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ABSTRACT
BACKGROUND: While many have emphasized impaired reward prediction error signaling in schizophrenia, multiple
studies suggest that some decision-making deficits may arise from overreliance on stimulus-response systems
together with a compromised ability to represent expected value. Guided by computational frameworks, we
formulated and tested two scenarios in which maladaptive representations of expected value should be most
evident, thereby delineating conditions that may evoke decision-making impairments in schizophrenia.
METHODS: In a modified reinforcement learning paradigm, 42 medicated people with schizophrenia and 36 healthy
volunteers learned to select the most frequently rewarded option in a 75-25 pair: once when presented with a more
deterministic (90-10) pair and once when presented with a more probabilistic (60-40) pair. Novel and old combinations
of choice options were presented in a subsequent transfer phase. Computational modeling was employed to
elucidate contributions from stimulus-response systems (actor–critic) and expected value (Q-learning).
RESULTS: People with schizophrenia showed robust performance impairments with increasing value difference
between two competing options, which strongly correlated with decreased contributions from expected value-based
learning (Q-learning). Moreover, a subtle yet consistent contextual choice bias for the probabilistic 75 option was
present in people with schizophrenia, which could be accounted for by a context-dependent reward prediction
error in the actor–critic.
CONCLUSIONS: We provide evidence that decision-making impairments in schizophrenia increase monotonically
with demands placed on expected value computations. A contextual choice bias is consistent with overreliance
on stimulus-response learning, which may signify a deficit secondary to the maladaptive representation of
expected value. These results shed new light on conditions under which decision-making impairments may arise.

Keywords: Computational psychiatry, Decision making, Expected value, Motivational deficits, Reinforcement
learning, Schizophrenia
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Reinforcement learning (RL) and decision-making impairments
are a recurrent phenomenon in people with schizophrenia
(PSZ) and are thought to play a key role in abnormal belief
formation (1) and motivational deficits (2). While many have
emphasized an impairment in stimulus-response learning
(3–5), multiple studies suggest that some of these deficits may
in fact arise from overreliance on stimulus-response learning
together with a compromised ability to represent the pro-
spective value of an action or a choice (i.e., expected value)
[e.g., (6,7); for an overview, see Waltz and Gold (2)]. However,
such conclusions have typically been based on inferences
rather than experimental designs intended to reveal such ef-
fects. Therefore, we formulated and tested two hitherto un-
explored scenarios motivated by the posited computations
under which deficits in the representation of expected value
should be most evident.

Optimal decision making relies on a pas de deux between a
flexible and precise representation of expected reward values,
ª 2018 Society of B
N: 2451-9022 Biological Psychiatry: Cognitive Neuro

Downloaded for Anonymous User (n/a) at Brown University in P
For personal use only. No other uses without permissio
supported by orbitofrontal cortex (8–10), which is com-
plemented by a gradual buildup of stimulus-response associ-
ations credited to dopaminergic teaching signals (reward
prediction errors [RPEs]) that project to striatum (11,12).
Previous work has demonstrated that maladaptive represen-
tations of expected value, rather than diminished stimulus-
response learning per se, is one consistent feature of RL
deficits in PSZ (13–16).

Findings of impaired representations of expected value in
PSZ have often relied on computational models of learning and
decision making. In RL computational frameworks, it is thought
that Q-learning and actor–critic models capture expected
value and stimulus-response learning, respectively. In Q-
learning (17), the RPE (the difference between expectation and
outcome) directly updates the expected value of a choice
option—similar to the representation of a reward value by
orbitofrontal cortex (18,19)—and response tendencies are
driven by large action values. In contrast, in the actor–critic
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science and Neuroimaging - 2018; -:-–- www.sobp.org/BPCNNI
rovidence from ClinicalKey.com by Elsevier on May 31, 2018.
n. Copyright ©2018. Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.bpsc.2018.03.014
http://www.sobp.org/BPCNNI


Context-Dependent Reinforcement Learning in Schizophrenia
Biological
Psychiatry:
CNNI
framework (20), RPEs signaled by the critic—who observes
outcomes—update its state value (e.g., being presented with a
certain choice pair) rather than updating the value of each
choice option separately. Importantly, the critic’s RPE also
updates the actor’s response tendency for the chosen option.
Thus, the actor develops response tendencies for choices
associated with more positive (better than expected) than
negative (worse than expected) RPEs signaled by the critic and
not on the basis of an exact estimate of reward value. It is
thought that the slow buildup of the actor’s response ten-
dencies, on the basis of an accumulation of RPEs, reflects
dopamine-mediated changes in synaptic weights in basal
ganglia (21–23). Crucially, because the RPE fulfills different
roles in these two computational frameworks (i.e., updating
reward value directly vs. modifying stimulus-response
weights), it follows that, by definition, reward value is more
precisely represented in the Q-learning framework than in the
actor–critic framework. In one study, we showed that a
computational modeling parameter that captured the balance
between Q-learning and actor–critic-type learning was tilted in
favor of the latter in PSZ, suggesting relative underuse of ex-
pected value and, perhaps secondarily, overreliance on
stimulus-response learning (6). To date, however, little is
known about the conditions under which deficits in the
computation of expected value should be most observable.

Therefore, we sought to test two predictions of our theo-
retical account, which emphasizes maladaptive representation
of expected value (Q-learning) in PSZ:

1. Counterintuitively, and in contrast to many situations in
which PSZ may be most impaired at high levels of difficulty,
our model based on less precise representations of reward
value (decreased Q-learning) predicts that PSZ should
suffer the largest decision-making deficits for the easiest
value discriminations—that is, when the value difference
between two competing options increases.

2. If the relative contribution of actor–critic-type learning is
greater in PSZ—because of a decrease in Q-learning—then
one might observe biases in action selection among choice
options that have identical reinforcement probabilities,
based on differences in critic RPEs. In the actor–critic ar-
chitecture, RPEs are evaluated relative to the overall reward
rate of the context. Thus, rewards presented in contexts
with low reward rates elicit larger RPEs than those pre-
sented in more deterministic contexts. Therefore, a second
diagnostic prediction is that PSZ should elicit observable
context-dependent choice biases, even among items with
identical reinforcement histories.

In the current study, we tested these two hypothesized
consequences of deficits in the representation of expected
value using a modified RL paradigm. Participants were pre-
sented with two pairs of stimuli with identical reward value; one
pair was presented in a reward-rich context (where the other
pair had a higher reward rate), while the other pair was pre-
sented in a reward-poor context (where the other pair had a
lower reward rate). Afterward, participants were presented with
old and novel combinations of choice options. We exploited
the wide range in reward value to test our hypothesis relating
to performance deficits as a function of the value difference
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
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between two competing options. Pairs with identical reward
value in different contexts allowed us to address hypotheses
relating to a contextual choice bias that should be present to
the degree that individuals rely on actor–critic-type learning.

To accomplish these aims, we used a previously validated
hybrid computational model that estimates one’s tendency to
use Q-learning versus actor–critic along a parametric contin-
uum (6). As observed previously (6), we expected PSZ to rely
less on Q-learning than on actor–critic, resulting in the afore-
mentioned deficits.

METHODS AND MATERIALS

Sample

We recruited 44 participants with a DSM-IV diagnosis of
schizophrenia or schizoaffective disorder and 36 healthy vol-
unteers (HVs). Of these participants, 2 PSZ were excluded—1
who was mistakenly administered an old version of the task
and another participant who consistently performed far below
chance—leaving a sample of 42 PSZ. PSZ were recruited
through clinics at the Maryland Psychiatric Research Center.
HVs were recruited by advertisements posted on the Internet
(Craigslist) and via notices on bulletin boards in local libraries
and businesses. A diagnosis of schizophrenia or schizo-
affective disorder in PSZ, as well as the absence of a clinical
disorder in HVs, was confirmed using the Structured Clinical
Interview for DSM-IV Axis I Disorders (24). The absence of an
Axis II personality disorder in HVs was confirmed using the
Structured Interview for DSM-III-R Personality Disorders (25).
In total, 37 PSZ were diagnosed with schizophrenia and 5 PSZ
were diagnosed with a schizoaffective disorder. Comorbid
disorders included obsessive-compulsive disorder (n = 1),
anxiety disorder (n = 1), and a cannabis dependence disorder
(in remission; n = 1). All PSZ were on a stable antipsychotic
medication regimen. No changes in medication dose/type
were made during the 4 weeks leading up to study participa-
tion. Major exclusion criteria included pregnancy, current illegal
drug use, substance dependence (during past year), a neuro-
logical disorder, and/or a medical condition affecting study
participation. All participants provided written informed con-
sent. The study was approved by the Institutional Review
Board of the University of Maryland School of Medicine.

Clinical Ratings

The avolition-apathy and asociality-anhedonia (AA) subscales
of the Scale for the Assessment of Negative Symptoms (26)
and the positive symptom subscale of the Brief Psychiatric
Rating Scale (27) were used as measures of negative and
positive symptoms, respectively. See the Supplement for de-
tails on these scales as well as on other sociodemographic and
clinical variables.

RL Paradigm

Participants completed an RL paradigm consisting of a 320-
trial learning phase and a 112-trial transfer phase.

Learning Phase. Participants were presented with pairs of
stimuli and were asked to select one using their left (left choice)
or right (right choice) index finger, after which they received
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Figure 1. Schematic of the reinforcement learning paradigm. EV, expected value.
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positive (1$.05) or neutral ($0.00) feedback (Figure 1). The
learning phase consisted of two 160-trial blocks in which four
pairs were presented per block. In one block, two pairs were
presented that rewarded optimal choices 90% of the time (and
no reward on the remaining 10% of trials) together with two
pairs that rewarded optimal choices 75% of the time (no
reward on 25%). In the other block, two pairs were presented
that rewarded optimal choices 75% of the time (no reward on
25% of trials) together with two pairs that rewarded optimal
choices 60% of the time (no reward on 40%) (Figure 1).
Feedback contingencies for the suboptimal choice were the
mirror image of the optimal choice. Trial presentation was
pseudorandomized within each block, and block order was
counterbalanced among participants, as were block theme
(butterfly or bird stimuli), option-probability pairing, and option-
position pairing (left/right side of screen). Note that two of four
75-25 pairs always comprised bird-themed stimuli, and the
other two pairs always comprised butterfly-themed stimuli
(Figure 1).

By combining 75-25 pairs with more deterministic (90-10)
and probabilistic (60-40) pairs in separate blocks, we aimed to
investigate context-dependent RL, meaning that perceived
choice value (here, 75-25 pairs) might be dependent on
Biological Psychiatry: Cognitive Neuroscien
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contextual reward rate (the average reward rate of optimal
choice options within a block). Henceforth, we refer to 75-25
pairs that were presented together with 90-10 pairs as 75-25D
(with the letter D representing the more deterministic context)
and refer to 75-25 pairs that were presented with 60-40 pairs
as 75-25P (with the letter P representing the more probabilistic
context).

Transfer Phase. The 112-trial transfer phase served two
purposes: 1) to assess the ability to compare choice options
using their reward value and 2) to provide a formal test of a
contextual choice bias.

Every possible combination of two-choice options (new and
original combinations) was presented, and the participant was
instructed to “select the option that was rewarded most often”
(Figure 1). To prevent further learning, no feedback was
delivered. Combining all possible choice options yielded 28
combinations with nonidentical expected value, 22 novel
combinations (e.g., 90-60, 75D-10) and 4 original combina-
tions (90-10, 75-25D, 75-25P, and 60-40). In addition, we
produced two novel combinations with identical expected
value: 75P-75D and 25P-25D. Supplemental Table S1 provides
an overview of all 28 transfer pairs.
ce and Neuroimaging - 2018; -:-–- www.sobp.org/BPCNNI 3
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Note that there were two pairs of each contingency in the
learning phase, with the exception of 75-25 pairs, of which
there four pairs. Thus, although every unique combination of
choice options was presented only once in the transfer phase,
there were always four presentations of each expected value
combination; for example; with two 90-10 pairs from the
learning phase, one can generate four unique 90-10 combi-
nations in the transfer phase.

Computational Model

In an attempt to relate deficits in expected value and a
contextual choice bias to latent variables, we used a previously
validated hybrid model allowing for combined influences of Q-
learning (action selection as a function of expected reward
value) and actor–critic (basal ganglia–dependent stimulus-
response learning) frameworks on decision making (6). This
model was compared with a basic actor–critic and Q-learning
model. The hybrid model had the best trade-off between
model complexity, fit, and posterior predictive simulations, and
it contained six free parameters—a critic learning rate (ac), an
actor learning rate (aa), a Q-learning rate (aq), an inverse tem-
perature (b), mixing (m), and an undirected noise (ε)
parameter—which were estimated for every subject via
maximum likelihood optimization. The Supplement and
Supplemental Figure S1 contain a detailed description of the
model and selection procedure, including the use of context
(i.e., block)-dependent state values for the critic and an
ε-softmax choice function. After fitting the hybrid model to the
learning phase data, the final action weights of all eight original
pairs were used to simulate transfer phase performance for all
pairs (n [simulations] = 250 for every participant).

Statistical Analyses

Performance on both pairs of each probability level (90-10, 75-
25D, 75-25P, and 60-40) was averaged. Next, learning phase
trials were divided into four bins of 10 trials for each probability
level. A 2 3 4 3 4 repeated-measures analysis of variance
using group status (predictor) and probability level (four levels)
as predictors and trial bin (bins; four levels) as dependent var-
iables was run to test for a group by condition by time inter-
action. Group by time and group by condition interactions were
also investigated. Greenhouse-Geisser sphericity-corrected
values were reported when assumptions were violated.

Transfer phase accuracy was averaged across all four
presentations of every unique combination (n = 28) of expected
values and compared using two-sample t tests. Transfer phase
pairs were next ranked on their value difference (see
Supplemental Table S1 for details regarding trial combina-
tions). A logistic regression analysis with value difference (left–
right option) as predictor and correct choice (left vs. right
button) as dependent variable was conducted to test the hy-
pothesis that PSZ show impaired performance with increasing
value difference. Individual value difference slopes were
compared in a two-sample t test.

Context-dependent learning was investigated using a two-
sample t test as well as a one-sample t test to compare
preference for either option against chance. As a direct mea-
sure of context-dependent learning, we focused on trials
where 75P was coupled with 75D. As an indirect measure of
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
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context-dependent learning, average performance on all trials
where 75P and 75D stimuli were presented with any other
option (excluding the 25 stimulus with which they were origi-
nally partnered) was compared in a 2 3 2 group by pair anal-
ysis of variance. Supplemental Table S1 provides a detailed
overview of transfer phase trials that were used for this anal-
ysis. Significance thresholds for performance data were set to
p , .05.

Correlation analyses among model parameters, clinical
variables, and psychometric variables were carried out us-
ing Pearson’s r, Spearman’s r, and subgroup splits (the
latter two when distributions were skewed). Significance
thresholds for correlation/subgroup split analyses were
Bonferroni corrected for the number of parameters in the
model (pBonferroni corrected = .05; puncorrected = .008).

RESULTS

Demographics

Participant groups were matched on most demographics.
However, PSZ did have a lower IQ score, as well as poorer
Measurement and Treatment Research to Improve Cognition
in Schizophrenia (MATRICS) Consensus Cognitive Battery
performance, than HVs (Table 1).

Learning Phase Performance

We observed a group 3 probability interaction (F3,228 = 4.39,
p = .005), such that HVs outperformed PSZ in the 90-10 (p =
.002), 75-25D (p = .007), and 75-25P (p = .04) probability
conditions but not in the 60-40 (p = .63) probability condition
(Figure 2A). Group 3 probability 3 time (F9,684 = 0.98, p = .46)
and group 3 time (F3,228 = 0.62, p = .60) interactions were not
significant. Performance on 60-40 trials in bin 4 was signifi-
cantly above chance for both groups (HVs: t35 = 2.88, p = .007;
PSZ: t41 = 2.64, p = .01). See Supplemental Figure S2 for in-
dividual data points for each probability level.

Transfer Phase Performance

Despite poorer learning accuracy in PSZ, there were no group
differences in transfer accuracy for 90-10, 75-25D, 75-25P, or
60-40 pairings (all ps . .39) (Figure 2B), with accuracy above
chance on all pairs.

Smaller Performance Improvements With
Increasing Value Difference in PSZ

Accuracy on all novel pairs is shown in Supplemental
Figure S3. When all combinations of reward contingencies
were considered, accuracy on trials with a value difference of
35 (t76 = 3.55, p = .06), 50 (t76 = 4.26, p = .04), and 60 (t76 =
4.08, p = .05) were (trendwise) greater in HVs compared with
PSZ (Figure 2C). This was also true when using only novel pairs
or only pairs consisting of one choice option from each context
(Figure 2C). To formally test the presence of a greater accuracy
deficit with increasing value difference, we compared individ-
ual slopes from a logistic regression predicting accuracy as a
function of value difference. Using all pairs (t74 = 5.84, p = .02),
novel pairs (t74 = 6.99, p = .01), and novel context pairs (t73 =
6.05, p = .02), the slope for HVs was always greater than that
for PSZ (these results could not be used in 2–4 participants
018; -:-–- www.sobp.org/BPCNNI
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Table 1. Demographics

HVs
(n = 36)

PSZ
(n = 42) t or c2 p

Age, Years 42.81 (8.86) 44.60 (8.26) 20.92 .36

Gender, Female/Male 12/24 13/29 0.05 .82

Race, African American/
Caucasian/Other

11/24/1 13/25/4 2.74 .60

Education Level, Years 14.86 (1.99) 12.69 (2.20) 4.49 , .001

Maternal education levela 13.60 (2.19) 13.46 (2.51) 0.25 .80

Paternal education levelb 13.29 (3.05) 13.89 (4.20) 20.70 .48

WASI-II IQ Score 114.86 (10.59) 98.10 (14.89) 5.76 , .001

MATRICS Domainsc

Processing speed 54.66 (9.47) 35.12 (11.57) 7.99 , .001

Attention/vigilance 51.77 (11.47) 41.45 (12.44) 3.75 , .001

Working memory 54.23 (10.16) 38.02 (11.13) 6.62 , .001

Verbal learning 50.11 (10.58) 36.69 (8.10) 6.30 , .001

Visual learning 45.46 (11.23) 35.02 (13.49) 3.64 , .001

Reasoning 53.84 (9.99) 43.02 (9.64) 4.82 , .001

Social cognition 50.91 (8.93) 36.83 (11.12) 6.04 , .001

Antipsychotic Medicationd

Total chlorpromazine – 332.36 (424.21) – –

Total haloperidol – 6.88 (9.10) – –

Clinical Ratings

BPRS positive (sum) – 9.30 (5.37) – –

SANS AA/RF (sum) – 17.00 (7.73) – –

SANS AFB/Alog (sum) – 10.67 (7.89) – –

Values are presented as mean (SD) or n.
AA/RF, avolition-apathy (including current role and function) and

asociality-anhedonia sum scores; AFB/Alog, affective flattening and
alogia sum scores; BPRS, Brief Psychiatric Rating Scale; HVs, healthy
volunteers; MATRICS, Measurement and Treatment Research to
Improve Cognition in Schizophrenia; PSZ, people with schizophrenia;
SANS, Scale for the Assessment of Negative Symptoms; WASI-II,
Wechsler Abbreviated Scales of Intelligence–Second Edition.

aMaternal education missing for 1 HV and 5 PSZ.
bPaternal education missing for 1 HV and 4 PSZ.
cMATRICS ratings and IQ score missing for 1 HV.
dChlorpromazine and haloperidol missing for 1 PSZ.
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due to limited choice variability) (Figure 2D). This all suggests
that PSZ, compared with HVs, improved less as the value
difference between two competing stimuli increased, thereby
confirming our initial hypothesis.

Context Influences Perceived Choice Value in PSZ
but Not in HVs

A direct comparison of 75D-75P performance revealed no
significant group difference (t76 = 1.61, p = .21) (Figure 2E).
However, PSZ (one-sample t test against chance: t41 = 22.10,
p = .04), but not HVs (t35 = 0.01, p = .99), did show a significant
preference for 75P over 75D. The more indirect group 3 pair
interaction for 75P and 75D performance versus other options
showed similar numerical patterns but was not significant
(t1,67 = 2.11, p = .15). Nevertheless, PSZ (t41 =22.52, p = .015),
but not HVs (t35 = 20.67, p = .51), more often selected 75P
than 75D when paired with another option (Figure 2E). The
direct and indirect measures of context sensitivity correlated in
PSZ (Pearson’s r = 2.53, p , .001). Taken together, these
results provide subtle yet consistent evidence that context
Biological Psychiatry: Cognitive Neuroscien
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may affect perceived choice value in PSZ but not in HVs. To
formally test whether the trial by trial pattern of choices can be
explained by context-dependent value learning, we next turn to
computational modeling results.

Computational Modeling

Model Parameters. Hybrid model parameters for HVs and
PSZ are shown in Figure 3A and summarized in Table 2. The
average mixing parameter was greater than .5 in PSZ and HVs,
suggesting that both groups made more use of Q-learning
compared with actor–critic-type learning. Importantly, as pre-
dicted, them parameter was significantly greater in HVs than in
PSZ (Table 2). This result points to a decrease in Q-learning
and a relative increase in actor–critic-type learning in PSZ
compared with HVs. In addition, the undirected noise param-
eter was greater in PSZ than in HVs (Table 2). See
Supplemental Table S2 for individual parameter estimates.

Hybrid Model Simulations: Learning Phase. True to the
actual learning phase data, model simulations revealed numer-
ically greater performance in HVs relative to PSZ for 90-10, 75-
25D, and 75-25P contingencies but not for 60-40 contingencies,
which became (trend) significant when increasing the number of
simulations [n(simulations) = 1000 shown in Figure 3B].

Hybrid Model Simulations: Transfer Phase. Given the
low number of transfer phase trials for every combination (n = 4),
and because the amount of undirected noise may be greater
during learning compared with transfer phase performance, we
set ε to 50% of the original value during transfer phase simu-
lations. All findings remained when simulating transfer data
with ε set to 100% (Supplemental Figure S4).

Simulated group differences in transfer phase accuracy on
90-10 (t76 = 1.93, p = .06), 75-25D (t76 = 2.53, p = .01), 75-25P
(t76 = 2.30, p = .02), and 60-40 (t76 = 0.52, p = .60) pairs were
subtle (Figure 3C), as was the case in the original data, yet
(trended) significant for some pairs owing to the number of
simulations [n(simulations) for all transfer data = 250]
(Figure 3C). Importantly, simulated data from the hybrid model
predicted numerically greater performance deficits in PSZ with
increasing value difference (Figure 3D).

Hybrid Model Simulations: Context-Dependent
Learning. The direct and indirect context effects in PSZ
both were present in the simulated data (Figure 3E), that is, 1) a
preference for 75P over 75D (t40 = 2.59, p = .01) and 2) better
performance when 75P was paired with other choice options
compared with when 75D was paired with other choice options
(t39 = 2.03, p = .05). One outlier in the PSZ sample with high
values overall/difference scores was removed from the simu-
lated data; excluding this subject from the actual data did not
change the results.

Evidence That Model Parameters Capture Task
Performance

The m (Spearman’s r = 2.67, p , .001) and ε (Spearman’s r =
.38, p , .001) parameters significantly correlated with the
slope of the value difference effect in the entire sample, sug-
gesting that decreased reliance on Q-learning and greater
ce and Neuroimaging - 2018; -:-–- www.sobp.org/BPCNNI 5
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undirected noise were associated with smaller performance
improvements with increasing value difference (Figure 4A, B).

Next, we focused on the ac parameter, which can produce
the context effect within the actor–critic model. To demon-
strate this, both m and ε were fixed to 0 and the direct and
indirect context effects were simulated. This analysis removes
contributions from Q-learning and undirected noise, while all
other parameters were set to their original values. In PSZ, ac
correlated with the size of the simulated direct (Spearman’s
r = 2.42, p , .005) and indirect (Spearman’s r = .47, p , .001)
context effects. This confirms our intuition that varying levels of
critic learning rate are sufficient to account for the context
effect. Moreover, when simulating data using individual m and
ε parameters, ac-weighted [ac 3 (1 2 m), i.e., the degree to
which ac could have produced a context effect] also signifi-
cantly correlated with the simulated indirect context effect
(Pearson’s r = .34, p = .02), while the correlation with the
simulated (Pearson’s r = 2.28, p = .07) and actual (Pearson’s
r = 2.13, p = .41) direct context effects was in the expected
direction but not significant. This provides evidence that
greater ac values can account for a context-dependent choice
bias, although this also crucially depends on the degree to
which participants rely on Q-learning and the amount of un-
directed noise.

Associations With Clinical and Demographic
Variables

Parameter estimates for low (avo2) and high (avo1)
motivational deficit subgroups (median AA sum score = 17;
19 avo2; 23 avo1) are shown in Supplemental Table S3
and Supplemental Figure S5. The avo1 compared with
avo2 showed a selective increase in ac (t40 = 2.84,
pBonferroni corrected = .04); the same trend was observed for
avo1 versus HV (t57 = 2.54, pBonferroni corrected = .06). Given
that ac strongly correlated with measures of context-
dependent RL, and in light of the lower m parameter in
PSZ relative to HVs, these results suggest that avo1 were
more sensitive to context-dependent RL if they relied
strongly on actor–critic-type learning.

Focusing on model parameters that could explain group
differences in task performance, m (HVs low vs. high IQ:
t33 = 1.37, puncorrected = .18; PSZ low vs. high IQ: t42 = 1.04,
puncorrected = .31) and ac (HVs low vs. high IQ: t33 = 0.50,
puncorrected = .62; PSZ low vs. high IQ: t42 = 1.40, puncorrected = .18)
were not associated with IQ. In PSZ (low vs. high IQ: t42 = 2.56,
pBonferroni corrected = .09), but not in HVs (low vs. high IQ: t33 = 0.49,
puncorrected = .63), therewas a trendof a lower IQbeing associated
with more undirected noise (i.e., greater ε).

Finally, m, ε, and ac were not associated with haloperidol
equivalents (all puncorrected . .71) or age (puncorrected . .32).
Scale for the Assessment of Negative Symptoms AA sum
scores were not associated with model fit (Spearman’s
r = 2.003, puncorrected = .98).
=

Figure 2. Learning and transfer phase performance. (A–E) Solid bars represe
schizophrenia (PSZ). *p , .05, **p , .01, ***p , .001, atrend (p = .06–.09). Error ba
bars represent SEM. Asterisks above error bars represent significant preference
group or within-group differences. In panel (E) (center), 75D vs. All/75 vs. All
value. In panel (E) (right), separate plots for 75D and 75P versus other choice op
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Follow-up analyses in a subsample of participants who
performed particularly well are reported in the Supplement.

DISCUSSION

Using theory-based predictions, our primary aim was to
investigate two hypothesized RL and decision-making deficits
that could result from relative underuse of expected value. As
predicted, PSZ showed robust performance impairments as
the difference in reward value between two choice options
increased.

Moreover, we observed a subtle yet consistent contextual
choice bias that was not present in HVs: when presented with
two options of identical reward value (75D and 75P), or when
these options were paired with options of other reward value,
PSZ preferred the 75 option from the more probabilistic
context (75P).

Performance deficits amplified at greater levels of value
difference are diagnostic of a change in the choice function
rather than a general learning impairment, which would typi-
cally manifest in the opposite manner, that is, worse perfor-
mance for more difficult judgments. These results are
particularly noteworthy because they further corroborate the
notion that some learning and decision-making deficits in PSZ
are associated with a highly selective deficit in the represen-
tation of expected value. A more general learning impairment,
potentially via altered dopamine-dependent stimulus-response
learning (1,3,5), would predict performance impairments with
increasing levels of difficulty. We have previously observed a
hint for performance deficits at greater levels of value differ-
ence in other RL tasks (6,28), suggesting that this is a recurrent
impairment in PSZ. Our computational model provides evi-
dence that such impairments stem from a decrease in action
value learning (Q-learning; via the m parameter) and a greater
relative contribution from actor–critic-type learning. Impor-
tantly, these results conceptually replicate, for the first time,
our previous work, in which we showed a decreased contri-
bution of Q-learning during a gain-seeking/loss-avoidance
task (6). In the current study, performance impairments were
also in part related to increased undirected noise, which ac-
counts for nondeterministic choices even in the face of strong
evidence. We have observed this in previous RL studies (15),
and in the current study it was mostly associated with inter-
individual differences in IQ.

Which mechanisms could underlie a selective impairment in
the representation of expected value? Decreased learning from
gains, as opposed to intact loss avoidance, has been identified
as one potential mechanism (6,14,29,30). In this study,
impaired performance on more deterministic pairs, associated
with more gains than neutral outcomes, but spared perfor-
mance on 60-40 trials, where learning occurs almost equally
from gains and neutral outcomes, provides circumstantial ev-
idence for this notion. One improvement compared with
nt healthy volunteers (HV); bars with diagonal lines represent people with
rs represent 95% confidence interval except for learning phase data, where
against chance; asterisks above solid horizontal lines represent between-
shows performance on 75D/P trials vs. all choice options of nonidentical
tions broken down by their value difference (x-axis) are shown.
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Figure 3. (A–E) Hybrid model parameters and simulated data: n(simulations) = 250, simulated with undirected noise (ε) of 50%. b, inverse temperature; HV,
healthy volunteers; m, mixing; PSZ, people with schizophrenia. *p , .05, **p , .01, ***p , .001, atrend (p = .06–.09).
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Table 2. Hybrid Model Parameters per Participant Group

HVs (n = 36) PSZ (n = 42) t p

Critic Learning Rate (ac) .08 (.24) .16 (.31) 1.40 .17

Actor Learning Rate (aa) .46 (.35) .50 (.34) 0.47 .64

Q-Learning Rate (aq) .54 (.34) .59 (.34) 0.69 .50

Mixing Parameter (m) .78 (.25) .61 (.33) 2.51 .01

Inverse Temperature (b) .61 (.32) .52 (.32) 1.30 .20

Undirected Noise (ε) .09 (.20) .27 (.38) 2.52 .01

Values are presented as mean (SD).
HVs, healthy volunteers; PSZ, people with schizophrenia.

Context-Dependent Reinforcement Learning in Schizophrenia
Biological
Psychiatry:
CNNI
previous paradigms is that here we focused on reward value
instead of contrasting valence conditions, which is a direct test
of expected value deficits. The current results show, for the
first time, that a diminished role of expected value in driving
choices can lead to suboptimal behavior in a dose-response
fashion; that is, performance impairments increase mono-
tonically with increased demands placed on expected value
computations. This work further strengthens the claim that
deficits in the representation of expected value are a central
feature of learning and decision-making impairments in PSZ,
and here we reveal when these deficits should be most
evident.

The relationship between the value difference effect and Q-
learning fits well with previous neuroimaging studies. Work
from our group has identified attenuated expected value sig-
nals in insula and anterior cingulate, regions that encode
(state-dependent) expected value (31,32), in PSZ with moti-
vational deficits (5,14). Ventromedial and orbitofrontal pre-
frontal cortex dysfunction, consistently involved in tracking
reward value (8,9,33), has also been linked to learning and
decision-making deficits in schizophrenia (34,35). Thus, a
diminished role for expected value in decision making,
demonstrated by the value difference effect and confirmed by
our computational model, is suggestive of impairments in a
range of cortical areas that encode reward value.

We have argued that underuse of expected value and a
relative increase in reliance on stimulus-response learning can
also enhance the effect of context on stimulus valuation,
Biological Psychiatry: Cognitive Neuroscien
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leading to a unique prediction in which preferences can arise
among choice options with identical reinforcement probabili-
ties. For this hypothesis, we found subtle but consistent evi-
dence only in PSZ, but not in HVs, which could selectively be
accounted for by a context-dependent state-value RPE
(via ac). Interestingly, the magnitude of this context parameter
was greater in individuals with high motivational deficits. Given
that there was no association between motivational deficits
and the mixing parameter (or between the mixing and context
parameters), this result implies that a context-dependent choice
bias in PSZ with motivational deficits can be observed only to the
degree that they rely on actor–critic-type learning. This may
suggest that increased sensitivity to context and impairments in
Q-learning may be differentially sensitive to symptom severity
and patient status, respectively.

Although the effect of contextual reward availability on de-
cision making was subtle in PSZ, these findings are note-
worthy. Klein et al. (36) revealed that learning the value of one
stimulus relative to another can lead to suboptimal decision
making. In their study, a relative RPE signal was specifically
encoded by the striatum. Despite clear differences between
the task design of Klein et al. and the current study, most
notably pairwise versus blockwise context effects, their work
does provide evidence for the notion that the effect of context
on perceived stimulus value seems to be encoded specifically
by brain regions typically associated with RPE signaling.

Related to this point, we observed intact learning on 60-40
trials in PSZ [see also Waltz et al. (28)], which improved
gradually and relies on slow accumulation of RPEs (18). Subtle
evidence for a context effect, a relative increase in the contri-
bution of actor–critic-type learning, and adequate learning on
60-40 trials are consistent with relatively intact striatal function
in our medicated sample. These findings align well with intact
striatal RPE signaling in medicated PSZ (37) as well as
normalization of reward signals following treatment with anti-
psychotics (38).

It is interesting to speculate on how impairments in
stimulus-response learning and expected value may change
with illness phase or medication status. In nonmedicated and/
or first-episode patients, abnormal RPE signals in striatum and
Figure 4. (A, B) Significant correlations between
model parameters and task performance. ε, undi-
rected noise; HV, healthy volunteers;m, mixing; PSZ,
people with schizophrenia.
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midbrain have been reported (4,39,40), while a recent study did
not observe differences in striatal RPE signals between HVs
and PSZ on long-term medication (37). In addition, there exists
some evidence that deficits in expected value can be observed
in both first-episode patients (16) and long-term PSZ (6,29,41).
In the absence of correlations between antipsychotic dose and
Q-learning, this work may suggest that deficits in the repre-
sentation of expected value exist across the psychosis spec-
trum, while impaired stimulus-response learning may be
especially pronounced in the early phase of the illness and
perhaps rescued by antipsychotic medication. While disen-
tangling illness phase from medication effects is an arduous
task, such studies may ultimately provide much-needed in-
sights into symptom mechanisms across the psychosis
spectrum.

To summarize, this work provides specific evidence that
decision-making impairments in PSZ increase monotonically
with demands placed on expected value computations. A
greater influence of stimulus-response learning as a result of
underuse of expected value may produce additional violations
of optimal decision-making policies such as a contextual or
relative choice bias. This work provides a novel source of ev-
idence suggesting a diminished role of expected value in
guiding optimal decisions in PSZ and sheds light on the con-
ditions that facilitate such impairments.
Limitations

Some limitations warrant discussion. While we were able to
replicate our previous finding of decreased Q-learning or
relative increase in actor–critic-type learning in PSZ (6), the
mixing parameter was not associated with symptom rat-
ings. Previous studies investigating RL deficits in PSZ have
reported mixed results regarding relationships to negative
symptoms (6,16,29). Compared with our previous study (6),
here we used a wide range of choice pairs and a
comprehensive transfer phase. Greater demands placed on
expected value computations may have increased sensi-
tivity to detect group differences, as opposed to differ-
ences in HVs and PSZ with high motivational deficits only.
Moreover, the use of a context-dependent learning rate for
the critic, which was associated with motivational deficits,
may have explained some of the variance that would have
otherwise been captured by other model parameters. While
multiple factors may explain the absence of an association
between the mixing parameter and motivational deficit
severity, the current study results still provides evidence for
the notion that expected value deficits are an essential part
of schizophrenia.

It should also be noted that an alternative account of the
current findings is that PSZ may rely less on model-based
strategies (42). Both Q-based and model-based learning
make identical predictions for this task; that is, Q-learning
predicts improved performance at greater levels of value
difference via action-value learning, while model-based stra-
tegies predict improved performance when action-outcome
sequences are better understood. Importantly, this alterna-
tive explanation does not change the interpretation of
increased reliance on model-free stimulus-response learning
in PSZ.
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