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Humans learn adaptive behaviors via a durable but incremental reinforcement learning (RL) system and a
fast but fleeting working memory (WM) system. Past work parsing these systems focused on reward
learning alone; hence, little is known about how they interact while simultaneously learning to avoid
punishment and whether arbitrating between these demands is disrupted by psychiatric symptoms. We
administered a novel reward/punishment RL-WM task to an online sample oversampled for depression and
anxiety symptoms (N = 298; n = 275 after quality control). Participants avoided punishment during initial
learning, yet poorly retained this avoidance. Computational modeling captured this pattern via the fleeting
WM system facilitating punishment avoidance, while the durable RL system retained little about pun-
ishment. Our task also included two test phases interleaved with learning, which permitted a targeted
examination of past findings that WM blunts the RL system. When RL-based retention was tested midway
through learning, we indeed found evidence of blunting. Yet, after learning resumed—Ileading to further
prediction errors—blunting was no longer evident in a final test phase. However, individual differences
moderated this effect: Some individuals were especially susceptible to blunting; for others, WM actually
facilitated retention. Finally, task performance was largely spared as a function of depression/anxiety
and trait rumination. Overall, our findings demonstrate that—when seeking to attain reward and avoid
punishment concurrently—the WM system can facilitate short-term punishment avoidance while the RL
system retains little about punishment, reveal individual differences in the extent to which WM blunts RL,
and demonstrate intact behavior under internalizing-disorder symptoms.

Public Significance Statement

We developed a novel task to disentangle how reinforcement learning and working memory contribute to
navigating one of life’s fundamental challenges: learning to pursue reward and simultaneously avoid
punishment. We found that working memory temporarily facilitates punishment avoidance, yet such
avoidance is poorly retained. We also found, on the one hand, that there were substantial individual
differences among participants in the extent to which working memory blunted reinforcement learning, yet,
on the other hand, depression/anxiety and trait rumination symptoms had little impact on task performance.
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2 HITCHCOCK, KIM, AND FRANK

Telling a joke, walking a high wire, choosing a restaurant,
raising a delicate subject with a friend—Ilife requires us to con-
stantly navigate situations in which our actions may lead either to
reward or to punishment. How do humans learn how to behave in
such situations? Part of the answer appears to be that they rely on
an evolutionary conserved reinforcement learning (RL) system,
centered on the basal ganglia, which learns via an incremental yet
durable trial-and-error process (Masset & Gershman, in press; Niv,
2009; O’Doherty et al., 2017). However, the operations of this
system appear to be augmented in humans, such that it closely
interacts with more recently evolved attention, memory,
and cognitive-control systems that facilitate flexible and rapid
adaptation across a wide range of situations (Bornstein et al., 2017;
Bornstein & Norman, 2017; Collins & Frank, 2012, 2013; Collins
& Shenhav, 2022; Daw et al., 2011; Gershman & Daw, 2017;
Hitchcock & Frank, 2024; Leong et al., 2017; Molinaro & Collins,
2023; Niv, 2019; Niv et al., 2015; Rmus et al., 2021; Yoo &
Collins, 2022).

A noteworthy example of such interaction is that of the RL and
working memory (WM) systems, which have been investigated via
an RL-WM task manipulating WM load and delay in the context
of trial-and-error learning (Collins & Frank, 2012). Behavioral,
genetic, functional imaging, electroencephalography, computa-
tional modeling, pharmacologic, and individual-difference research
with this task has led to a variety of insights, including that there are
distinct behavioral and neural signatures of each system (Collins,
2018; Collins & Frank, 2012, 2018; Rac-Lubashevsky et al., 2023;
Westbrook et al., 2024). The task has allowed learning impairments
in patient populations to be disentangled (e.g., Cheng et al., 2024;
Rutherford et al., 2023). For instance, people with schizophrenia had
often been thought to exhibit RL deficits, which can in fact be
attributed mostly to the WM system (Collins, Albrecht, et al., 2017;
Collins et al., 2014).

Notably, this research has identified a key trade-off between WM
and RL. While learning is strongly facilitated when it can be
accomplished by WM, it is also less durable in such cases (Collins,
2018; Collins, Albrecht, et al., 2017; Collins, Ciullo, et al., 2017;
Rac-Lubashevsky et al., 2023). This leads to a striking paradoxical
effect. Namely, when participants learn under low WM demand—
and thus show high performance via WM rapidly storing the correct
options—their retention in a later test phase is actually markedly
degraded. In contrast, when they learn under demands exceeding
WM capacity, and RL is thus strongly enlisted to “pitch in”” during
initial learning, performance is initially impeded due to relatively
lower WM contributions, but later retention is improved due to the
RL system having been enlisted into the learning process (Collins,
2018; Collins, Albrecht, et al., 2017; Collins, Ciullo, et al., 2017;
Rac-Lubashevsky et al., 2023). In short, the past pattern of both
behavioral and neural findings with the RL-WM task suggests that
WM facilitates fast acquisition, yet at the cost of undermining
durable RL (Yoo & Collins, 2022). Yet, these findings appear
difficult to reconcile with other research suggesting that WM and
top-down processes actually enhance RL (Cavanagh et al., 2010;
Daniel et al., 2020; Doll et al., 2009, 2011; Farashahi et al., 2017;
Frank & Claus, 2006; Geana et al., 2022; Gold et al., 2012; Hernaus
et al., 2018, 2019; Hitchcock, Forman, et al., 2022; Hitchcock &
Frank, 2024; Leong et al., 2017; Radulescu et al., 2016; see also
Collins, 2024; Miller et al., 2019).

Another open question is how WM and RL interact in the
ubiquitous situation where some actions lead to reward and others
to punishment. Much RL research has found that this system
neglects punishment compared to reward (Collins, Ciullo, et al.,
2017; Collins et al., 2014; Gershman, 2016; Master et al., 2020;
Palminteri, 2023; Palminteri & Lebreton, 2022; see also Collins,
2024). Yet, what role WM plays in this process is unclear, because
no past work (of which we are aware) employed a task wherein RL
and WM contributions could be disentangled when concurrently
learning to attain reward and avoid punishment.

Disentangling these contributions might have important im-
plications for mental health. A recent simulation meta-analysis
found that individuals with depression and/or anxiety disorders
(vs. healthy controls) showed an apparently elevated RL pun-
ishment learning rate (Pike & Robinson, 2022). If this elevation
is due to an alteration within the canonical RL system, this
finding could have crucial treatment implications. By analogy,
the gradual denervation of midbrain dopaminergic neurons
in Parkinson’s disorder leads to an asymmetry in RL from
negative rather than positive prediction errors, which is related
to alterations in striatal reward prediction error (RPE) signaling
and can be partially remediated by dopaminergic medication
(Frank et al., 2004). Pike and Robinson’s (2022) findings
suggest a similar core learning difference might lie at the root of
depression and anxiety.

Yet, as noted, past work with the RL-WM task showed that trial-
and-error learning differences in schizophrenia, which might
appear to arise from RL, can in fact be attributed to WM (Collins,
Albrecht, et al., 2017; Collins et al., 2014). This raises the question
of whether apparent RL-based differences in punishment learning
might instead arise from differences in WM allocation. Indeed, it is
quite plausible that people with depression and anxiety symptoms
preferentially allocate WM to punishment. These symptoms
correlate extremely highly with trait neuroticism (Griffith et al.,
2010), which is the disposition to react negatively to threat,
frustration, or loss (Lahey, 2009).

Differences in WM allocation might have quite different treat-
ment implications than differences in RL. For instance, the tendency
to become explicitly preoccupied by threat, frustration, or loss might
be readily targeted in psychotherapy, rather than necessarily
requiring treatments (e.g., pharmacological ones) targeting the
(primarily subcortical) canonical RL system directly (indeed, see
Brown et al., 2021, for evidence that cognitive-behavioral therapy
influences loss processing during trial-and-error learning—there, a
bias in negative-outcome valuation).

One key innovation in the RL-WM task has been the incorporation
of a test (retention) phase that is administered after a substantial break
from initial learning. At this point, WM representations should have
long since decayed. Thus, the test phase offers a relatively pure
assessment of what has been retained by RL (Collins, 2018; Rac-
Lubashevsky et al., 2023). Here, we leverage the combination of
learning and test phases in a design with not only rewards but also
punishments. This enables testing whether punishment avoidance
during learning (and any differences as a function of psychiatric
symptoms therein) is actually due to RL, based on whether they
persist into the test phase.

We designed a novel approach/avoidance RL-WM task (Figure 1)
to address the above open questions and administered it to a
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Figure 1
The Rew-Pun RL-WM Task
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Note. (A) As in the standard RL-WM task, participants had to learn
stimulus-action-outcome contingencies in blocks with varying numbers of
unique stimuli, thereby manipulating set size and thus WM demand.
Participants tried to maximize reward and minimize loss by selecting the best
possible action (the Keys J, K, or L) in response to each image. Whereas, in
the standard task, for each image one action was rewarding and the other two
actions were nonrewarding, in our version, one action led to reward, another
to neutral, and the last to punishment (image—action—outcome mappings
were randomized, as shown). As in the standard task, these mappings were
deterministic and stationary. This figure shows the feedback screens from the
learning phases of the task; participants also completed test phases, which
had the same structure but with feedback withheld. (B) Task timeline:
Participants completed half of all learning trials, underwent a surprise test
phase, completed the second half of learning trials, and underwent a second
surprise test phase. RL = reinforcement learning; WM = working memory.
See the online article for the color version of this figure.

relatively large online sample (N = 298; n = 275 after quality
control),) who were oversampled for depression and anxiety
symptoms (see the Method section). We hypothesized that in-
dividuals with depression/anxiety symptoms would show height-
ened punishment avoidance during initial acquisition, which would
be attributable to WM, but not during a later test phase when
information is no longer in WM and performance thus relies pri-
marily on RL. Given our prediction that symptomatic participants
would preferentially allocate WM resources toward avoiding pun-
ishment, we predicted—due to the aforementioned findings that
higher WM engagement can paradoxically undermine RL—that they
would actually show worse long-term retention of punishment
contingencies (potentially forging a link to stress generation in
internalizing disorders, which could arise from a systematic dec-
rement in adaptive punishment RL; see also Beltzer et al., 2023;
Conway et al., 2012; Hitchcock, Forman, et al., 2022; Reilly et al.,
2019; Whitmer et al., 2012; Wierenga et al., 2022). Moreover, given
poor performance on executive function tasks in depression and
anxiety disorders (Abramovitch et al., 2021; Grahek et al., 2019;
Snyder, 2013), we predicted decreased overall WM contribution to
learning as a function of depression and anxiety symptoms. We also
assessed whether highly ruminative individuals would preferentially
allocate WM to punishing contingencies (see also Sharp et al., 2022),
as well as show lower overall WM contribution due to off-task
rumination (Hitchcock, Forman, et al., 2022; Rutherford et al., 2023;
Whitmer et al., 2012).

Method
Participants

Participants from the United States ages 18—65 (N =298) were
recruited via Prolific and provided informed consent via a form
approved by the Brown University Institutional Review Board.
Participants were compensated $9.50 United States dollars/hr.
Following consent, they completed the Rew-Pun RL-WM Task
followed by questionnaires.

In quality control checks similar to those used in prior work
(Hitchcock, Forman, et al., 2022; Hitchcock & Frank, 2024), we
excluded participants who, during the learning phase, performed
worse than 65% in Set Size 1 and/or 50% of Set Size 2 trials and/or
had more than 10% invalid trials (i.e., timeouts or wrong keys;
described below). We also excluded one participant who failed
two attention checks embedded in posttask self-reports (see
below). After these exclusions, the sample size was n = 275. The
demographic composition of participants (via their demographics
included in their Prolific profile) was as follows: age M (SD) =
38.48 (11.42); 50.36% female, 48.19% male, <1% data expired,
and 1.09% preferred not to say; and 4.35% Asian, 9.42%
Black, 1.45% data expired, 6.89% mixed, 4.35% other, and
73.55% White.

We oversampled for depression and anxiety symptoms using the
following strategy: One Prolific substudy was run in which par-
ticipants were eligible if they had answered “Yes” to the item “Do
you experience anxiety?”” on their Prolific profile; another was run
where they were eligible if they had answered “Yes” to the item
“Do you experience depression?”’; a final was run with an unse-
lected sample (after quality control, ns = 73, 75, and 127 [n = 275
total] were retained from each substudy). No other symptom-
related eligibility criteria were imposed on the subgroups. For
instance, the unselected sample was truly unselected and was not
required to have answered “No” to the depression or anxiety
questions. Supplemental Figure S1 confirms that this simple
oversampling strategy led to greater depression and anxiety
symptoms in the substudies comprising participants who ticked
those boxes. As described below, statistically, we took a contin-
uous/dimensional approach to analyzing psychiatric symptoms;
hence, the purpose of plotting these distributions is simply to show
that our strategy indeed oversampled depression and anxiety
relative to unselected sampling; no subsequent analyses use these
groupings or differentiate by substudy. Descriptive statistics for
symptoms were as follows: depression symptoms (via Beck’s
Depression Inventory—II): M (SD) = 14.21 (13.96), range = 0-58;
anxiety symptoms (via Generalized Anxiety Disorder-7): M (SD) =
5.86 (5.78), range = 0-21.

! Our sample size was in line with our target of approximately 300 par-
ticipants. Given our new version of the RL-WM task focused on reward
pursuit/punishment avoidance and that we would need to develop a new
variant of the task’s computational model to capture punishment avoidance
(see below), it was not possible to estimate an effect size for punishment
avoidance individual differences from the literature to use for power analysis.
Instead, we sought a sample size that was larger than most past studies of
reward and punishment processing in depression/anxiety (e.g., Pike &
Robinson, 2022, analyzed 27 such studies with N = 3,085 total participants—
an average of n = 114.26 participants per study) and much larger than most
past studies of the RL-WM task.
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4 HITCHCOCK, KIM, AND FRANK

The Reward-Punishment RL and WM Task

Like the standard RL-WM, the task was a deterministic trial-and-
error learning task wherein WM demand was systematically
manipulated by varying the set size from 1 to 5 in different blocks
(Figure 1A depicts a set size of 2, where participants had to learn
adaptive actions in response to only two images in that block, vs. a
set size of 5, where they had to learn adaptive actions in response to
five images; image set to set size assignments were randomized).
Participants were fully instructed about the task, including that
actions would deterministically lead to reward, neutral, or pun-
ishment for different images and that their goal was to “GAIN
reward and AVOID loss.”

Before each block, participants viewed a 7-s display showing the
images that they would learn about that block. Then the block
began—comprising a sequence of trials in which an image was
presented, the participant responded with an action (they pressed the
Key J, K, or L), feedback was displayed on a subsequent screen, and
then a fixation cross was displayed for 500 ms. However, unlike the
standard RL-WM task—where one action led to reward and the
other two to nonreward—here each action led to reward, neutral, or
punishment feedback (feedback displays are shown in Figure 1A).
The addition of a demand to avoid loss was expected to increase the
effective WM load for a given set size compared to the standard task
(given that participants might allocate WM resources to avoid
punishment and not just pursue reward). Thus, we used a set size
range of 1 to 5, whereas past studies with the standard task have
sometimes used a smallest set size of 2 or 3 and/or a highest set size
of 6 (e.g., Collins, 2018; Collins, Ciullo, et al., 2017).

Participants completed 300 learning trials, which comprised two
different sets of 1 through 5 set size stimuli, with each stimulus
learned about 10 times ([1 + 2 + 3 + 4 + 5] images = 15 X 2 stimulus
sets X 10 iterations with each image = 300 learning trials). The
primary purpose of having two stimulus sets (i.e., two sets of Set
Sizes 1 through 5) was to increase the number of trials per subject;
the sets did not differ in any way, and analyses and figures below do
not distinguish between sets (for instance, performance at Set Size 5
reflects average performance in both stimulus sets).

Participants also completed 120 test trials, which comprised
four iterations with each image from each stimulus set ([1 +2 + 3 +
4 + 5] images = 15 X 2 stimulus sets X 4 iterations = 120 test
trials). Test trials came as a surprise; that is, participants were not
informed that they would later be tested on the stimuli when they
initially learned about them. The test trials had the same structure
as the learning trials except that feedback was withheld: After
the participant responded with an action, a blank screen was
shown for 400 ms followed by a 500-ms fixation cross. (Prior to
test trials, participants were told to “Try to remember the best key
for each image. ... But don’t worry if you can’t consciously
remember—many people feel that and still perform fine! Just PAY
ATTENTION to each image and TRY YOUR BEST to select the
correct—and avoid the worst—key!”)

The task timeline (Figure 1B) was as follows: Participants first
completed half of the learning trials (five iterations of learning each
for all images—i.e., those from all set sizes in both stimulus sets),
they then completed a surprise test phase (two iterations of testing on
all images), they then resumed learning (a final five iterations of
learning for each image), and finally, they completed a second
surprise test phase (a final two iterations of testing on each image).

The purpose of the test phases was to examine what had been
durably learned by the RL system, after many intervening trials
since initially learning about those stimuli, thereby ensuring that
short-lived and interference-prone WM representations were no
longer available. This goal would be undermined if, for example, a
participant learned about the Set Size 3 stimuli in Stimulus Set 2 at
the end of the first learning phase and then tested on those same
stimuli only shortly after at the beginning of the first test phase.
Thus, we ensured that the order of stimulus sets, as well as the order
of the set sizes within them, was preserved across phases. Thus, in
this example, the participant would first test on the entire set of the
Stimulus Set 1 stimuli (completing 1 through 5 set size blocks in the
same order as during prior learning) and then, once in Stimulus Set
2, would not test on its Set Size 3 images until the end.

In both learning and test phases, stimuli appeared for 1,400 ms
followed by a timeout message (“RESPOND FASTER!”) if there
was no response or an “INVALID RESPONSE | USE J K or L!”
message if the wrong key was entered. In either case, the trial was
repeated until a valid response was given.

Of note, we developed this task variant, in which two distinct test
phases were employed, while planning the experiment by simulating
several different potential experimental designs via an adapted RL-
WM computational model (Collins & Frank, 2012; Master et al.,
2020). The simulations showed this design increased simulated
agents’ error rates, chiefly because simulated agents completed Test
Phase 1 and then began Learning Phase 2 at a point when (according
to the model) WM representations have decayed, leading them to rely
only on the incremental RL system, which had not yet many op-
portunities to learn. As described in the Results section, empirically
we indeed found a precipitous increase in error at these points (as
predicted by the model)—which was desirable given our interest in
examining neutral preference (i.e., punishment avoidance) within the
subset of error trials (see the Behavioral Measures section below).

Prior to completing the task itself, participants viewed practice
instructions to learn how the task worked (what keys to press; that
feedback was deterministic and rewarding, neutral, or punishing,
etc.). They then completed a practice block, which had the same
structure as a Set Size 2 block; to move on to the main task, they had
to demonstrate their understanding of the task by selecting the
rewarding action in 80% of trials in this block. The practice-block
data were not analyzed.

Posttask Self-Reports

After completing the tasks, participants completed the following
self-report questionnaires.

Beck’s Depression Inventory-I11

Depression symptoms were measured via the Beck’s Depression
Inventory-II (Beck et al., 1996), which is a well-validated 21-item
assessment comprising depression symptoms. Symptoms are rated
from 0 to 3, where higher numbers reflect more severe symptoms.
Cronbach’s o was .96 for this measure in our sample.

Generalized Anxiety Disorder-7

Anxiety symptoms were measured via the Generalized Anxiety
Disorder—7 (Spitzer et al., 2006), which is a well-validated seven-item
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assessment concerning the frequency with which symptoms of
generalized anxiety disorder occurred over the past 2 weeks (0 = not
at all, 4 = nearly every day). Cronbach’s a was .94 for this measure in
our sample.

Rumination and Response Scale-Short Form

Trait rumination was measured via the short-form version of the
Response Styles Questionnaire (Nolen-Hoeksema & Morrow,
1991), which excludes items from the original questionnaire that
concern depression symptoms. The Rumination and Response
Scale-Short Form has 10 items that concern the frequency of
engaging in brooding or reflective pondering (1 = I almost never
respond this way to 10 = I almost always respond this way).
Cronbach’s o was .90 for this measure in our sample.

Measuring Depression/Anxiety Symptoms

Given our expectation that depression and anxiety (which were
correlated at r = .80 in our sample) would lead to similar decrements
in WM usage and greater avoidance of punishing over neutral
actions (see also Pike & Robinson, 2022), we created a single
depression—anxiety outcome measure by taking the sum of Beck’s
Depression Inventory—II and Generalized Anxiety Disorder—7 z-
scores divided by 2 (z-scoring ensured that each measure contrib-
uted equally to the sum). This strategy is consistent with our aim of
employing a depression/anxiety measure reflecting symptoms that
encompass these constructs, rather than only what is shared between
them (as would be reflected in a factor on which items jointly load
derived from factor analysis or a shared trait measure such as
neuroticism).

Attention Checks

To encourage careful responding to questionnaires and attempt to
flag careless/insufficient effort responders (Zorowitz et al., 2023),
we informed participants prior to beginning self-reports that two
attention-check items had been included, and we embedded in two
questionnaires an attention check in which participants were in-
structed to select a specific response for one question (“not at all”
and “almost never’; however, see Zorowitz et al., 2023, and lim-
itations in the Discussion section regarding recent evidence that this
approach is not as sensitive as others).

Analyses
Behavioral Measures

In this article, “proportion correct” refers to the proportion of
trials in which the rewarding (i.e., optimal) action was selected.
“Neutral preference” refers to—within the subset of error trials—the
proportion of times the neutral action was selected minus the
number of times the worst (i.e., punishing) action was selected
(hence, a value of 0 would correspond to no neutral preference).
Hence, it gives a measure of punishment avoidance.

Statistical Data Analyses

Data were cleaned, organized, and analyzed using R (Version
4.3.1; R Core Team, 2023). To analyze the effects of set size on

proportion correct and reaction time in the learning and test phases,
we used logistic and linear mixed-effects models with linear terms to
capture linear effects and orthogonal polynomial terms (Mirman,
2014) to statistically test an inverted U effect, using the Ime4 package
(Bates et al., 2014), with p values estimated via Satterthwaite’s
method for approximating degrees of freedom. The variance infla-
tion factor for all multivariate regression models was <1.7, sug-
gesting no issues with collinearity. To allow interpreting estimates
and the uncertainty in them (irrespective of whether they were
statistically significant), we ran Bayesian mixed-effects regression
models to examine the relationships between depression/anxiety and
rumination symptom scores and behavioral/computational model-
derived task metrics (and when relating computational model-
derived metrics to task behavioral measures, for comparison). To
estimate the relationship between trial-wise behavioral measures and
symptoms (see Supplemental Figure S7), we used hierarchical
Bayesian mixed-effects regression models estimated via the “brms”
package in R (Version 2.21.0; Biirkner, 2017) using default priors
and using five Markov Chain Monte Carlo chains with 4,000
samples each, 2,000 of which were warm-up samples, thus giving
10,000 samples for inferences; more samples were run in if the model
did not converge with a lower number. To estimate the relationship
between task parameters and symptoms and behavioral summaries
(with one data point per participant), we used the “stan_glm”
function from the “rstanarm” package in R (Version 2.32.1;
Carpenter et al., 2017) with default priors. No divergence, maximum
tree depth reached, or estimated Bayesian fraction of missing
information warnings were generated for any model; maximum tree
depth was left at its default setting of 10 within the function. R for all
Bayesian models used for inference was below 1.1, suggesting no
issues with convergence. Significance was defined by whether 90%
of samples were above/below 0.

We used “maximal” mixed-effect model structures (Barr et al.,
2013) when these converged and were not singular; when they were,
we stepwise reduced the model and/or used hierarchical Bayesian
mixed-effects regression models as alternatives to frequentist ones.
The code notebook “key-results-paper.html” in the GitHub repos-
itory accompanying this article (https://github.com/peter-hitchcock/
rlwm-rew-pun-analysis) displays all regression model specifica-
tions. All predictors in regression models were z-scored.

Computational Modeling

Building on past modeling with the standard RL-WM task
(Collins, 2018; Collins & Frank, 2012; Master et al., 2020; Rac-
Lubashevsky et al., 2023; Westbrook et al., 2024), we developed a
computational model that was able to capture all key features of
the data.

The full model is described in the Supplemental Equations. Here,
we focus on elements that are key for understanding the results. The
model comprised WM and RL systems that each represented action
values, with RL values learned as,

O(s,a)’t, = O(s,a)’ + a,5,, where

&)
& =r— Q(Ssa)}u,

where Q(s,a)R" is the RL system’s value for a specific action for a

given image at trial 7, §, is the RPE of that trial, and r, is the reward of

that trial (which could take values —1 for punishment, O for neutral,
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non-puny,,,, for the chosen action ifr,=0
0(s,a)™ = ¢ Q(s,a)™™ + non-puny,, for all non-chosen actions if r, = —1. 4)
Q(s,a)™™ — non-punyy,,, for all non-chosen actions if r, = 1

or 1 for reward). The RL rate o, on a given trial varied depending on
whether the RPE was positive or negative—specifically, it was
respectively proportional to separately estimated parameters ot or
o in these cases. For all trials except the first stimulus iteration in
each phase (at which point there should be no WM load), the
learning rate could be further blunted on a given trial by an RL°™
parameter,

o =(1- RL;’ff) X a, 2)
where

RLT if delay, = 0

RLY = ¢ RLoff , 3)
otherwise

delay,

where delay, refers to the number of images that intervened since the
image had last been encountered. In short, the effective learning rate
not only varied depending on the sign of the RPE but was also
decreased by an RL°™ parameter that varied between participants; this
parameter itself varied trial-wise so that it exerted less blunting effect
on trials with a higher delay between trials, given that higher delay
should make WM representations weaker and less accessible, and thus
the RL system should be more likely to be enlisted.” (Of note, delays
tended to be longer at higher set sizes, given that trial images were
randomly ordered; hence, the effective RL rate tended to be higher at
set sizes that tended to exceed WM capacity—consistent with neural
evidence that RL Q values increase more rapidly in higher set sizes,
Collins & Frank, 2018; Rac-Lubashevsky et al., 2023, predicting
better test-phase performance, Rac-Lubashevsky et al., 2023.)

Unlike the RL system that incrementally learned via a low
learning rate, the WM system stored recent outcomes, which then
quickly decayed; participants also varied in WM capacity and usage
(see Supplemental Equations).

To enable punishment avoidance via the WM system, we also
modeled the WM system as ascribing a bonus to actions that could
be inferred to be nonpunishing,

(see Equation 4 above)

That is, when an action led to a neutral outcome, it was given a
bonus value because at least it was not punishing; when an action
was punishing, the remaining two actions were given a bonus
because they could be inferred not to be punishing; and when an
action led to a reward outcome, the remaining two actions were
decreased in value because they might be punishing, thereby leading
to a relative increase in the rewarding value. Overall, this rule allows
the WM system to eschew punishing actions, including those that
have not been directly experienced but which can be inferred from
the task structure—consistent with evidence for updating even
nonchosen options in RL tasks (Ben-Artzi et al., 2023; Biderman
et al., 2023; Biderman & Shohamy, 2021).

Of note, as is standard in this task and as described in the
Supplemental Equations, the inverse temperature parameter partly

determining the stochasticity of choice (in combination with an e
parameter modeling attention lapsing/fully random choice; see
Supplemental Equations) was fixed at a high value (f = 100, re-
flecting highly deterministic choice in this task with deterministic
contingencies). In a model where this parameter was allowed to vary
as a free parameter, we confirmed that it fit at high values for all
subjects (Mdn = 99.99, range = 48.54—100) and that model fit was
worse for the model where this parameter was estimated rather than
fixed (AAIC = 537.84, where AIC is the Akaike information cri-
terion, Akaike, 1998, a model-comparison metric that penalizes for
model complexity, which was used given that this model had an
extra free parameter).

Model Fitting, Validation, Parameter Recovery
Procedures, and Modeling Strategy

We estimated model parameters using maximum likelihood esti-
mation, which allowed for adequate to high parameter recovery
(range = .67-.90 for the eight parameters in our model; Supplemental
Figure S2; of note, the recovered RL°" parameter was correctly
below/above its median value in 78% of cases). More specifically, we
minimized the sum of negative log likelihoods of each participant’s
empirical choices across both the learning and test phases using the
“solnp” function in the “Rsolnp” package in R (Ghalanos & Theussl,
2011). Test-phase choices were modeled by simply using the soft-
max-predicted choice probabilities based only on the corresponding
RL Q values up to that point (i.e., the RL Q values after the first five
learning iterations per image for Test Phase 1 and after all learning
experiences for the final test phase; see “Supplemental Equations”;
also see Frank et al., 2007, and related studies for fitting to test).
Because there was no feedback in the test phase, no further updates to
the Q values were made. Because the optimizer can sometimes find
local minima, we ran optimization 40 times and took the run with the
lowest negative log likelihood.

We validated our computational model’s predictions against the
empirical data by simulating the task with the inferred parameter
estimates from the optimization procedure; specifically, we ran 50
iterations simulating the full experimental data set (i.e., each parti-
cipant’s best fitting parameters were used to simulate their experi-
mental data, for all participants, and this was repeated 50 times; the
simulation plots in the Results section show average values from
this procedure as well as points representing individual simulation
iterations). We statistically tested whether simulations could capture
an inverted U effect observed empirically in the first test phase and
first learning trial after test (described below) by running the same

ZA cooperative model (as implemented in Collins, 2018; Collins & Frank,
2018)—in which WM contributed to the RL reward prediction error pro-
portional to a free parameter 1, such that §, = r, — NQO(s,a)R" + (1 — 1)
Q(s,a)"] (in lieu of scaling of a and with no modulation proportional to
delay)—that had the same number of free parameters as the model described
in the text provided a worse fit to the data (A negative log likelihood =
395.26).
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APPROACH-AVOID LEARNING INTERACTIONS 7

model with orthogonal polynomial terms (Mirman, 2014) that we
used to test for an inverted U effect in the empirical data (as described
above) and finding the proportion of simulated data sets in which
there was a statistically significant negative estimate for the quadratic
term (providing evidence for an inverted U).

We tested how well we were able to recover parameters from
behavioral data by drawing parameter estimates from a multivariate
Gaussian distribution with parameter estimates simulated based on
their empirically estimated values, following the simulation and then
maximum likelihood estimation procedures just described, and then
correlating the values estimated on the simulation data against the
ones that had truly generated them.

Given extensive past research on the RL-WM task, we followed
the same modeling strategy as other applied studies employing it
(e.g., Cheng et al., 2024; Master et al., 2020; Rac-Lubashevsky
et al., 2023; Westbrook et al., 2024). Namely, we did not conduct
extensive model comparison to establish basic effects (such as
that both WM and RL modules were needed, which is already
well established from past work, e.g., Collins, 2018; Collins &
Frank, 2012; Collins & Frank, 2018); instead, we focused
on targeted comparisons and adaptations to the new design.
Specifically, the Results section will demonstrate how variation in
an RL-blunting parameter captures key individual differences
among participants; show the mis-specification of models that do
not include a non-punye,,s parameter, use the same RL rate for
negative prediction errors (PEs) as for positive PEs, and use a
stimulus—response (S-R) rule instead of RL rule (see below); and
demonstrate worse model fit for a model that uses an alternative
cooperative RL rule rather than the blunting rule described above.
Moreover, our model includes free parameters—representing
weightings on specific modules (such as a parameter dictating the
extent of WM contribution) or the contribution of specific pro-
cesses (such as the extent to which the RL system was blunted
under WM load)—that were fit with bounds that allow them to
drop out of the model (resulting in no WM contribution or no RL
blunting, in these examples). Supplemental Figure S3 depicts
histograms of all estimated parameters and thereby visualizes for
each parameter the proportion of participants for whom the
parameter was at a value such that it dropped out or nearly dropped
out of the model.

Of note, we took a dimensional approach to assessing psychiatric
symptoms, rather than recruiting psychiatric groups (e.g., partici-
pants with major depressive disorder vs. healthy controls); hence,
we examined how parameters continuously related to symptoms
rather than conducting a comparative test on groups (cf. Bayesian
t tests; Piray et al., 2019).

Testing a S-R Rather Than RL System

We also compared our primary model to one inspired by recent
work by Collins (2024), which found across six data sets with the
RL-WM task, as well as a probabilistic version from McDougle
and Collins (2021), that data in the learning phase of this task
could be best explained by a combination of WM and an S-R
learning mechanism that is more passive than RL. In particular,
the S-R system functions to simply increase the probability of
repeating the same response after taking an action in a given
situation, irrespective of the outcome. Collins (2024) highlighted
that the mixture of these systems can produce similar learning

curves to an RL-WM agent, because the WM system can guide the
S-R system to ingrain adaptive actions (see also Miller et al.,
2019; and similar to how top-down influences are thought to
accelerate RL-based learning in aforementioned studies and
models, e.g., Cavanagh et al., 2010; Frank & Claus, 2006; Geana
et al.,, 2022; Gold et al., 2012; Hernaus et al., 2018, 2019;
Hitchcock & Frank, 2024). These latter models, ranging from
biologically detailed neural networks to algorithmic models,
assume that learning is a product of multiple systems, including
WM, RL, and S-R learning. Collins (2024), however, found that
there was no need for any value-based RL at all when fitting data
from the RL-WM task.

Yet, Collins (2024) focused only on the learning phase, wherein it
may be difficult to arbitrate between RL versus S-R contributions,
given that both are thought to contribute, but where behavior is
largely dominated by WM. In contrast, the test phase is thought to be
largely independent of WM, because test choices require responding
to stimuli that had been learned across several blocks, after sub-
stantial delays and intervening stimuli, and the set of which far
exceeds WM capacity. Several past studies also showed that test-
phase performance in this and other RL tasks indexes the degree to
which people learned preferences for probabilistically more-re-
warded stimuli, even when such preferences could not be solved
within WM or even S-R alone (e.g., Collins, Ciullo, et al., 2017;
Doll et al., 2011, 2016; Frank et al., 2004, 2007; Rac-Lubashevsky
et al., 2023). Hence, we took advantage of our design having
substantial test-phase data (120 trials/participant) and compared the
computational model described above to an adaptation of it based
on Collins (2024). (Of note, our study was not originally designed
to arbitrate between S-R and RL accounts, but the rich test-phase
data in our task allowed for a serendipitous opportunity to
do so; likewise, Collins, 2024, analyzed previously collected data
sets that were not originally designed to arbitrate between the
accounts.) In our adaptation, the RL system in Equation 1 was
replaced with a type of choice kernel (CK) for the chosen action in
a given situation,

CK(s,a),,, = CK(s,a), + ofX §,, where

®)
8, =1-CK(s,a),
given that Collins’s (2024) best model was one where the system
that replaced RL was insensitive to outcome in terms of its pre-
diction error. Collins’s (2024) most successful model nevertheless
let this system and the WM learning rate (that was otherwise set at 1)
be downregulated for negative outcomes by a shared bias parameter;
hence, in our adaptation, we let:

1 ifr,=1
af™ = { . o 6)
bias otherwise
0(s,a) ' = O(s, @)™ + of™M[r, — O(s,a)"™], )
alK ifr,=1
oK = { I o ®)
o~" X bias otherwise

The CK system’s values were initialized at 1/3 to match
Collins (2024; however, model fit was very similar when using 0
initializations, as in the RL system in our primary model). WM
values were also initialized at 1/3, matching Collins (2024) and
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8 HITCHCOCK, KIM, AND FRANK

our primary model. The CK system did not update during the test
phases.

To offer a direct S-R analog to the aspect of our model that
captured individual differences in paradoxical set size effects within
our task (see the Results section), we let this system’s learning rate
be further downregulated by a parameter:

oK = ofK x (1 — CKOT), 9

which inversely scaled with the delay between trials via the
rule described in Equation 3. This model therefore substituted
three parameters ((xCK, bias, CKOff), all in the range [0, 1], for the
two RL rates and RL° parameter in our primary model. A mixture
of the choice-kernel (S-R) system and WM then drove choice
exactly analogous to how a mixture of RL and WM did in our
primary model.

As with our primary model, to avoid local minima, we ran
optimization 40 times for this model and took estimates from the run
with the lowest negative log likelihood. We compared this model
and our primary model, which were identical except for the changes
just described, in terms of their ability to capture key features of the
data (model validation) and model fit via negative log likelihood
(no penalty term was added because both models had eight free
parameters).

Transparency and Openness

The code used to produce the results and figures is available at
github.com/peter-hitchcock/rlwm-rew-pun-analysis. Data that can
be used to reproduce the results is available in the “public-data”
folder within the repository. The task was coded in Honeycomb
(Provenza et al., 2022). The study was not preregistered.

Results

Accuracy and Reaction Time Parametrically Vary With
Set Size During Learning

We replicated a parametric effect of set size during learning that
has been well-established through the standard task, namely that
participants are slower to acquire the optimal rewarding action in
higher set sizes (Figure 2A, left—white region)—Phase 1: set size
B (SE) =—.540 (.021), stimulus iteration p (SE) = 1.07 (.024), Set
Size x Stimulus Iteration p (SE) = —.372 (.018), all ps < 2e—16.
Novel to our task was that, after five iterations learning about each
stimulus, a break was taken for testing on all stimuli, after which
learning resumed (see the Method section). Notably, there was a
precipitous decline in performance in the lower set sizes when
learning resumed, whereas the break had less detrimental per-
formance in higher set sizes, consistent with the notion that WM
was responsible for superior performance in lower set sizes, yet
was no longer available after the break (Figure 2A, left—change
from Stimulus Iterations 5 to 6)—set size p (SE) = —.291 (.029),
before versus after break regressor p (SE) = —.522 (.023), Set Size x
Before Versus After Break § (SE) =.373 (.023), all ps < 2e—16; here,
the first two terms capture deleterious main effects of set size and the
break on performance, respectively, whereas the interaction indicates
that the postbreak decline disproportionately influenced the lowest set
sizes (see Supplemental Figure S4 for plot of regression predictions).

After the break, participants had five more opportunities with each
stimulus to learn with feedback, and the parametric effect of set size
quickly reestablished (Figure 2A, left—gray-shaded region)—Phase
2: set size P (SE) = —.287 (.029), stimulus iteration B (SE) =
.699 (.021), Set Size x Stimulus Iteration § (SE) = —.258 (.020), all
ps < 2e-16.

Simulations from our computational model of RL-WM inter-
actions (Supplemental Equations; Figure 2B, right) captured these
patterns, including the difference in learning slope by set size in
Phase 1, the magnitude of decline at the start of Phase 2 (other than
for Set Size 1 where empirically the decline was more precipi-
tous), the reestablishment of the set size effect in Phase 2, and the
asymptotic difference in performance between set sizes.

Consistent with models that assume more difficult choices
take longer (e.g., to accumulate evidence toward a value-based
decision, including one learned by RL and WM; see McDougle &
Collins, 2021), reaction times showed the mirror-image parametric
effect as proportion correct (Figure 2B, top left)—Phase 1: set size
B (SE) = 88.066 (2.12), stimulus iteration f (SE) = —38.97 (1.62),
Set Size X Stimulus Iteration f (SE) = 18.14 (1.02), all ps < 2e—16;
Phase 2: set size B (SE) = 57.94 (1.74), stimulus iteration p (SE) =
—40.31 (1.13), Set Size X Stimulus Iteration § (SE) = 19.61 (.874),
all ps < 2e—16. Notably, there was an effect of set size on reaction
time even when the same stimulus was repeated across successive
trials and a reward had been received on the last trial (Figure 2B, top
right), set size B (SE) = 67.56 (1.67), p < 2e—16, as well as on the
first stimulus iteration of Phase 1 (Figure 2B, bottom left), set size
(SE)=37.57 (3.03), p < 2e—16. The latter is noteworthy because it
occurs before any RL or WM values could have been acquired, and
thus indicates choice speed is influenced by proactive strategies
(e.g., raising the decision threshold when participants know they
have more to learn; of note, participants saw the number of stimuli
that they would learn about before each trial began; see the Method
section). Strikingly, after the break, participants were much slower
to respond to Set Size 1 (Figure 2B, bottom right) than the other
set sizes, even though they had responded by far the fastest in this
set size before the break—again consistent with them no longer
having access to WM that had been available before the break and
consistent with prior reports that participants show poor retention
of S-R information from low set sizes when tested later (Rac-
Lubashevsky et al., 2023).

Because our RL-WM model assumes that low set sizes are more
reliant on WM available during learning but not test, whereas high
set sizes exceed WM capacity and hence require enlisting the
durable RL system during learning, the model should predict a
higher correlation between performance in the learning and test
phases as a function of increasing set size. This prediction is indeed
borne out empirically and recapitulated by the model, wherein the
correlation between learning and test phase performance was
higher in high set sizes (4 and 5) than low set sizes (1 and 2) in all
50 simulations (higher than expected by chance; p < 5e—15,
binomial test; Figure 2C).

Set Size Led to an Inverted U Effect on Retention
Controlled by an RL-Off Parameter

Past work with the standard RL-WM task suggested that, when
WM dominates learning in lower set sizes, it reduces prediction
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Figure 2
Learning Phases—Proportion Selecting the Correct (Rewarding) Action and Response
Time
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Note. (A: Left) Empirical proportion correct (i.e., selecting the rewarding action) as a function of
set size in Phases 1 and 2 (white and gray shading). Points represent means and shading +1 SEM.
(Right) Simulated proportion correct from our computational model; large points represent means
over 50 simulations and individual points 30 individual simulations (simulations were highly
consistent with the average). (B: Top left) Response time as a function of set size and (top right) in
trials when the current trial stimulus had been presented in the immediately preceding trial (“no
delay”) and was rewarded. Points represent means and shading +1 SEM. (Bottom left and right)
Focusing in on the pattern of reaction time at two key points: the beginning of the first and second
phases. Points represent means and error bars 1 SEM. (C) The correlation between proportion
correct in the learning and test phases as a function of set size, empirically and in model simulations
(correlations are shown from a single simulation of the same size as the empirical data set, although
the same pattern was evident across simulations, as described in the text). SEM = standard error of
the mean. See the online article for the color version of this figure.

errors and thus blunts learning by the RL system (Collins, 2018;
Rac-Lubashevsky et al., 2023). Strikingly, Rac-Lubashevsky et al.
(2023) found that this led to a full reversal of the faster learning for
lower set sizes seen in the learning phase, so that, during the test

phase, performance actually parametrically improved as set size
increased—the mirror image of the worse performance as a function
of set size seen during learning. In that study, participants completed
a 15-stimulus-iteration learning phase (by which point performance
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was nearly perfect across set sizes), followed, after a pause, by a
single test phase. Here, in contrast, participants only completed 10
learning stimulus iterations total and they underwent a test phase
midway through learning as well as at its end (i.e., after 5 and 10
stimulus iterations), thereby enabling us to analyze retention at these
earlier versus later points.

In contrast to the full parametric reversal in Rac-Lubashevsky et
al. (2023; see Figures 3A and 4C on pp. 3136-3137 in that article),
we found an inverted U pattern in Test Phase 1: While perfor-
mance indeed parametrically improved through Set Size 3, it then
modestly declined again in Set Sizes 4 and 5 (Test Phase 1 in
Figure 3, top left). This reversal was also seen not only in the test
phase but also at Stimulus Iteration 6 during learning—the first
reencounter with the stimulus after the break, which is replotted in
Figure 3 (top middle) to demonstrate that a similar inverted U
pattern appears at this point as well. Indeed, quadratic as well as
linear orthogonal polynomial terms for set size were statistically
significant in logistic mixed-effects models at these time points—
Test Phase 1: linear set size p (SE) = 13.42 (3.24), p < 5e-5;
quadratic B (SE) = —26.24 (3.43), p < Se—14; Stimulus Iteration 6:
linear set size B (SE) = 6.44 (2.44), p < le—2; quadratic f (SE) =
—22.81 (2.49), p < 2e—16. In contrast, there were no statistically
significant linear or quadratic effects in Test Phase 2 across
all subjects (ps > .21). Plots of the regression models’ predictions
confirm that they captured an inverted U pattern in Test Phase 1
and Stimulus Iteration 6, whereas there was no clear pattern as
afunction of set size evident in Test Phase 2 (Supplemental Figure S5).

Figure 3
Test Phases—Proportion Selecting the Correct Action as a Function
of Set Size

Empirical
Test phase 1 Stimulus iteration 6 Test phase 2
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Note. Empirical (top; bars are means and error bars +1 standard error of

the mean) and simulated from our computational model (bottom), where
in the latter the bars are means across 50 simulations and the points are
individual simulations. As noted in the text, learning with feedback
paused after Stimulus Iteration 5 and Test Phase 1 then occurred
sometime later, at which point WM representations should have decayed.
Stimulus Iteration 6 is then the first trial in Phase 2, before the participant
has begun learning again (hence, the pattern of results is similar to Test
Phase 1). Learning then continued for another five stimulus iterations
followed by another pause; Test Phase 2 then again assessed what has
been retained, now after there had been 10 learning iterations with each
stimulus. WM = working memory. See the online article for the color
version of this figure.

Our computational model qualitatively captured the inverted U
pattern, and 96% of Test Phase 1 simulations and 60% of Stimulus
Iteration 6 simulations showed a statistically significant quadratic
term with a negative sign reflecting an inverted U. However, we note
that the model simulations were unable to capture the full magnitude
of the inverted U at Test Phase 1 and Stimulus Iteration 6, as the
empirical data showed both a steeper increase from Set Sizes 1:3
and decrease from Set Sizes 3:5 than was predicted by the model
(Figure 3, bottom).

How is the model able to capture the inverted U pattern? Figure 4
demonstrates that the shape of the inverted U is modulated by the
RL°T parameter, which captures individual differences in WM
blunting of the RL system (see the Method section). In particular,
low- versus high-blunting participants (defined for visualization
by taking a median split on RL°™) exhibited a qualitatively dif-
ferent pattern empirically. Low blunters showed, at Test Phase 1
and Stimulus Iteration 6, an inverted U pattern that peaked at Set
Sizes 2 or 3 and then, in the final Test Phase 2, a parametric effect
of declining performance with set size similar to the set size
stratification at the end of learning (see Figure 2A). In contrast,
high blunters showed a more severe decline in performance in the
lower set sizes that persisted until Test Phase 2 (Figure 4B).
Indeed, statistically, RLO (entered as a continuous predictor)
moderated the effect of set size on Test Phase 2 performance,
producing a qualitatively different pattern—such that the lowest
tercile of blunters (—1 SD RL°®) showed a parametric decline as a
function of set size (i.e., the same direction as present at the end
of learning), whereas the highest tercile of blunters (+1 SD RL"ff)
reversed that pattern—set size p (SE) = —.035 (.041), p = .397;
RL°T B (SE) = —.541 (.092), p < 1e—8; Set Size x RL°™ B (SE) =
451 (.047), p < 2e—16. Thus, while Figure 3 had shown that, at the
group level, there was no apparent effect of set size at Test Phase 2,
the RL°™ parameter reveals a notable source of heterogeneity, with
subsets of participants exhibiting a qualitatively different pattern
depending on this parameter that reflects individual differences in
RL blunting.

A Model With a Pure S-R, Rather Than RL, System
Captures Some Key Effects but Misses Others

When we tested substituting an S-R learning module in
place of value-based RL, as in Collins (2024), we found that
this model provided a worse fit to the data than the value-based
model (A negative log likelihood = 500.08; as noted in the
Method section, these models had the same number of param-
eters, so a penalization term was not needed to compare them).
Notably, the retention phases were particularly diagnostic of
the differences between the models. Indeed, while simulations
from the S-R model were able to capture the learning curve
similar to our primary model, they predicted largely the opposite
pattern to the observed paradoxical effects in the retention
phases in that they predicted parametrically decreasing perfor-
mance as a function of set size (i.e., the same pattern as during
learning) in Test Phase 1, Stimulus Iteration 6, and Test Phase 2
(Supplemental Figure S6A and S6C). That the S-R model
is unable to capture the paradoxical effects is unsurprising: The
S-R account predicts better retention of actions repeated
most often during learning and thus parametrically better per-
formance for correct S-Rs that had been repeated most consistently
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Figure 4
Modulation of Test Phase Shape by a Model Parameter, RL%, Controlling RL
Blunting
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Note. (A) The distribution of RL°Y estimates across participants (the black bar shows the
median value). (B) Empirical pattern of results for low- versus high-blunting participants, as per
the median split on the RL°™ parameter in A. Bars show the average across subjects, and points
show the individual subjects (with width and height jitters of .17 and .02, respectively, added).
(C) Logistic regression mixed-effects predictions in a model predicting proportion correct in the
final test phase from the interaction between set size and RL°™. Predictions are shown at —1
standard deviation (low), mean (medium), and +1 standard deviation (high; RL°Y was a
continuous predictor in the model—these categories are only used for visualization). RL =
reinforcement learning. See the online article for the color version of this figure.

*EE p < .001.
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(those learned under low WM demand).> The S-R model also
predicted a lower rate of neutral preference during learning than
was observed empirically (see the next section; Supplemental
Figure S6D).

Participants Exhibited a Short-Lived Preference for
Neutral Actions Over Punishing Ones During Learning
With Relatively Poor Retention Into a Test Phase

Our analyses have thus far focused on proportion correct (i.e.,
selection of the rewarding action), yet a key novel feature of our new
task was that the other two actions led to different outcomes:
punishment and neutral (which together constitute error trials;
25.03% of learning-phase and 22.99% of test-phase trials were error
trials). As learning progressed in both phases, participants devel-
oped a tendency to select neutral over punishing actions (Figure
5A). We used Bayesian methods for statistical models of this effect
due to convergence issues with frequentist ones; this analysis
confirmed that the posterior density for stimulus iteration on neutral
preference was above 0 on 100% and 92.75% of samples for Phases
1 and 2, respectively, reaching our criterion for significance. Our
computational model captured this preference for neutral over
punishment (Figure 5B), although with substantial variability across
simulations (presumably because error trials were such a relatively
small proportion of trials compared to those in which participants
chose the rewarding action). Moreover, this preference was ac-
counted for by a non-puny,,,s parameter that assigns a bonus in WM
to options that can be inferred to be nonpunishing (see the Method
section); “lesioning” this parameter led to a reduction in the neutral
preference inconsistent with the magnitude observed empirically
(Figure 5C).

In the test phases, there was only marginal evidence for a neutral
preference (Figure 6A, left), in that the posterior reflecting this
preference (the intercept of the neutral preference during the test
phase) had 10.27% of traces below O and thus did not meet our
criterion for significance. It is also evident that the magnitude of the
preference was lower than at its highest point during learning
(compare Figure 6A, left, to Figure 5SA) even in the second test
phase, by which point all errors (choices of neutral or punishing
stimuli) had been experienced (the 90% credibility interval of a test-
phase regressor on neutral preference also overlapped 0, i.e., we did
not find evidence that retention differed in the later vs. earlier phase:
M = .04, 90% CI [-0.04, 0.12]). Our computational model also
predicted poor retention (Figure 6A, right). It did so, first, because
the non-punye,,s parameter, which was key to capturing the
learning-phase neutral preference (described above), operated only
on WM and thus was not available during the test phases, and
second, the RL system—that was available during the test phases—
was fit with two different learning rates for learning from positive
negative prediction errors, o~ and o, and for 93.82% of participants
ot > o~ (Figure 6B, left; the parameters [on a log scale] also differed
in a paired-samples ¢ test; p < 2e—16). Moreover, when we
reran simulations with o~ values set to those estimated for at, the
model’s predictions were substantially mis-specified—predicting a
much greater neutral preference than was observed empirically
(Figure 6B, right). Finally, model comparison supported dropping
the o~ parameter entirely (AAIC = —279.57 for a model with no RL
updating at all after negative PEs). However, we have retained this

parameter in the model to allow for the direct comparisons between
the different learning rates just described and given the importance
of examining if individual differences in RL-based punishment
learning relate to depression/anxiety symptoms in light of recent
results implicating it therein (see the next section; Pike & Robinson,
2022).

Little Evidence of Task Differences as a Function of
Depression/Anxiety or Rumination

Contrary to our hypothesis, there were no consistent accuracy
differences in the learning phase as a function of depression/anxiety
or rumination symptoms (Supplemental Figures S7 and S8). In
particular, the main effects of depression/anxiety and trait rumi-
nation, and their interaction with set size (which would reflect
different performance as a function of WM demand), were mostly
centered around O (Supplemental Figure 7B, left, top; Phase 1—
depression/anxiety: posterior M < —.01, 90% CI [-0.04, 0.03];
Depression/Anxiety X Set Size: M < .01, 90% CI [-0.01, 0.02];
rumination: M < —.01, 90% CI [-.04, .03]; Rumination X Set Size:
M = .02, 90% CI [0.00, .03]; Phase 2—depression/anxiety: M <
—.01, 90% CI [-0.07, 0.08]; Depression/Anxiety X Set Size: M =
.03, 90% CI [.00, .05]; rumination: M < .01, 90% CI [-.08, .08];
Rumination X Set Size: M = .02, 90% CI [—0.01, .04]). In fact, in the
only two cases with some evidence, the effects indicated relatively
better performance as a function of symptoms at higher set sizes
(i.e., under higher WM demand)—the opposite of the predicted
direction. These effects included marginal evidence for an inter-
action between rumination and set size in Phase 1 and between
depression/anxiety and set size in Phase 2. However, the fact that
these Symptom X Set Size relationships were not repeated in the
other phase is tantamount to a failed robustness check for this
relationship. Altogether, given the weak evidence, multiple com-
parisons, opposite-of-predicted direction effects, and failed repli-
cation in the other phase, we interpret the overall pattern of results as
providing no consistent evidence for a Symptom X Set Size
interaction. As expected, there were no accuracy differences as a
function of symptoms in the test phase (Supplemental Figure S7B,
left, bottom; depression/anxiety: M = .01, 90% CI [-0.07, 0.10];
rumination: M < .01, 90% CI [-0.08, 0.09]).

Contrary to our hypothesis, there was no greater punishment
avoidance (operationalized as greater neutral [vs. punishment]

3 As described in the Method section, in order to allow for the most direct
comparison with our primary model, which included an RL blunting term
that was key to capturing the test effects (as described above), we incor-
porated a blunting parameter serving the same function in the S-R model
(although, from a theoretical perspective, we note that this parameter is not
well motivated, in that it is inconsistent with the spirit of an S-R system that
ingrains actions irrespective of contextual factors such as WM demand). In
this implementation, a key reason that the SR-WM model was unable to
capture test phase effects was that estimates for this parameter returned by
optimization were very low (Mdn = .078), whereas the RL blunting
parameter fit at much higher values (Mdn = .614); that is, the choice-kernel
blunting parameter (unlike the RL-blunting parameter) “dropped out” or
nearly dropped out of the model for many participants. In fact, an S-R model
without the blunting parameter (CK°™) improved fit relative to the more
complex model (AAIC = —107.28), yet the reduced model still fit worse than
the RL-based primary model (AAIC = 892.88). We nevertheless included
CK°T in the simulations in Supplemental Figure S6 to show that, even with
this parameter included, the S-R model qualitatively mis-specified the
predictions about the test phase.
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Figure 5

Neutral Preference (Within the Subset of Error Trials, Proportion Selecting the
Neutral Action Minus Proportion Selecting the Punishing One) as Learning
Progresses in Phases 1 and 2

Neutral Preference in Learning Phases
Empirical Simulated Sim.: Non-pun. bonus = 0
(A) P (B) (C)
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Note. (A)Empirical results, where bars are mean and error bars +1 standard error of the mean.
(B) Model simulations, where the bars are average across 50 simulations and the points show the
wide range across simulations (likely due to the relatively few error trials). (C) Reduction in
neutral preference predicted by the computational model when non-puny,,,,s model parameter is
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set to 0. Sim. = Simulated. See the online article for the color version of this figure.

preference) as a function of depression/anxiety or rumination
symptoms in the learning phase (Supplemental Figure S7B right, top
row; depression/anxiety: posterior M = —.01, 90% CI [-0.04, 0.01];
rumination: M < .01, 90% CI [—-0.02, 0.03]). There was also no
difference in punishment avoidance retained into the test phase as a
function of symptoms (Supplemental Figure S7B right, bottom row;
depression/anxiety: posterior M < —.01, 90% CI [—0.06, 0.05];
rumination: M < —.01, 90% CI [-0.06, 0.05]).

When we entered computational-model parameters in Bayesian
regressions predicting accuracy in the learning and test phase of the
task (Figure 7, left), we found that various model parameters pre-
dicted performance in the expected direction: Worse performance
was predicted by higher RL blunting (RL°™—especially at test,
where RL is more dominant), higher WM decay (@), higher lapse
rate (e—especially at learning), and higher bonus assigned to items
inferrable as nonpunishing (non-puny,,,s—only outside of the 90%
credibility interval during learning, where WM contributes).
Conversely, higher WM usage and capacity (p and capacity k—
especially at learning) and higher RL rate from positive and negative
prediction errors (" and o ; the former especially at test) all
predicted better performance. These results confirm that the model
parameters meaningfully corresponded to behavioral performance.

In contrast, symptoms showed much weaker relationships with
model parameters (Figure 7, right; Supplemental Table S1). For
rumination, the 90% highest density interval of all parameters
overlapped 0, and the mean of many estimates was close to 0. For
depression/anxiety, the 90% highest density interval of all parameters
overlapped 0, although three parameters relating to our hypotheses
had marginal evidence for them. Namely, the non-puny,,s parameter
had a positive point estimate reflecting higher WM allocation to
punishment as hypothesized (M = .06, 90% CI [-.04, .17]).
However, the point estimate for this parameter was lower when it was
entered in a univariate model as a robustness check (M = .04, 90% CI

[—.05, .14]). Thus, especially when taken in combination with the
lack of behavioral evidence for a neutral preference during learning as
a function of depression/anxiety, we do not interpret the results
as providing much evidence for our hypothesis. The other two
parameters pertaining to our depression/anxiety hypotheses with
some degree of support were WM capacity (k; M = —.07, 90% CI
[—.19,.05]) and decay (¢; M = —.05,90% CI[-.17, .05]). However,
our prediction was of weaker WM contribution and these effects go
in opposite directions: While the former does indeed reflect lower
WM capacity, the latter indicates lower WM decay and thus reflects
relatively better WM maintenance. Taken together, these findings
provide little evidence of the hypothesized patterns due to inter-
nalizing-disorder symptoms—notwithstanding that our computa-
tional-model parameters strongly and meaningfully corresponded to
task performance. Finally, in light of recent meta-analytic evidence of
an elevated punishment learning rate in depression/anxiety (Pike &
Robinson, 2022), it is noteworthy that the RL rate from negative
prediction errors (a~) was centered very close to 0 with a wide range
of credible values (M = < .01, 90% CI [-.09, .11]).

Findings were very similar when depression and anxiety symptoms
were separately regressed on model parameters: All estimates had
90% highest density intervals that included 0 and thus did not meet
our criterion for significance (Supplemental Figure S9).

Discussion

Adaptive behavior requires taking rewarding actions while
avoiding punishing ones. We studied how people learn these
competing imperatives via a fast-but-fleeting WM in tandem with a
slow-but-durable RL system. We did so via a novel approach/
avoidance variant of an RL-WM task. In this variant, participants
chose between three options on each trial that deterministically
yielded reward, neutral, or punishment. Replicating a pattern found
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Figure 6
Poor Retention of Neutral Preference in the Test Phases Captured
via Different RL Learning Rates
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Note. (A) The relatively poor retention of the neutral performance during
the test phases (left; bars show the means) is captured by our computational
model (right; points show the range across 50 simulations and bars show the
mean across them). (B: Left) The relatively poor retention can be explained in
the model in part by weak learning from negative prediction errors, reflected
in the fact that (left) a higher learning rate from positive than negative
prediction errors (at > a”) was estimated for nearly all participants (the line
is the identity line for a™; purple points are the only participants for whom this
parameter was higher than o", whereas orange are the participants for whom
o was higher). (Right) When o™ is set to the same value as was estimated for
o, the model predicts a higher rate of neutral preference in the test phase than
was observed empirically (points again show the range across 50 simulations,
and bars show means). RL = reinforcement learning. See the online article for
the color version of this figure.

many times in the standard task, participants rapidly learned to pick
the most rewarding option during acquisition phases, albeit para-
metrically less so as set size (and thus WM demand) increased.
To examine the effect of our addition of a punishment option, we
next examined whether participants learned to prefer the neutral
(and thus avoid the punishment) option within the subset of error
trials. During learning, they indeed exhibited a preference for neutral
relative to punishment options, but this preference was not robustly
retained into test phases. Using computational modeling, we found
that this pattern could be captured by allowing fleeting WM to
ascribe a bonus to nonpunishing options, including those that were
not directly experienced (see also Ben-Artzi et al., 2023; Biderman
et al., 2023; Biderman & Shohamy, 2021), while the enduring RL
system had differential learning from negative relative to positive
PEs. Specifically, as in much past work (Collins, Ciullo, et al., 2017;
Collins et al., 2014; Gershman, 2016; Master et al., 2020; Palminteri
& Lebreton, 2022), optimization revealed a much lower RL rate for

negative (than positive) PEs for the vast majority of participants, and
a metric of penalized model fit supported dropping this parameter
from the model entirely. Moreover, when we ran simulations with
the RL rate for negative PEs set to the positive PE learning rate’s
value, the model incorrectly predicted much higher neutral pref-
erence retention into the test phase than was empirically observed.
This demonstrates that poor neutral preference retention was not
merely due to a paucity of error trials to enable sufficient learning,
but rather due to a neglect of negative PEs by the RL system (but see
also Collins, 2024; Palminteri, 2023; Sugawara & Katahira, 2021;
Toyama et al., 2023, and further discussion below).

Our design also involved two surprise test phases interleaved with
learning. These enabled a targeted test of findings from past RL-WM
research that, when initial learning was within WM’s capacity, the
contribution of the RL system was blunted (Collins, 2018; Collins,
Albrecht, et al., 2017; Collins, Ciullo, et al., 2017; Rac-Lubashevsky
et al., 2023; see also Haile et al., 2024; Russin et al., 2024). In
particular, Collins (2018) found that better performance in low
versus high set sizes (3 vs. 6) during learning paradoxically reversed
in the test phase. Hence, participants actually showed enhanced
retention when they had learned under higher WM demand. Rac-
Lubashevsky et al. (2023) found a full parametric reversal across
five set sizes, such that the standard pattern of parametrically faster
learning from Set Sizes 1 to 5 (low to high WM demand) showed a
mirror-image pattern at later retention, with the best retention now at
Set Size 5 and the worst at Set Size 1. Further, this study found that
this test-phase retention was related to accelerated neural learning
curves in the prior learning phase, due to large prediction errors
when WM resources were degraded (Rac-Lubashevsky et al., 2023;
see also Collins & Frank, 2018).

Our results are largely consistent with this interpretation, even
though we found an inverted U rather than a linear decline as a
function of set size in the first test phase—which we attribute to
differences in our design. Specifically, whereas in Rac-Lubashevsky
et al. (2023) the only testing took place after 15 learning experiences
per stimulus (by which point learning was nearly perfect across set
sizes), our first test phase was administered after just five learning
experiences per stimulus. At this point, participants had not yet
learned Set Sizes 4 and 5 enough to retain them well—an effect
qualitatively captured by our model. Participants then resumed
learning from feedback beginning at a much lower performance than
where they had left off, leading to an increased rate of prediction
errors. The model captured that the increased prediction errors help
to consolidate RL-based learning, leading to a minimal effect of set
size in a second test phase delivered at the end of learning (unlike in
the standard paradigm, where the lack of a midway break leads to a
virtual disappearance of prediction errors in lower set sizes in later
parts of learning, eventually leading to worse retention in low set
sizes during the sole test phase administered after learning; Collins,
2018; Rac-Lubashevsky et al., 2023). Of note, although our model
qualitatively captured the inverted U pattern at the midway test, its
replication in the first trial of the second learning phase, and its
disappearance at the postlearning test, it did not capture the full
magnitude of the inverted U (i.e., it predicted a less steep initial
increase from Set Sizes 1 to 3 and a less sharp decline from Set Sizes
3 to 5), leaving room for improvement in future work.

However, we also found substantial individual differences that
are not visible within the group pattern (see also Haile et al., 2024).
Specifically, we found a broad range of estimated values for a
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Figure 7
Model Parameters as Predictors of Performance and Symptoms
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Note. Bayesian regressions of computational-model z-scored parameter
estimates on proportion correct during the learning and test phase (left) and
psychiatric symptoms, specifically depression/anxiety and rumination
(right). n — py, = nON-punyey,,s parameter; RL = reinforcement learning. See
the online article for the color version of this figure.

computational-model parameter that captured RL blunting, RL°™,
High versus low blunters showed a qualitatively different pattern by
the final test phase: Only the high blunters showed evidence of
impeded retention in low set sizes wherein WM had dominated. In
contrast, the low blunters appeared to have retained the benefits of
faster acquisition under low set sizes (i.e., that it allows more
experience picking the correct option; see also Collins, 2024; Miller
et al., 2019) into the test phase—with parametrically higher
retention in Set Sizes 1 to 5, mirroring the learning-phase pattern
(however, even these relatively low blunters had poor Set Size 1
retention when it was tested midway through learning). These
individual differences help to reconcile the RL-WM findings with
other literature suggesting that WM and other top-down influences
actually enhance RL (Cavanagh et al., 2010; Daniel et al., 2020;
Doll et al., 2009, 2011; Farashahi et al., 2017; Frank & Claus, 2006;
Geana et al., 2022; Gold et al., 2012; Hernaus et al., 2018, 2019;
Hitchcock, Forman, et al., 2022; Hitchcock & Frank, 2024; Leong
et al., 2017; Radulescu et al., 2016): They suggest that top-down
influences that enhance initial performance help the RL system to
ingrain the correct option—as long as concomitant RL blunting is
not high enough that its negative effect outweighs this benefit.

In other results based on the test-phase data, we tested substituting
an S-R module for the RL module in our model. Recent work by
Collins (2024) found that such an S-R model could sufficiently
account for the learning pattern in the RL-WM task—although the
model was not fit to test-phase data, which should provide a purer

test of RL contribution (Collins, Ciullo, et al., 2017; Doll et al.,
2011, 2016; Frank et al., 2007). We found that—although the WM
and S-R model indeed adequately accounted for the accuracy pattern
during the learning phase of the task and captured the poor retention
of punishment avoidance into the test phase—it failed to capture the
inverted U pattern in the first test phase, its repetition at the start of
the next learning phase, or the pattern at the second test phase.
Rather, it predicted parametrically declining performance as a
function of set size (i.e., no paradoxical effect) at each of these
points. This was true even though we allowed the S-R module to be
blunted proportional to WM contribution, in the same way as the RL
system (although we note that RL, rather than S-R, blunting is
arguably more theoretically motivated and is consistent with
neural findings; Collins, Ciullo, et al., 2017; Collins & Frank, 2018;
Rac-Lubashevsky et al., 2023). The model with an S-R module also
failed to capture the magnitude of neutral preference (punishment
avoidance) during learning observed empirically.

In terms of psychiatric symptoms, contrary to our predictions that
accuracy during learning would be impeded among depressed/
anxious and trait ruminative individuals, respectively, due to worse
executive function and WM preoccupation by off-task rumination,
we in fact found that performance was remarkably similar as
a function of symptoms (if anything, more depressed/anxious in-
dividuals showed slightly less deleterious effects of set size on
performance; see also Frogner et al., 2025). Nor did we find any
behavioral evidence for a greater neutral (over punishment) pref-
erence during learning as a function of depressed/anxious or
ruminative symptoms or a paradoxical reversal of this effect in
retention (as would be expected if WM had been more strongly
allocated to punishment, paradoxically leading to worse test-phase
retention due to RL blunting; see also Beltzer et al., 2023; Whitmer
et al., 2012; however, given that neutral preference in the test
phase was at floor at the group level [i.e., it did not statistically differ
from 0], our design may not have been optimal to detect individual
differences in the retention of punishment avoidance).

In computational modeling, we found modest evidence that
depressed/anxious (but not ruminative) individuals prioritized
punishment in WM, in terms of elevation within a model parameter
that ascribed a bonus in WM to nonpunishing items. Although this
pattern is consistent with our prediction that more depressed/anxious
individuals would allocate greater WM to punishment avoidance,
the 90% highest density interval for this effect overlapped 0, and a
robustness check of it in a univariate model found a lower point
estimate for this relationship. We did not find any evidence for
weakened durable RL-based learning from punishment as a function
of depression/anxiety or rumination (which would be predicted if
there were a paradoxical effect on punishment retention due to
heightened WM punishment allocation during learning); indeed, the
credibility intervals for the effect of symptoms on the RL rate for
negative PEs were centered near 0. Although there was modest
evidence for two model parameters related to overall WM function
differing as a function of depression/anxiety—namely, the WM
capacity and the WM decay rate were both lower as a function of
symptoms, although neither fell outside the 90% credibility
interval—these parameters have opposite effects on task perfor-
mance: The former reflects lower WM capacity and thus harms
performance, whereas the latter reflects better retention of it and thus
improves performance. Thus, the overall pattern was not consistent
with our hypothesis of impaired WM as a function of depression/
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anxiety. The effects of trait rumination on WM parameters were
centered close to 0, again contrary to our predictions.

Overall, our findings suggest noteworthy sparing of learning
in this task as a function of internalizing-disorder symptoms.
Interestingly, Cheng et al. (2024) recently found that adolescents
and young adults with a history of unipolar major depression (vs. no
history of psychopathology) showed a reduced RL rate in the
standard RL-WM task. It is plausible that these discrepant findings
come from differences in the population (dimensionally over-
sampled adults from Prolific here vs. adolescents/young adults
assessed for lifetime history via structured interview), task (the
reward—punishment variant including two test phases used here vs.
the reward-only classic task without a test phase in their study),
and/or computational model (Cheng et al.’s, 2024, model had worse
parameter recovery for the RL rate than ours and did not use separate
learning rates for positive vs. negative PEs).

A strength of our new task variant is that, as far as we are aware, it
is the first that is capable of disentangling WM and RL contributions
in the ubiquitous everyday situation where actions can lead either to
reward or to punishment. We developed a computational model that
captured all the key features of this new task, including the magnitude
of the learning curve stratified by set size, its precipitous decline and
partial reversal after a retention test midway through learning, and the
reestablishment of the set size stratification by the end of the second
learning phase; the inverted U retention pattern midway through
learning, its replication at Stimulus Iteration 6 (the start of the second
learning phase), and its disappearance in the final retention test; and
the development of a fleeting neutral preference during learning that
was poorly retained into test phases. Specific parameters within
our model offered insight into these effects: An RL°T parameter
implementing RL blunting controlled the shape of the inverted U, a
NON-punye,,s WM parameter allowed for the short-lived neutral
preference during learning, and allowing the RL system to have
different learning rates for negative versus positive PEs (with opti-
mization returning a much lower estimate for the former for the vast
majority of participants) was needed to capture the poor ultimate
retention of the neutral preference.

A further strength is that we used hierarchical Bayesian regression
models to quantify the precise strength of evidence for the effects of
psychiatric symptoms on task behavior and model parameters, al-
lowing us to go beyond merely documenting null findings and instead
to quantify the strength (or lack of strength) for various hypothesized
effects. We found that learning was, for the most part, markedly
spared under these task conditions. Results have been quite mixed
regarding RL differences under internalizing-disorder symptoms
(reviewed in Bishop & Gagne, 2018; Chen et al., 2015; Hitchcock,
Fried, & Frank, 2022; Pike & Robinson, 2022; Yamamori et al.,
2023). Our finding of spared learning came in the context of a design
that had many features whose absence could have plausibly led to
null results in prior studies (such as a task that requires executive
function and RL cooperation, wherein it is possible to disentangle
WM from RL, where there is a competing demand to learn to
approach reward vs. avoid loss, with relatively high N, with
depression and anxiety symptoms assessed dimensionally, with an
operant design, and with identifiable RL rates from positive and
negative PEs). That notable learning alterations were still not evident
in a task with all of these features (and rather, learning was instead
notably spared) should help the field of computational psychiatry to
home in on whether there are other settings under which differences

reliably are present, such as if they are only present among parti-
cipants meeting a diagnostic threshold or in designs with other
features (e.g., probabilistic contingencies; nonstationary probabili-
ties; independent bandit arms; monetary or intrinsic incentives for
task performance; gamification; losses from endowments or with
primary aversive value; elicitation of disorder-relevant states, such as
rumination; young adult/adolescent samples; distinguishing cogni-
tive and physiological anxiety; elicitation of an especially rich task
context and/or personal goals; see, e.g., Banker et al., 2025; Beltzer et
al., 2023; Blain et al., 2023; Brown et al., 2021; Cheng et al., 2024;
Gagne et al., 2020; Hitchcock, Forman, et al., 2022; Karvelis et al.,
2023; Pike & Robinson, 2022; Rutledge et al., 2017; Senta et al.,
2025; Suddell et al.,, 2024; Wise & Dolan, 2020; Yamamori
et al., 2023).

Our study also had important limitations. First, although our
design choice to add a test phase midway through performance had
the desired effect of decreasing performance at this point, and
thereby increasing errors, this deterministic task nonetheless had
few overall error trials. That we had relatively few errors to analyze
led to more noise while investigating punishment avoidance, as was
evident, for instance, in the range of simulated results with the same
model and parameter values in Figure 5B and Figure 5C. Future
studies may need to include task features—such as independent
bandit arms (see Pike & Robinson, 2022) and probabilistic designs
where WM and RL can to some extent still be disentangled (e.g.,
McDougle & Collins, 2021, Experiment 3)—to increase the error
rate further. Further, although our task/computational model could
disentangle WM from RL and moreover demonstrated some distinct
predictions from RL and S-R modules, our experiment was not
suited to disentangle the contributions of another system that might
well be at play in this task: the episodic memory system (for
instance, we did not use trial-unique stimuli; Bornstein et al., 2017;
Bornstein & Norman, 2017; Gershman & Daw, 2017; Lengyel &
Dayan, 2007). Hierarchical Bayesian computational modeling was
also beyond the scope of this article, given the complexity of our
model. Hence, we were unable to propagate uncertainty in parameter
estimates into the symptom ~ parameter relationships shown on the
right side of Figure 7, and parameter recovery may have been
negatively affected (although we note that recovery was still ade-
quate to high for all parameters and that we tested an approximation
of full hierarchical Bayesian modeling—normalizing estimates by
the group-level statistics, which can sometimes improve recovery,
e.g., Frey etal., 2021; Hitchcock & Frank, 2024—although it did not
do so for this task/model). Finally, although we embedded atten-
tional checks into questionnaires, the type of check that we used
(e.g., “Mark this item ‘Not at all’”’) may be less effective in flagging
careless/inattentive responding than checks requiring more careful
attention, which could in turn have led to inflation within psychiatric
symptoms (Zorowitz et al., 2023; although this concern is mitigated
by the fact that such inflation increases the risk of false positives,
whereas we found learning as a function of psychiatric symptoms
was largely spared).

In sum, we developed a novel variant of an RL-WM task to
understand how these systems interact while concurrently learning
to gain reward and avoid punishment. We found that participants
showed temporary punishment avoidance via WM, but with little
retention of this preference; individual differences in the extent to
which RL is blunted by WM; and spared learning as a function of
internalizing-disorder symptoms. Our findings pave the way for
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mechanistic insights into how WM and RL are allocated to approach
reward and concurrently avoid punishment, and help to reveal
boundary conditions under which learning is—and is not—altered
as a function of psychiatric symptoms.

Constraints on Generality

We investigated reward pursuit and punishment avoidance in an
online American adult sample, about 3/4 of whom identified as
White, collected from Prolific. We oversampled for participants
who self-identified as experiencing depression or anxiety, but found
that learning was notably similar among these individuals and an
unselected subset of participants. As described in the Method
section, participants were required to demonstrate basic capacity to
understand and complete the task via a practice phase before moving
onto the main task, and we removed a small subset of participants
whose performance was indistinguishable from chance prior to
analyses. Hence, we assume our participants had basic computer
literacy and did not have starkly impaired memory. It is unclear to
what extent our findings would generalize to non-English-speaking
or memory-impaired participants, those without computer literacy,
children or older adults, or non-Western, Educated, Industrialized,
Rich, and Democratic participants.
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