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The Challenge of Learning Adaptive Mental Behavior
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Many psychotherapies aim to help people replace maladaptive mental behaviors (such as those leading to
unproductive worry) with more adaptive ones (such as those leading to active problem solving). Yet, little
is known empirically about how challenging it is to learn adaptive mental behaviors. Mental behaviors entail
taking mental operations and thus may be more challenging to perform than motor actions; this challenge
may enhance or impair learning. In particular, challengewhen learning is often desirable because it improves
retention. Yet, it is also plausible that the necessity of carrying out mental operations interferes with learning
the expected values of mental actions by impeding credit assignment: the process of updating an action’s
value after reinforcement. Then, it may be more challenging not only to perform—but also to learn the con-
sequences of—mental (vs. motor) behaviors. We designed a task to assess learning to take adaptive mental
versus motor actions via matched probabilistic feedback. In two experiments (N= 300), most participants
found it more difficult to learn to select optimal mental (vs. motor) actions, as evident in worse accuracy
not only in a learning but also test (retention) phase. Computational modeling traced this impairment to
an indicator of worse credit assignment (impaired construction and maintenance of expected values)
when learning mental actions, accounting for worse accuracy in the learning and retention phases. The
results suggest that people have particular difficulty learning adaptive mental behavior and pave the way
for novel interventions to scaffold credit assignment and promote adaptive thinking.

General Scientific Summary
We are often asked to think harder, remain positive, and not sweat the small stuff. But why is it so chal-
lenging to ingrain adaptive mental behaviors, such as those that lead to thinking in healthy and produc-
tive ways? Using a novel task that directly compared the ability to learn optimal mental versus motor
behaviors via trial and error, we found that (overall) people had more difficulty learning optimal mental
behaviors and traced this difficulty to the formation of less robust expected values for mental actions.
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perseverative thinking
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We are often asked to think harder, remain positive, and not sweat
the small stuff. But why is it so challenging to ingrain adaptive men-
tal behaviors, such as those that lead to thinking in healthy and pro-
ductive ways? This article introduces a novel task to investigate the

comparative difficulty of learning to select adaptive mental (cogni-
tive) as opposed to motor (overt) actions.

This question is important because a number of psychotherapies
take a behavioral approach to cognition. That is, they assume that
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both cognitive and overt activities are types of behavior; cognitive
behaviors just happen to take place “between the ears” rather than in
the external world. Hence, the therapies apply behavior-modification
strategies aimed at uncovering the function of maladaptive mental
behaviors andfinding adaptive alternatives that fulfill a similar function
and can be practiced in their place (e.g., S. A. Hayes et al., 2010;
S. C. Hayes et al., 2011; Martell et al., 2021; Watkins, 2018).
Behavior modification assumes that the consequences of behavior

can be learned—in particular, that, after sufficient experience, adap-
tive behaviors will naturally replace maladaptive ones within an indi-
vidual’s repertoire (Kazdin, 2012; Ramnero & Törneke, 2008). Yet,
little is known empirically about the comparative difficulty of learn-
ing adaptive cognitive versus overt behaviors.1

To investigate this question, we designed a novel bandit rein-
forcement-learning (RL) task. Bandit tasks are workhorses of RL
research that have been extensively investigated in human and non-
human animals (e.g., Frank et al., 2004; Pessiglione et al., 2006;
Schoenbaum et al., 2003). In our task, the baseline “overt” condition
is similar to standard bandit tasks that simply require the learner to
acquire stimulus–response associations, where the response is a
motor action. We compared this to a “cognitive” bandit with matched
probabilistic reinforcement contingencies and motor demands, but
where the required responses were cognitive actions rather than simply
overt actions (see below).2

Our focus is not on the performance of the actions themselves, but on
the ability to learnwhich action to select based on reinforcement history.
One might naturally expect that the increased challenge associated with
performing a cognitive operation,which is entailed by taking a cognitive
action, would impede learning the cognitive action’s value. Yet, in
many cases, the opposite is true: greater challenge during learning actu-
ally enhances later retention. For instance, retrieving information rather
than simply restudying it improves later retention (Karpicke &
Roediger, 2008); this is just one of a number of so-called “desirable dif-
ficulties” in learning (Bjork & Bjork, 2011). Notably, in RL tasks,
greater demands on working memory while learning lead to slower ini-
tial acquisition of stimulus–response contingencies but paradoxically
better retention of these contingencies (via enhanced retention of their
expected values) in a later test phase (Collins et al., 2014, 2017; Rac-
Lubashevsky et al., 2023). This enhanced retention appears to be medi-
ated by greater RL-based neural signaling under high working-memory
load (Collins & Frank, 2018; Rac-Lubashevsky et al., 2023). Hence,
greater difficulty in the form of higher working-memory demand
appears to increase activity in the RL system that ultimately enhances
retention. Thus, a crucial feature of our experimental design was the
inclusion of a test phase to assess retention.
We considered two possibilities: First, If cognitive (vs. overt)

actions are more challenging, initial learning might be slowed but
retention of learned values might be enhanced. Conversely, we
hypothesized that the need to perform a cognitive operation, which
is entailed by taking a cognitive action, would interfere with RL by
disrupting credit assignment: the process of updating the cognitive
action’s value after reinforcement (Sutton & Barto, 2018). Notably,
whereas working-memory load increases prediction errors in the
overt stimulus–response tasks described above (Collins & Frank,
2018; Collins et al., 2014; Rac-Lubashevsky et al., 2023), these errors
presumably can be correctly attributed to the stimulus and action just
selected—and this correct attribution is why retention is ultimately
enhanced. In contrast, the performance of a cognitive operation
might disrupt the ability to attribute prediction errors to the cognitive

action itself. Broadly consistent with this, prior work suggests that
people ascribe credit not only to outcome-relevant aspects of their
actions, but also incorrectly to irrelevant aspects that are entailed
by the action (such as spatiomotor aspects orthogonal to reward;
Shahar et al., 2019; see also Jocham et al., 2016; Lamba et al., 2023).

Another reason to suspect that credit assignment may be disrupted
for cognitive actions is that, biologically, credit assignment depends
on a delicate orchestration whereby dopaminergic signals are (or are
not) propagated to subregions representing aspects of one’s action
(and state) responsible for the outcome (Hamid et al., 2021). It is
quite plausible that this delicate arrangement is mademore challenging
when a cognitive operation is interposed between an action’s initiation
and its outcome—as is necessarily the case for cognitive actions.

It is also noteworthy that working memory is often required for
credit assignment. In particular, it facilitates learning the expected val-
ues of specific actions (Asaad et al., 2017; Frank & Claus, 2006; Gold
et al., 2012; Hernaus et al., 2018, 2019). Yet, the cognitive operations
entailed by performing cognitive actions also tend to rely on working
memory. Thus, the dual demands of performing a cognitive operation,
on the one hand, and assigning credit to the abstract action itself, on
the other hand, may draw on shared working-memory resources.
This may lead to particular difficulties in acquiring expected values
for cognitive actions (i.e., estimates of their long-run average conse-
quences in different situations)—as has been found, for example, in
a neural-network model wherein credit assignment to cognitive
actions was especially difficult when multiple working-memory rep-
resentations were held in mind (O’Reilly & Frank, 2006).

We developed a novel cognitive actions task (Figure 1) to investi-
gate the distinct possibilities that adaptive learningwould be enhanced
versus impaired for cognitive (vs. overt) behaviors. The design was
such that specific sequences (e.g., “18 + 3= 21” in the cognitive
condition or keys “K” and “U” in the overt condition) changed across
trials, whereas high-level cognitive versus overt actions had fixed reward
or punishment probabilities in the same state. Thus, we were able to

1 The notion that there may be particular challenges involved in modifying
cognitive vs. overt behavior is well established. For instance, Kazdin (2012,
pp. 3–4) describes practical reasons that psychotherapies often focus on
changing overt rather than cognitive behavior. Hayes and colleagues have
considered particularities of verbal behavior that might make them especially
challenging to modify (reviewed in S. C. Hayes et al., 2011, pp. 39–52). Yet,
our study is the first, to our knowledge, to directly compare the ability to learn
adaptive cognitive versus overt behaviors within a reinforcement-learning
design.

2 Of note, our labels of the two conditions as “overt” and “cognitive” are
heuristic rather than strict distinctions, as we assume both conditions require
cognition, for instance, to maintain the task set and remember responses
across delays (see Collins & Frank, 2012 for evidence that even quite simple
RL tasks involveworkingmemory). Nonetheless, as described in the text, our
conditions are distinguished by the fact that—orthogonal to these baseline
demands present in both conditions—the cognitive condition alone requires
performing a cognitive operation (e.g., add or subtract) to take the action on
each trial, and it is the value of this abstract cognitive operation itself that must
be learned. It is this distinction that we are highlighting with the labels cog-
nitive versus overt. Our heuristic labeling strategy is similar to that employed
in past reinforcement-learning tasks, such as a task that manipulated model-
based versus model-free contributions (Daw et al., 2011), which were labeled
as such although orthogonal model-based representational requirements are
present even in the model-free case (see Shahar et al., 2019); and in a
reinforcement-learning and working memory task that manipulated working
memory load, even though some working memory contribution is presumed
to be needed even in the low WM conditions (Collins & Frank, 2012, 2018;
Rac-Lubashevsky et al., 2023).
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isolate the ability to learn optimal cognitive (e.g., add) versus overt
(e.g., top) actions themselves (Figure 1).
In two experiments with different variants of the task (N= 300),

we found that, overall, people had more difficulty learning which
cognitive actions were optimal, compared to the baseline overt-
action learning task. Crucially, this impairment persisted in a
later test (retention) phase. Computational modeling traced the
impairment to less ability to construct and retain expected values
for cognitive actions, consistent with impaired credit assignment
(see “Discussion” regarding open questions that this study raises
about the specific mechanisms responsible for the impairment). Of

note, despite an overall group effect in both experiments, there
was substantial heterogeneity—with a subset of participants actually
showing better accuracy (and retention of expected values) in the
cognitive condition. Nevertheless, that adaptive cognitive-action
learning was more difficult for most people suggests that it is not
comparably easy as overt-action learning. As such, it may be bene-
ficial for psychotherapies that target mental behaviors to develop
extra support to scaffold learning about them. Moreover, the he-
terogeneity that we observed paves the way for future research on
individual differences. Ultimately, such research may facilitate
targeted interventions that provide extra scaffolding or adjunctive

Figure 1
The Cognitive Actions Task (Experiment 1 Variant)

Note. (A) In the cognitive actions task, participants must learn through trial and error to take the best of two actions
in various states signaled by different fractal images (on the left of each screen). In the cognitive condition, the
actions are add or subtract. In the example shown, the participant is presented with “18” and “3” (after 500 ms
of just the fractal being displayed). Thus, they can type “21” to select add or “15” to select subtract (the numbers
to add/subtract change every trial, and participants type the keys to enter the sum/difference—e.g., typing “2” then
“1” for add on this trial). After their response, reward or punishment feedback is delivered (in the learning period
only; in the test period, the task is the same but no feedback is shown). In the overt condition, the actions are top or
bottom; in the example shown, the participant would type “K” + “U” for top or “D” + “B” for bottom (the letters
change every trial) and then receive reinforcement. (B) In both conditions, there are four different states (equiva-
lently, bandits) each signaled by different fractal images, where each state/fractal is associated with a different con-
tingency. The contingencies in the states were created by crossing the feedback percentages {90-10, 40-10} with
valence {Reward, Punishment}. For example, in {90-10 Reward}, reward is delivered 90% of the time that the opti-
mal action (e.g., add) is selected and 10% of the time that the nonoptimal action (e.g., subtract) is selected (the opti-
mal actions in different contingencies were counterbalanced across participants). The “Feedback” heading shows all
types of feedback when reward or punishment was/was not received. Because contingencies and motor demands
were matched, the key difference between the conditions was that the cognitive condition alone required performing
a mental operation. In Experiment 2, we employed a second variant of the cognitive actions task that involved dif-
ferent cognitive actions, which is shown in Figure 1 in the online supplemental materials. The contingencies and
feedback were the same as in Experiment 1. See the online article for the color version of this figure.

CHALLENGE OF LEARNING ADAPTIVE MENTAL BEHAVIOR 3

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/abn0000924.supp


treatment (e.g., neuromodulation) for those who require extra help
learning the consequences of their mental behavior.

Method

Participants

Across both Experiments 1 and 2, participants from the United
States ages 18–65 (N= 300; n= 150 in each study) were recruited
via Prolific and provided informed consent via a consent form
approved by the Brown University Institutional Review Board.
Participants received baseline compensation ($9.50 USD/hr) and a
bonus based on accuracy (up to $3; they were told that we expected
about 1/3 of participants to attain $3 and were subsequently compen-
sated $1/2/3 depending on the tercile of their accuracy, evaluated in
terms of proportion correct during the learning phase).
In each experiment, participants completed the cognitive actions

task followed by questionnaires. In quality control checks similar to
those in prior work (Hitchcock et al., 2022; Radulescu et al., 2016),
we excluded participants who in the learning phase (a) performed
indistinguishably from chance in the 90-10 probability contingencies
(,55.93% correct, which is the binomial mean + 1.5 SD for p= .5,
n= 160 trials) and/or (b) responded with the same action (e.g., add)
for any 50+ consecutive-trial streak. After removals, the sample
sizes were as follows: n= 125 in Experiment 1, 45.6% female,
54.4% male; Mage (SD)= 36.65 (11.80); ethnic identity from
Prolific profile: 5.60% Asian, 6.40% Black; 4.00% Mixed; 2.4%
Other; 80% White; 1.60% data not available (data expired) 1.6%,
and n= 138 in Experiment 2, 53.33% female, 46.67% male; Mage

(SD)= 37.90 (11.28); ethnic identity from Prolific profile: 2.90%
Asian, 3.62% Black; 9.42% Mixed; 3.62% Other; 76.10% White;
4.35% data not available (data expired); the Experiment 2 demo-
graphics do not include three participants who did not have sex
and age in their Prolific profile).

Tasks

The variants of the cognitive actions task used in the first and sec-
ond experiments had the same structure. On each trial, participants
first saw a fractal image, signaling which state they were in, for
500 ms. This image remained on the screen while stimuli appeared
at the top and bottom of the screen that allowed them to take one
of two actions (in RL terminology, each state was a 2-armed bandit).
Reinforcement was immediately delivered following the action
while the stimuli and fractal remained on screen (Figure 1 and
Figure 1 in the online supplemental materials).
All participants completed cognitive and overt conditions. The key

difference between conditions was that only the former required per-
forming a cognitive action. In the Experiment 1 variant of the task,
the cognitive actions were adding/subtracting two numbers and the
overt actions involved selecting letters at the top/bottom of the screen
(Figure 1). Accuracy in the task was evaluated as ability to learn to
select the more optimal (most rewarding or least punishing) action—
for instance, in Experiment 1, whether subtract (vs. add) was the opti-
mal action in a given state (fractal image), which had to be learned
through repeated trials in that state with changing numbers (e.g., on
one trial the numbers might be “15” and “4” and the response needed
to select subtract would be “11”; in the next, “18” and “2” and the
response needed would be “16”). Note that accuracy is distinct from
response validity (for instance, for “15” and “4” the twovalid responses

are “19” for add or “11” for subtract; see below for further details on
how invalid responses were handled). In the Experiment 2 variant of
the task, the cognitive actions were alphabetizing/reverse-alphabetizing
letters and the overt actions were selecting numbers on the diagonal/
reverse-diagonal of the screen (Figure 1 in the online supplemental
materials).

Participants completed two practice phases. In the first, they prac-
ticed performing each action in each condition (i.e., in Experiment 1,
typing the keys corresponding to add, subtract, top, and bottom)
with no fractal image yet displayed. Next, they practiced a simplified
version of the task with two states (signaled by different fractals) for
which opposite actions were deterministically correct, with reinforce-
ment displayed to signify that the action was correct (for example, in
the Experiment 1 cognitive condition, add was the correct (rewarded/
loss avoiding) response for one image and subtract was the correct
response for the other). Participants were required to enter four con-
secutive correct responses in practice phase 1 and at least five out of
six correct responses in practice phase 2 to continue in the task.

Participants next completed the learning phase of the task. Here,
they attempted to learn the optimal action for each state through
probabilistic reinforcement feedback. The learning phase comprised
four blocks of 80 trials each of alternating conditions, with first-
condition order counterbalanced (i.e., {overt, cognitive, overt, cog-
nitive} or {cognitive, overt, cognitive, overt}). Each block com-
prised 20 trials each of four states (signaled by different fractal
images) specific to the condition, with trial order randomized. The
contingencies for the four states, which were constant throughout
the task in each condition, were constructed by crossing valence
{reward, punishment} and outcome probability {90-10, 40-10},
leading to {90-10 Reward, 40-10 Reward, 90-10 Punishment,
40-10 Punishment} bandits. The images displayed to signal reward
versus no-reward were a picture of money (see Figure 1) or the text
“NO REWARD | Try again next time!” respectively; and for punish-
ment versus no-punishment, were a picture of burning money or the
text “Loss avoided | You get to keep your money!” respectively.

Participants next completed two additional phases (order counter-
balanced). A test phase comprised trials identical to the learning
phase but without feedback, thus providing a measure of asymptotic
retention; participants performed eight trials of each of the four bandits
in the two conditions (32 trials/condition= 64 trials). A stimulus-
valuation phase required choosing between the images (states) from
the learning phase, now presented in pairs. Participantswere instructed
to “Select the picture that ‘feels’ like it will win themost,” bywhichwe
sought to convey that they should pick the state that had been most
rewarded (least punished). There were two subphases of the stimulus-
valuation phase: one involving choosing between states from the same
condition (overt–overt and cognitive–cognitive) and the other states
from different conditions (overt–cognitive). In the former, because
each state from the learning phase corresponded to a unique contin-
gency, all pairs differed in their expected value (e.g., 90-10 Reward
vs. 40-10 Reward); participants completed four repetitions of the six
possible state pairs in the two conditions (48 trials/participant). In
the latter, pairings were limited to states with the same expected
value (e.g., 90-10 Reward overt vs. 90-10 Reward cognitive); partici-
pants completed eight repetitions of the four bandit pairs (32 trials/
participant). Participants selected images on the right or left of the
screen by pressing the corresponding arrow keys.

Please see the online supplemental materials for further informa-
tion about the task parameters.
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Posttask Questionnaires

Following the tasks, participants completed individual differ-
ence questionnaires, including the 15-item Perseverative Thinking
Questionnaire (Ehring et al., 2011) and 10-item Rumination-
Response Style questionnaire (Treynor et al., 2003), to permit exami-
nation of whether individual differences in thinking style correlated
with model-based differences, and the 24-item Behavioral Inhibition/
Behavioral Activation scales (Carver & White, 1994), to examine if
individual differences in self-reported aversive and appetitive motiva-
tion respectively correlated with differences in reward or punishment
learning irrespective of condition.

Code, Data Availability, and Task Coding

The code used to produce the results and figures is available at
https://github.com/peter-hitchcock/cog-acts_analysis. Task data
will be posted to the following open repository upon publication:
https://nivlab.github.io/opendata. The task was coded in
Honeycomb (Provenza et al., 2022).

Analyses

Statistical Data Analyses

Data were preprocessed and analyzed using R (Version 4.1.2; R
Core Team, 2021). For analyzing the effects of condition (overt
vs. cognitive) and delay (i.e., whether or not the same bandit was
played on consecutive trials) on accuracy (correct: yes/no) in the
learning and test phases, and the effect of reward history on choice
in the stimulus-valuation phase, we built mixed-effects logistic
regression models using the lme4 package (Bates et al., 2014)
with p-values estimated using Satterthwaite’s method for approxi-
mating degrees of freedom. The variance inflation factor for all mul-
tivariate regression models was ,1.1, suggesting no issues with
collinearity. Tables 2–4 in the online supplemental materials report
full model specifications, variable coding (contrast and z-scoring),
and statistics for the regression models.
The stimulus-valuation phase examined selection between state

(i.e., fractal stimulus) pairs, which had been learned about separately
during the learning phase. As described above, participants were
instructed to pick the state that had led to the best outcomes during
the training phase (“Method”). Because these selections were at the
level of the entire stimulus, we examined choice as a function
of its (model-agnostic) reward history, rather than (model-derived)
Q-values that were specific to the different actions in the state.
The computational-model parameter, w, that was allowed to vary

across conditions in the most successful computational model was
heavily left skewed in both conditions (see Table 7 in the online sup-
plemental materials). Parameter recovery for the sign of the differ-
ence in this parameter was also relatively good (71.43% correct
sign) whereas recovery for the difference in values was weaker
(Spearman’s ρ: wcog− wovert = .56). Thus we used the nonparamet-
ric χ2 test to examine the frequency with which this parameter was
higher in one condition than the other.

Computational Modeling Analyses

To model learning and choice dynamics in the task, we fit various
models that acquired values for the two actions in each state

(signaled by fractal images) via RL, Bayesian, and hybrid
Bayesian–RL mechanisms. A full description of the computational
models evaluated is in the online supplemental materials.

Model Fitting Procedure. We estimated model parameters
using an empirical Bayes approach, wherein model parameters
were estimated for individual subjects using maximum likelihood
estimation and then in a second step these estimates were regularized
by using group-level statistics as a prior on the individual estimates,
thereby shrinking each parameter estimate toward the group-level
mean (Casella, 1985; Piray et al., 2019). This hierarchical approach,
whereby subject-level estimates are constrained based on the
assumption that parameters are drawn from a population distribution
estimated via the group-level statistics, decreases overfitting and thus
tends to improve parameter estimation (Katahira, 2016).

Specifically, the maximum likelihood procedure followed in the
first step minimized the negative log likelihood for each participant’s
observed choices summed over all trials via the “solnp” function in the
“Rsolnp” package in R (Ghalanos& Theussl, 2011). Once all subjects
had been run, a penalty—the multivariate normal density of group-
level parameter means and covariance matrix—was constructed,
and all subjects were re-fit with the negative log of this penalty
added to the negative log likelihood, thereby constraining estimates
in the optimization according to the group-level statistics. This
approach is an approximation to the expectation-maximization algo-
rithm (which iterates between group and subject-level parameters;
e.g., Guitart-Masip et al., 2012) and tends to improve parameter recov-
ery relative to maximum likelihood estimation without such regulari-
zation (Frey et al., 2021), including for the current task/model.

To avoid local minima, we ran optimization 50 times for each sub-
ject on the first step (used for estimating the mean and covariance
matrix for the second step) and then 20 times at the second step
(used to derive the finalized penalized subject-level estimates). This
procedure was repeated twice for each subject and the estimate with
the lowest negative log likelihood across these two runs was used.

Model Comparison Procedure. We used the Akaike informa-
tion criterion (AIC), which is 2× (negative log likelihood + the
number of free parameters), as a metric of model fit that penalizes
for model complexity in terms of the number of free parameters
(Akaike, 1998).

Model Validation Procedure. Model validation was per-
formed by taking our subject-level parameter estimates derived via
the fitting procedure described above and simulating task data,
using the same contingencies as experienced by participants but sim-
ulating actions and rewards rather than relying on the empirical ones.
These data were compared to various key features of the data to
examine how well the model was able to capture these aspects.

Parameter Recovery Procedure. We generated parameters
from a truncated multivariate gaussian distribution concentrated
around the median of the empirical estimates, simulated data based
on these parameters as just described, and then attempted to recover
the true values following the empirical Bayes procedure described
above in “Model Fitting Procedure.” The simulated versus recovered
values were compared using Spearman’s ρ.

Results

Participants were recruited via Prolific (see “Method”) for two
experiments that manipulated demands on RL by comparing a stan-
dard bandit RL condition, in which participants learned to select
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overt motor actions that were differentially reinforced, to a condition
with matched probabilistic contingencies in which the actions were
cognitive. In Experiment 1 (N= 150) participants performed the
version of the task described in Figure 1. Here, in the cognitive con-
dition participants learned whether to add or subtract two numbers.
They were not told whether to add or subtract, but instead had to
learn over trials whether the cognitive action of adding or subtracting
was probabilistically more often reinforced in different states. In the
overt condition, the contingencies were the same, but this condition
only required learning the value of overt actions: typing letter pairs
on the top or bottom of the screen (note that the motor demands are
matched to the cognitive condition).
A difficulty with attributing any differences observed with the

Experiment 1 variant to cognitive (vs. overt) actions per se, is that
such differences could also arise because the cognitive condition
uniquely required numerical cognition. Thus, in Experiment 2
(N= 150) participants performed an alternate version of the task
(Figure 1 in the online supplemental materials) in which the overt
condition now involved numbers (typing numbers on the slash-
diagonal or backslash-diagonal of the screen), whereas the cognitive
condition involved performing a mental operation on letters (alpha-
betizing vs. reverse-alphabetizing). The use of both variants allowed
us to isolate how performing a mental operation, which is entailed by
taking a cognitive action (i.e., mental behavior), influences learning—
while crossing the demands for lexical versus numerical cognition
across the experiments.
In both experiments, the cognitive and overt conditions had the

same probability and valence contingencies and matched motor
demands. The contingencies were unknown to participants, who
therefore had to learn to select the best action in different states (sig-
naled by different fractal images) through trial and error. Participants
performed a learning phase with 40 trials per contingency in each of
the four contingencies per condition (160 total trials per condition;
320 learning trials overall) followed by a test phase, which was iden-
tical to the learning phase but with feedback withheld and which
therefore allowed an assessment of retention (“Method”).
Participants also performed a state-valuation phase that involved
selecting between novel fractal image pairs to assess the subjective
value they attributed to whole states while averaging over actions
(see “Method” and “Supplemental Results” in the online supple-
mental materials).

Accuracy Was Lower in the Cognitive (Vs. Overt)
Condition, Albeit With Substantial Heterogeneity Across
Participants

As hypothesized, in both experiments, accuracy in choosing the
most rewarding (least punishing) action was worse in the cognitive
compared to overt condition in both the learning and test phases
(Figure 2); Experiment 1: learning, condition β (SE)=−.18
(0.07), p, .008; test, condition β (SE)=−.46 (0.15), p, .003;
Experiment 2: learning, condition β (SE)=−.17 (0.07), p, .02;
test, condition β (SE)=−.35 (0.16), p, .03. Results were largely
consistent across various robustness checks (“Supplemental
Results” in the online supplemental materials; see “Method” for
the description of regression models and Tables 2–4 in the online
supplemental materials for their full specification and results).
Although there was a group effect reflecting worse accuracy in the

cognitive (than overt) condition, there was substantial heterogeneity

among participants—a substantial subset actually had higher accu-
racy in the cognitive than overt condition (Experiment 1: learning,
37.6% better in cognitive, with 2.4% showing no difference; test,
32.8% better in cognitive, with 10.4% showing no difference;
Experiment 2: learning, 39.13% better in cognitive, with ,1%
showing no difference; test, 35.50% better in cognitive, with
18.84% showing no difference).

Accuracy was modestly correlated between conditions, suggesting
the presence of individual differences that led to differential accuracy
in this learning task irrespective of condition (Experiment 1: learning,
r= .44, p, 5e−7; test, r= .45, p, 5e−7; Experiment 2: learning:
r= .46, p, 5e−8; test, r= .38, p, 5e−6).

Accuracy Declined Due to Delay but Without Consistent
Moderation by Condition

We next asked if accuracy during learning decreased when there
was a delay between states (fractal stimuli)—that is, whether states
(bandits) were repeated on consecutive trials or rather interrupted
by other bandits. Deleterious effects of delay on accuracy are com-
mon in learning tasks with working-memory demands (e.g.,
Collins et al., 2017), hence the greater working-memory demands
in the cognitive condition might lead to an especially strong delay
effect in this condition (although note that this is not the only role
of working memory in learning, as it also appears to play a role in
constructing persistent expected action values, e.g., Gold et al.,
2012). Visually, in both experiments, there was a clear decremental
effect of delay on accuracy in both conditions (Figure 2 in the online
supplemental materials) and indeed delay predicted decreased accu-
racy statistically, Experiment 1: delay β (SE)=−.36 (0.03), p,
2e−16; Experiment 2: delay β (SE)=−.31 (0.03), p, 2e−16.
However, the effect of delay was only stronger in the cognitive
(than overt) condition in the second experiment, Experiment 1:
Delay×Condition β (SE)=−.01 (0.06), ns; Experiment 2:
Delay×Condition β (SE)=−.12 (0.06), p, .04, and no significant
interaction was present in either experiment when using continuous
rather than binary delay (ps. .34). Thus, the results show delay
effects during learning irrespective of condition, but without consis-
tent evidence for a stronger tax of delay on the cognitive condition.

Notably, the results from the previous section—which showed that
accuracy was lower in the cognitive (vs. overt) condition not only in
the learning phase, but also in the test phase where feedback is no lon-
ger provided on each trial—provide converging evidence that the
accuracy differences between conditions are not solely driven by
the ability to retain contingencies explicitly during learning, but
also by weaker retention of learned associations asymptotically—
which also may depend on working memory (e.g., Gold et al., 2012).

Although the findings thus far provide support for our overall
hypothesis that learning to select cognitive (vs. overt) actions is
more difficult—not only during initial learning but also during a
test (retention) phase—they do not identify specific learning and
choice mechanisms responsible for this impairment. Thus, we next
constructed formal trial-wise learning models.

An RL Computational Model Was Able to Capture Key
Task Effects

We compared a variety of computational models that might plau-
sibly capture learning and choice processes in the task in terms of
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model comparison (i.e., fit to task data while penalizing for model
complexity) andmodel validation (i.e., ability to capture key features
of the data; “Method”). In both experiments, the most successful
model (Figure 3) was a Q-learning RL model that learned values
of the actions in each state (Q-values) through trial and error, but
where the Q-values decayed (Brown et al., 2018; Collins & Frank,
2012; Collins et al., 2014; Hitchcock et al., 2022; Katahira &

Toyama, 2021; Niv et al., 2015) over trials toward a default prior
via a decay parameter, w,

Qt+1 = (1− f) Qt + fQprior , for all Qt other thanQ(s, a)t, (1)

where Q(s, a)t was the value of the action selected on the current
trial, Qprior were uniform prior values that differed by valence (see

Figure 2
Accuracy Differences Between Conditions

Note. (A) Proportion of correct choices (i.e., selecting the optimal action) in Experiments 1 and 2 in the cognitive
versus overt conditions in the learning (left) and test (right) phases. Colored points indicate means and error bars
show+1 within-subject SEM. (B) Learning curves (i.e., proportion of time choosing the optimal action as a func-
tion of exposure to each fractal/state, denoted by stim iteration, during the learning phase) shown separated into eas-
ier (90-10) and more difficult (40-10) contingencies. Colored lines indicate means and error bars show +1
within-subject SEM. Black line shows chance accuracy in both plots. SEM= standard error of the mean. See the
online article for the color version of this figure.
* p, .05. ** p, .01.
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Figure 3
Computational Model Comparison and Validation

Note. (A) Model comparison plot showing the change in penalized model fit of nine plausible models of the task
against a simple Q-learning model (the models were Bayesian, reinforcement-learning, and hybrid models; see the
Supplemental Methods in the online supplemental materials for full details). Bar shows the average subject-level
change in model fit and gray points show changes for each subject. The star indicates that the “Q vary decay”
model provided the best fit to the data in both experiments (here shown as improvement relative to the simpler
Q-learner model; see Table 1 in the online supplemental materials for total sum AIC of each model). (B) Model
validation in the learning phase: empirical learning curves (colored lines) against simulated learning curves from
5th and 95th percentile accuracy (gray lines), thus showing the range of the simulated data, in all {condition-
contingency} pairs. The learning curves shown are from Experiment 1; for the Experiment 2 plot, see Figure 3B
in the online supplemental materials. (C) Model validation in the test phase: empirical means (points) and the
range of 5th–95th percentile accuracy simulations (error bars). Black horizontal lines in B and C show chance accu-
racy. Q=Q-learner; inv.= inverse; AIC=Akaike information criterion; P= punishment; R= reward. See the
online article for the color version of this figure.
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model description in “Supplemental Methods” in the online supple-
mental materials for details), and where the w parameter was allowed
to vary by condition (wcog vs. wovert). This model that allowed w to
vary by condition provided a better fit to the data in both experiments
than the samemodel with shared parameters across conditions (the “Q
nothing varied”model in Figure 3A), which suggests that differences
in the parameter help to account for differences between the condi-
tions. It also improved fit compared to other Bayesian, RL, and hybrid
models that we examined where other parameters were allowed to
vary by condition (“SupplementalMethods” in the online supplemen-
tal materials). Further, across participants, the improvement in model
fit relative to the “Q nothing varied” model correlated with the abso-
lute difference in w values between the conditions (Experiment 1 sum
ΔAIC =−134.03, Spearman’s ρ= .67, p, 2e−16; Experiment 2
sum ΔAIC =−147.22, Spearman’s ρ = .63, p, 2e−16), which
means that some participants showed a larger difference in decay
between the conditions—and corresponding model fit improve-
ment—than others. Full parameter values for the model are reported
in Table 2 in the online supplemental materials.
Simulations from this model (“Method”) recapitulated various

key features of the data, including learning curves and test phase
accuracy across all eight {contingency-condition} combinations,
decreases in accuracy as a function of delay in the learning phase,
and the rate at which participants consistently picked the worst
option in the test phase (Figure 3B and 3C; Figures 3 and 4 in the
online supplemental materials).

A Difference in Retention of Action Values Helps to
Account for Accuracy Differences Across Conditions

Having established that an RLmodel in which the w parameter was
allowed to vary by condition provided an adequate account of the data,
we next evaluated whether this parameter differs between conditions
and helps to explain individual differences in accuracy.
In both experiments, the w parameter was higher (more rapid decay)

in the cognitive than overt condition, with the majority of participants
showing this pattern, although this difference was marginally signifi-
cant in Experiment 1 (Figure 4A; Experiment 1: median wcog = .16,
median wovert = .13; wcog . wovert = 57.6%; χ2 = 2.89, p= .089;
Experiment 2: wcog = .20, median wovert = .16; wcog . wovert =
63.04%; χ2 = 9.39, p, .003). Interpretation of w estimates and the
differences therein are somewhat qualified by their having modest
parameter recovery (Spearman’s ρ: wcog = .67, wovert = .61, wcog

− wovert = .56; sign difference wcog− wovert = 71.43% correct;
Figure 5 in the online supplemental materials). Thus, a target for future
research will be to develop task designs where this parameter can be
more precisely dissociated from other parameters. Nonetheless, in
both experiments, participants’ differences in the condition-specific
w parameter estimates correlated with their accuracy differences
between the conditions not only in the learning phase, but also in
the test phase (Figure 4B). The correlations confirm that this parameter
does not merely capture effects due to delay (or other differences) dur-
ing initial learning, but also accuracy in the test phase by dictating the
retention of action values that are drawn upon in this phase. Notably,
the formation of robust expected actual values is thought to rely on
working memory (Frank & Claus, 2006; Gold et al., 2012; Hernaus
et al., 2018, 2019). Simulation using higher wcog than wovert confirmed
that a difference in this parameter (with no other parameters varied
between conditions) is sufficient to produce substantial accuracy

differences in the learning and test phases (Figure 6 in the online sup-
plemental materials).

We did not find any significant relationships between measures of
perseverative thinking (Perseverative Thinking Questionnaire and
Rumination-Response Style questionnaire) and the decay rate in
the cognitive condition or the difference in the decay rate between
conditions (ps. .07). Thus, we found no evidence that people
who especially struggled to learn cognitive action values were also
especially prone to think in a repetitive negative way. However,
note that this question is distinct from whether cognitive actions
are in general more difficult to learn, as our findings do suggest.
This difficulty could plausibly help to explain why it is difficult to
acquire adaptive alternative cognitive actions—to replace currently
ingrained ones—in psychotherapy; and why maladaptive thinking
patterns are readily acquired by individuals with other individual
differences and/or learning histories that confer risk (e.g., see
Hitchcock & Frank, 2024). Please see the Supplemental Results in
the online supplemental materials for further exploratory individual-
differences analyses.

Discussion

Many prominent clinical-science theories assume that mental
behaviors are similar to motor behaviors, in that they are maintained
or extinguished based on their consequences. For instance, rumina-
tion is thought to be maintained by justifying abstention from one’s
commitments (Nolen-Hoeksema et al., 2008), suicidal thinking and
self-injury imagery by relieving negative affect (Coppersmith et al.,
2023; Lawrence et al., 2023), and worry by replacing aversive men-
tal imagery (Borkovec et al., 1993) or buffering against precipitous
drops in affect (Newman & Llera, 2011). Many behavioral psycho-
therapies assume that, despite serving these functions, maladaptive
mental behaviors are myopic or otherwise neglectful of negative
consequences. Hence, these therapies strive to help people learn
alternative mental behaviors with better long-run consequences
than those in their current repertoire. Examples include thinking con-
cretely rather than abstractly (Martell et al., 2021; Watkins, 2018);
attending to the present moment instead of unproductively worrying
(Orsillo & Roemer, 2007); “spoiling” instead of enacting mental
compulsions (Foa et al., 2012); and recognizing thoughts as mere
thoughts, which can be viewed from a mental distance and appraised
for their utility, rather than acted upon as though they were impera-
tives (S. C. Hayes et al., 2011).

A key assumption in these approaches is that the consequences of
mental behavior can be learned through experience—hence, mental
behaviors with better consequences will eventually replace those
with more negative ones. Yet, little is known about the foundational
question of how learning adaptive mental behavior compares in dif-
ficulty to learning about motor behavior. We therefore designed a
novel probabilistic learning task to compare the ability to learn opti-
mal motor (overt) versus mental (cognitive) behaviors.

Our results neither suggest that both types of learning are compa-
rably easy nor that learning adaptive cognitive (vs. overt) behavior is
drastically more difficult for nearly everyone. Rather, across two
experiments and in both learning and test phases, we found that,
overall, people had more difficulty learning to take adaptive cogni-
tive than overt actions. Yet, there was substantial heterogeneity
among participants, with 33%–39% of participants actually showing
higher accuracy in the cognitive than overt condition.
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To understand the overall accuracy difference between conditions,
we built various computationalmodels. Themost successfulmodel, in
terms of its (penalized) fit to the data and ability to capture key behav-
ioral patterns, was an RL model that learned action values that subse-
quently decayed across trials—with the rate of decay varied by
condition. We found that between-condition differences in the
decay rate were closely correlated with between-condition differences
in accuracy—in both the learning and the test phase (even though
decay only occurred during the learning phase). Moreover, decay
was elevated in the cognitive (relative to overt) condition in both
experiments, although the difference was not statistically significant
in Experiment 1. Elevated decay in the model suggests more difficulty

with credit assignment because it means less robust action values
tended to be available on a given trial during the learning phase and
ultimately during the test phase. Impaired credit assignment may
have occurred in the cognitive condition because constructing
expected values relies on working memory (Frank & Claus, 2006;
Geana et al., 2022; Gold et al., 2012; Hernaus et al., 2018), which
is also required to effect a cognitive action. A complementary possi-
bility is that the interposition of a cognitive operation between action
initiation and reinforcement, which definitionally occurs when taking
a cognitive action, interferes with credit assignment.

Crucially, the pattern of our behavioral findings did not sugg-
est that participants in the cognitive condition simply failed to hold

Figure 4
The Decay Parameter, w

Note. (A) Parameter values in the cognitive and overt conditions in Experiments 1 and 2. Bars show median of all
subjects’, and points individual subjects’, values for wcog and wovert. o= p, .1; *** p, .005. (B) Correlation
between subjects’ wcog minus wovert difference scores (positive values correspond to relatively higher decay in
the cognitive condition) and differences in their overt minus cognitive accuracy. Positive correlations indicate
that those with relatively higher decay in the cognitive (than overt) condition tended to have higher accuracy in
the overt (than cognitive) condition, in both the learning and test phases. Cog= cognitive. See the online article
for the color version of this figure.
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contingencies in working memory across trials during learning, but
rather suggested impairment in constructing long-run expected values
for actions—a process also thought to rely onworkingmemory (Frank
& Claus, 2006; Gold et al., 2012; Hernaus et al., 2018, 2019). That is
because we found weaker performance in the cognitive condition not
only in the learning phase but also in a test phase, at which point
working-memory representations that merely temporarily represented
contingencies over short delays should have long since dissipated.
A key strength of our experiments is that they address questions of cru-

cial practical importance in clinical science and psychotherapy: whether
and why learning about cognitive actionsmay be especially difficult.We
conducted two experimentswith different task variants and found consis-
tent behavioral and computational modeling results. Our computational
model was able to capture numerous key features of the data, and it
offered insight into why accuracy differed (on average) between condi-
tions by pointing to disruption of the ability to form and retain expected
values. Although this is only a first investigation that raises many mech-
anistic questions (described below), this line of work might eventually
offer ideas for “rescuing” credit assignment to accelerate the acquisition
of adaptive mental behaviors in psychotherapy. For instance, it may be
beneficial to shape these behaviors (see Krueger & Dayan, 2009; see
also Hitchcock & Frank, 2024), acquire them in settings that minimize
distraction and maximize the salience of feedback, or promote explicit
recollection of psychotherapy content that might serve as cues to practice
alternative mental behaviors repeatedly in everyday life (Harvey et al.,
2014). The heterogeneity between participants also opens the possibility
of tailoring treatments that rely on learning adaptive cognitive actions.
For instance, people who struggle with such learning may benefit from
special assistance and scaffolding, whereas people adept at such learning
may be especially successful in treatments that capitalize on that skill (see
Cohen & DeRubeis, 2018, p. 115).
However, this first investigation also raises a number of questions

about the granular mechanisms that make it difficult to form
expected values for cognitive actions. Although we postulated pos-
sibilities including dual demands on working memory and incorrect
credit ascription, other (possibly complementary) possibilities
include the added time necessary to effect a cognitive action and
that cognitive actions do not afford sensory cues (which might aid
in representing an action as such and thereby facilitate credit assign-
ment). In future work, we plan to directly manipulate various factors
that may make cognitive-action learning more difficult to pinpoint
the responsible mechanism(s) in more detail.
Our study bears most directly on clinical theories that assume

mental behavior serve a function (i.e., are responsive to reinforce-
ment; e.g., Borkovec et al., 1993; Coppersmith et al., 2023;
Lawrence et al., 2023; Newman & Llera, 2011; Nolen-Hoeksema
et al., 2008) and to psychotherapies that take a behavioral approach
to cognitive activity (e.g., Martell et al., 2021; Orsillo & Roemer,
2007; S. C. Hayes et al., 2011; Watkins, 2018). These psychothera-
pies also assume that mental behaviors serve a function, and engi-
neer strategies to decrease the frequency of maladaptive mental
behaviors (such as rumination) or increase the frequency of adaptive
mental behaviors (such as mindfully attending to the present
moment). Our work connects these clinical theories and therapies
to RL research concerning how adaptive cognitive actions (such as
gating items into and out of working memory) are learned and exe-
cuted, irrespective of the item’s specific content (e.g., Braver et al.,
1999; Chatham & Badre, 2015; Dayan, 2012; Frank & Badre, 2012;
O’Reilly et al., 1999; O’Reilly & Frank, 2006; Rac-Lubashevsky &

Frank, 2021; Todd et al., 2009; Trutti et al., 2021; Westbrook &
Braver, 2016; see also, Hitchcock & Frank, 2024). By contrast,
our approach is not as naturally compatible with cognitive-
behavioral therapies that focus on changing cognitive content,
whether directly (e.g., through cognitive restructuring of beliefs)
or indirectly by modifying overt behavior in the service of cognitive
change (e.g., exposure therapy designed to change beliefs about
safety). How to reconcile the influence of cognitive content (e.g.,
explicit beliefs) on overt behavior and vice versa, with research on
how adaptive cognitive actions themselves are acquired via rein-
forcement, is an open question for future research (see Atlas et al.,
2016; Berwian et al., 2023; Dercon et al., 2024; Doll et al., 2009
regarding the relationship between rules or beliefs and RL).

A limitation of our experiments is that we did not include mea-
sures of working-memory capacity that might co-vary with impair-
ment in the cognitive condition. Such findings would have lent
credence to the possibility that dual working-memory demands are
responsible for the impairment. More generally, we were unable
here to parse the considerable heterogeneity between subjects
(e.g., finding individual differences), limiting the conclusions that
we can currently draw about how much of the between-condition
effect variability was meaningful versus simply because of noisy
aspects of the task. Another caveat is that we deliberately designed
the cognitive actions in our task to involve maintaining and manip-
ulating mental content. Many real-world cognitive actions share this
demand, but we do not expect our results to generalize to mental pro-
cesses (e.g., orienting attention) that do not.

An important nuance is that, when psychotherapies seek to replace
maladaptivemental behaviors withmore adaptive ones, theymayoften
need to contend with deeply ingrained mental behaviors that have
fallen out of goal-directed control—i.e., become habitual (Brewer,
2021; Watkins & Nolen-Hoeksema, 2014). How the challenge of
acquiring adaptive mental behavior documented here influences the
habitization of mental behavior, and the ability to break mental habits,
are important topics for future research. Moreover, although we
employed a number of computational modeling best practices (includ-
ing extensive model validation, model comparison, and parameter
recovery) and regularized subject-level estimates via group-level infor-
mation using a hierarchical modeling procedure that can improve
subject-level estimates (Katahira, 2016), a direction for future work
is to employ hierarchical Bayesian modeling and new task designs
that might further improve estimation and parameter recovery.

Finally, we wish to emphasize that this study examined the compar-
ative challenge of adaptive learning of quite simple mental versus
motor behaviors—which differed only in that the former required per-
forming a cognitive operation (given that carrying out a mental behav-
ior by definition entails performing one or more cognitive operations).
Our design followed the logic of many past RL studies, which assume
that it is possible to gain insights into the mechanics of learning in
highly simplified but tightly controlled experimental designs that gen-
eralize to complex behaviors in everyday life (reviewed in Niv, 2009;
Rmus et al., 2021; and see Frey et al., 2021; Kasanova et al., 2017 for
examples of such tasks predicting real-life behavior). Given that our
study was, to our knowledge, the first to directly compare the ability
to learn adaptive mental versus motor behaviors, we matched these
conditions as closely as possible. In particular, we deliberately avoided
adding emotional content, or multiple operations, to the cognitive con-
dition. We made this choice although maladaptive thinking patterns,
as well as many skills taught in psychotherapy such as cognitive
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restructuring, are clearly multistage valenced processes. As such, the
initial evidence presented here—that mental (vs. motor) behaviors
may be more intrinsically difficult to learn, even in this elemental
form—is undoubtedly just one of a number of reasons that people
are apt to acquire maladaptive thinking patterns and why it is difficult
to ingrain replacement thinking patterns within psychotherapy.
Notably, we recently developed a complementary theoretical

account of rumination and worry in which the challenge of learning
adaptive mental behaviors was just one part of the theory (Hitchcock
& Frank, 2024). In particular, drawing on computational models that
learn adaptive working-memory operations in sequential tasks, we
proposed that rumination and worry arise from an attempt at problem
solving gone awry at one or more of four distinct stages: first, select-
ing an overarching hypothesis (that might instigate a chain of rumi-
nation if it is open-ended and/or negatively valenced, e.g., “I am
socially incompetent”); second, executing subproblems related to
it (e.g., thinking of specific instances of social incompetence with
friends); third, switching between subproblems; and fourth, reinforc-
ing subproblems and/or the overarching hypothesis. This theory
casts rumination and worry as arising from distinct but interacting
challenges involved in selecting, executing, switching between,
and learning the consequences of a hierarchical, sequential set of
mental operations. The possible intrinsic difficulty of adaptively
learning (even a single) mental operation, suggested by our results
here, implies a potentially inherent difficulty as the reinforcement
stage. It may also suggest therapeutic techniques for simplifying
the acquisition of adaptive alternative behaviors, such as shaping
and scaffolding (Hitchcock & Frank, 2024, p. 4). Yet, according
to our theory (Hitchcock & Frank, 2024), various other factors
and individual differences likely contribute to the tendency to rumi-
nate or worry (e.g., abstract thinking, stable mental content, nega-
tively valenced thinking; van Vugt et al., 2012; Watkins, 2008;
Whitmer & Gotlib, 2013). Likewise, complex multistage processes
taught in psychotherapy (such as cognitive restructuring) presum-
ably rely on various interacting factors and individual differences
(Hitchcock & Frank, 2024, p. 4). In short, our work here—that sug-
gests a credit assignment challenge even when learning elemental
mental (vs. motor) behaviors—helps to lay a foundation for broader
theories and task variations necessary for more complete accounts of
various clinically relevant multistage, valenced thinking patterns.
In sum, in a novel task, we found that people had more difficulty

learning to select optimal cognitive (vs. overt) actions, with compu-
tational modeling tracing this difficulty to impaired formation and
retention of expected action values. These findings pave the way
for future research into individual differences, more granular mech-
anisms of this impairment, and multistage and valenced mental
behaviors—with numerous potential applications, including to clin-
ical theories and psychotherapies that aim to help people learn to
think in healthier and more productive ways.
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