first tested the effect of discriminability (stronger versus

weaker) on mean RTs for correct and error responses to validate that our coherence manipula-

tions had intended behavioral effects that were typically seen in dot motion discrimination

tasks. We then examined conflict-induced effects on mean and quantile RTs (for corrects and

errors) and accuracy for each discriminability level. Results from these analyses are reported in

Fig 2 and in S2, S4 and S5 Figs. All statistical comparisons are based on paired Wilcoxon

signed rank tests in R (Version 4.1.2; 93) with an alpha of 0.05.

Sequential sampling modeling

We used the new LANs (likelihood approximation networks) extension of the HDDM

toolbox that allows fitting different SSMs within Bayesian hierarchical frameworks [61,93,94].

Bayesian estimation allowed quantification of parameter estimates and uncertainty in the form

of the posterior distribution. Before conducting any analyses on model parameters, we ensured

model convergence by inspecting trace plots and using the Gelman-Rubin Ȓ statistic which
was below the common threshold value of 1.1 for all parameters [95]. To ensure that models fit
the actual data, we also performed posterior predictive checks and computed quantile probabil-
ity plots which allowed us to compare predicted versus actual data.

We used the default priors set in HDDM as explained elsewhere [61]. Markov chain Monte

Carlo (MCMC) sampling methods were used to accurately approximate the posterior distribu-

tions of the estimated parameters. The models were run with 3 chains, and we sampled

between 14,000 and 22,000 from the posterior (with burn-in between 10,000 and 18,000 sam-

ples) depending on whether trial-based neural activities were included as regressors (explained

below). Statistical analyses were performed on the group mean posteriors following methods

that have already been established in other reports [96–98]. Specifically, Bayesian hypothesis

testing was performed by analyzing the probability mass of the parameter region in question

(estimated by the number of samples drawn from the posterior that fall in this region; for

example, percentage of posterior samples greater than zero). We deemed parameters signifi-

cant if 95% of the samples taken from their posterior probabilities were non-zero.

Comparing the performance of different SSM versions, we focused on the DDM [17] with

and without across-trial variability parameters, as well as on the Ornstein–Uhlenbeck model

with varying drift rate [99], and SSMs with (stochastic) relative evidence accumulation pro-

cesses without across-trial variability parameters but with either linearly [100] or Weibull-

informed collapsing boundaries [101]. Aside from posterior predictive checks, the DIC was

used for model comparisons, where lower DIC values favor models with the highest likelihood

and least number of parameters [102]. Model specifications and comparison can be found in

S2 Table. The best-fitting Weibull model captured responses and RTs for each condition with

the approximated likelihood (based on the LAN extension of the HDDM toolbox) of the Wie-

ner first passage time process (W) with Weibull-informed, time-dependent decision bound-

aries defined as follows:

B tð Þ ¼ a ∗ exp
�

�
t
b

�a� �

; ð1Þ

with t referring to (within-trial) time, a referring to boundary separation (i.e., the initial dis-

tance between the 2 decision thresholds at time 0 which indexes stimulus onset), α referring to

the shape of the boundary collapse, and β referring to the onset of the boundary collapse. The
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Wiener process (W) is specified as follows:

response;RTð Þs;d;c eW Ters; as; vsd; asdc; bscð Þ; ð2Þ

with s referring to subjects, d referring to discriminability (stronger, weaker), c referring to

conflict (lower, higher), v referring to drift rate, and Ter referring to nondecision time. The

starting point (z) was fixed to half the decision boundary (a). For all subjects, model parame-

ters were specified by regression-based equations (with I referring to subject-specific inter-

cepts) as follows:

Ter ¼ I ð3Þ

a ¼ I ð4Þ

vd ¼ I þ discriminability ð5Þ

adc ¼ I þ discriminabilityþ conflict þ discriminability ∗ conflict ð6Þ

bc ¼ I þ conflict ð7Þ

Integrating electrophysiological data into the model-based analysis

After establishing that the Weibull DDM captured the behavioral patterns best, we augmented

the model to determine whether trial-by-trial z-scored theta power (θz) influenced the decision

threshold dynamics (reflected by the model parameters α, β) at the single trial level. Specifi-

cally, for quantifying theta activity during the pre-response period, we used z-scored mean

activation during the last 500 ms before response. For quantifying theta activity during the

poststimulus period, we used z-scored mean activation during the first 500 ms after stimulus

onset. As discussed in the Introduction, we focused on theta power based on strong a priori

hypotheses established by previous work [34,42,49]. Estimating the modulation of theta activ-

ity on decision boundary dynamics quantifies the psychological interpretation of these neural

regressors. Thus, the regression-based equations for the shape (α) and rate (β) of the collapsing

boundaries were augmented as follows:

adcr ¼ I þ discriminabilityþ conflict þ discriminability ∗ conflictð Þ ∗ θzr;pre-response ð8Þ

bcr ¼ I þ conflictð Þ ∗ θzr;post-stimulus; ð9Þ

where r refers to trials, θz refers to the z-scored (hierarchically mean-centered) theta power

during the pre-response period (i.e., time window between response and 500 ms prior to

response), and poststimulus period (i.e., time window between stimulus onset and 500 ms

after stimulus onset). Equations for the other model parameters remained the same as for the

initially established best-fitting Weibull model (see equations in previous subsection); see S18

Fig for posterior predictive checks. We estimated the posteriors of coefficients for trial-specific

regressors solely at the group level. This established approach allowed us to effectively handle

possible collinearity among model parameters, stabilize parameter estimates, and avoid exces-

sive parameter expansion [68,97]. The determination of statistical significance for regression

coefficients relied on the distribution of their posterior probabilities.
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